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The matrix product state (MPS) is utilized to study the ground-state properties and quantum phase transitions
(QPTs) of the one-dimensional extended quantum compass model (EQCM). The MPS wave functions are
argued to be very efficient descriptions of the ground states, and are numerically determined by imaginary-time
projections. The ground-state energy, correlations, quantum entanglement and its spectrum, local and nonlocal
order parameters, etc., are calculated and studied in detail. It is revealed that the von Neumann entanglement
entropy, as well as the nearest-neighbor correlation functions, can be used to detect the second-order QPTs, but
not the first-order ones, while fidelity detections can recognize both. The entanglement spectrum is extracted
from the MPS wave function and found to be doubly degenerate in disordered phases, where nonzero string
order parameters exist. Moreover, with the linearized tensor renormalization group method, the specific-heat
curves are evaluated and their low-temperature behaviors are investigated. Compared with the exact solutions,
our results verify that these MPS-based numerical methods are very accurate and powerful, and can be employed
to investigate other EQCMs which do not permit exact solutions at present.
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I. INTRODUCTION

During the past several decades, the role of the orbital
degrees of freedom in determining the magnetic and transport
properties of transition-metal oxides (TMOs) has been widely
recognized.1–6 The complex intrinsic interplay in TMOs
induces their extremely rich phase diagrams and various
fascinating physical phenomena. In order to mimic these
orbital states with a twofold degeneracy, the quantum compass
model (QCM) was first introduced by Kugel and Khomskii.7

The orbital degrees of freedom are represented by pseudospin-
1/2 operators, and the competition between orbital orderings
in different directions is simulated by anisotropic couplings
between these pseudospins. Particularly, the two-dimensional
(2D) QCM has attracted considerable attention due to its
interdisciplinary character. Besides the ability to describe
t2g systems, it was also proposed that the compass model
can describe the physics of protected qubits,8,9 and hence
it may have potential application in quantum information
techniques. The strong quantum frustration makes it difficult
to solve the system analytically and consequently leads to large
degeneracy in the energy spectrum, which sets obstacles for
numerical simulations.10 It is generally implied that there exist
a symmetry-broken ground state and a first-order quantum
phase transition (QPT) at the self-dual point.11–15

On the other hand, the one-dimensional (1D) QCM has
also triggered extensive studies.16–23 In Ref. 16, by mapping
to the quantum Ising model, Brzezicki et al. obtained an
exact solution of the 1D extended QCM (EQCM), revealing
that it exhibits a first-order transition between two disordered
phases. Subsequently, Wen-Long You and Guang-Shan Tian
adopted the reflection positivity technique in the standard
pseudospin representation to rigorously determine the ground-

state degeneracy.21 And, a first-order phase transition was
also confirmed. Following the approach in Ref. 16, Eriksson
and Johannesson22 studied the QPTs in a 1D EQCM with
more tunable parameters. They suggested that the reported
first-order phase transition in fact occurs at a multicritical
point where a line of the first-order transition meets with
a line of the second-order transition. Generally speaking, a
first-order QPT is often associated with energy level crossing
in the ground state, and hence the entanglement measures,
such as concurrence and entanglement entropy, would be-
have discontinuously.24,25 However, in Ref. 22, the authors
claimed that they encountered an “accidental” exception. The
concurrence and block entanglement can accurately signal
the second-order transitions, but not the first-order ones. In
other words, the entanglement measures do not show any
discontinuities or singularities across the first-order quantum
critical points (QCPs) in the 1D EQCM. Nevertheless, a
converse point of view that both concurrence and quantum
discord can reliably detect the first-order QPTs of this model
was proposed very recently.26 In a sense the 1D EQCM can
be exactly solved by taking Jordan-Wigner transformation;
nevertheless, it is still not easy to analytically calculate the
spin correlations for arbitrary sites and the excited states.

In this paper, we investigate numerically the ground-
state properties and QPTs of 1D EQCM with the matrix
product state (MPS) variational wave function and the related
algorithms. We would like to point out that MPS is a very useful
and highly efficient real-space description of the ground states,
and it provides a novel way to study the QPTs in EQCM. To
be specific, first, some exact MPS ground states for the EQCM
Hamiltonian in some limiting cases can be obtained, and
for off-limiting generic parameters, the infinite time-evolving
block decimation (iTEBD) algorithm27 is adopted to determine
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the variational MPS ground state. Very accurate results can
be achieved in gapped regions (up to 8∼9 digits compared
with exact solution; see Fig. 3 below) with a small number
of reserved states. In addition, the iTEBD method can also be
employed to take adiabatic continuation calculations, which
apparently reveal the energy level crossing around first-order
QPTs. Second, given the real-space wave function in MPS
form, the interesting quantities including the ground-state
energy, energy spectrum, correlation functions, entanglement
entropy, fidelity per site, as well as local and nonlocal order
parameters, etc., can be conveniently evaluated. Some of them
are not easy to obtain by other methods. Third, the MPS-based
algorithms can be applied to other extended models, and hence
provide us powerful tools to explore other EQCMs without
exact solutions.

Through the numerical calculations with MPS, we verify
the phase diagram of the 1D EQCM [see Eq. (1)], and it is
uncovered that both the first- and second-order QPTs can be
detected by the fidelity, while the entanglement measures can
only capture the later ones. Furthermore, we discover that the
entanglement spectra in disordered phases of EQCM happen
to be doubly degenerate, and correspondingly there exist two
nonlocal string order parameters, which reveals the hidden
Z2 × Z2 symmetry breaking.

This paper is organized as follows. In Sec. II, the Hamil-
tonian of the 1D EQCM is introduced, along with the MPS
description and related perturbation analysis. Besides, the
entanglement and fidelity measures in the framework of MPS
are concerned and discussed. In Sec. III, we provide our
main numerical results, which include the ground-state energy,
entanglement entropy, fidelity, and string order parameters in
different regions of the phase diagram. Afterwards, in Sec. IV,
with the finite-temperature algorithm, i.e., linearized tensor
renormalization group (LTRG), the specific-heat curves of 1D
EQCM are calculated and analyzed. Finally, some possible
extensions of the present work, as well as a summary, are
presented in Sec. V.

II. MODEL HAMILTONIAN, MATRIX PRODUCT STATE,
ENTANGLEMENT ENTROPY, AND FIDELITY

A. Quantum compass model

The 1D EQCM is given by

Ĥ =
N ′∑
i=1

(
J1σ

z
2i−1σ

z
2i + J2σ

x
2i−1σ

x
2i + L1σ

z
2iσ

z
2i+1

)
, (1)

where the periodic boundary condition is assumed and N =
2N ′ is the total number of sites. The σ

x,z
i are Pauli matrices on

the ith site; J1, J2 on odd bonds, along with L1 on even bonds,
are exchange couplings. For the calculations in Secs. III and
IV, the coupling constant L1 = 1 in Hamiltonian Eq. (1) is set
as the energy scale.

The ground-state phase diagram of 1D EQCM (see Fig. 1)
is sketched by previous studies.22 As shown in Fig. 1, the
system undergoes a first-order QPT identified by critical line
J1 = 0 and a second-order QPT with critical line J2/L1 = 1.
A multicritical point (J1 = 0,J2/L1 = 1) locates where the
lines of the first-order and second-order QPTs meet.

FIG. 1. (Color online) Schematic phase diagram of the 1D
EQCM; the four different phases are marked as regions I, II, III, and
IV. The dashed lines denote three typical paths (a) J2 = 2(1 − J1),
(b) J2 = 1 − J1, (c) J2 = 0.8(1 − J1) that will be used in the
following discussions. L1 = 1 is set as the energy scale.

The Hamiltonian (1) commutes with the parity operators
Pi ≡ σx

2i−1σ
x
2i , and thus the parity of every odd bond is

conserved. In such circumstance, the Hilbert space can then be
decomposed into subspace V (pi), where pi is the eigenvalue of
Pi and introduced to label the relative pseudospin direction on
odd bonds; that is, pi = 0 (pi = 1) when the two pseudospins
are parallel (antiparallel). It is disclosed that the ground
state lies in space {p1 = p2 = · · · = pN ′ = 0} for J1 < 0,
and in {p1 = p2 = · · · = pN ′ = 1} for J1 > 0;21 that is, for
ferromagnetic coupling J1, two spins on odd bonds can only be
parallel [one of such spin configurations is shown in Fig. 2(a)],
while for antiferromagnetic (AF) coupling J1, the spins on odd
bonds must be antiparallel in the ground state [see Fig. 2(b)].

FIG. 2. (Color online) (a) and (b) show two typical spin configu-
rations, the spins on odd bonds are parallel (for J1 < 0) or antiparallel
(for J1 > 0). The dashed ovals denote the spins on even bonds. (c) and
(d) show the one- (�) and two-period (Ta , Tb) MPS wave functions;
� is a diagonal matrix on each bond.
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B. Matrix product states and perturbation analyses

In principle, any quantum state of many-body system can
be expressed by MPS form through taking successive Schmidt
decompositions site by site.28,29 However, not all of these MPS
expressions are efficient and can be utilized for simulations.
For 1D cases, thanks to the entanglement entropy area law,30

a quantum spin chain with only finite-range interactions and
possessing a gapped spectrum can be efficiently simulated with
the MPS-based algorithms. MPS is closely related with the
density matrix renormalization group method,31 and it well
satisfies the entanglement area law in 1D. Given canonical
MPS,27 when the the chain is divided into two blocks by cutting
a bond, the renormalized left (right) bases are the eigenvectors
of the reduced density matrix subsystem to the left (right) of the
broken bond. As long as the entanglement entropy between two
subsystems is bounded by the area law, the classical simulation
of the 1D quantum system can be performed efficiently.

For the present 1D EQCM, as shown in Fig. 2(c), a tensor
�m2i ,m2i+1 is used to address the two spins on even bonds, where
m means local spin physical index, and the wave function in
uniform (period-one) MPS form can be written as

∣∣�I
MPS

〉 = Tr

(
N ′∏
i=1

�m2i ,m2i+1�i

)
| . . . ,(m2i ,m2i+1), . . .〉, (2)

in which � means a χ × χ diagonal matrix, χ is also called
the bond dimension, and Tr is the trace of the matrix product.

To explain this point more explicitly, we take the limiting
cases with L1 = 0 into account, where the spins on even bonds
are unentangled, and the exact MPS ground states are thus
obtainable. For J1 < 0 (and J2 > 0), the limit parameter point
belongs to region I of the phase diagram Fig. 1. The ground
state of the local two-site Hamiltonian on odd bonds is

|φf (2i − 1,2i)〉 = 1√
2
|↑2i−1↑2i − ↓2i−1↓2i〉, (3)

with bond energy J1 − J2, and it requires that the spin
orientations on odd bonds must be parallel. Thus MPS Eq. (2)
with the following projection tensor � (bond dimension
χ = 2) is the true ground state of the system: �

↑↑
1,1 = �

↑↓
1,2 = 1,

and �
↓↑
2,1 = �

↓↓
2,2 = −1 [the negative sign originates from the

minus sign between spin up and down components in Eq. (3)];
similarly, for J1 > 0, the limit case locates at region II, and the
ground state on odd bond is

|φaf (2i − 1,2i)〉 = 1√
2
|↑2i−1↓2i − ↓2i−1↑2i〉, (4)

with energy −J1 − J2, and the tensor � in the ground-state
MPS is as �

↓↑
1,1 = �

↓↓
1,2 = 1, and �

↑↑
2,1 = �

↑↓
2,2 = −1. In addition,

for both cases, � = 1√
2
I is a 2 × 2 diagonal matrix with

doubly degenerate values.
In the practical iTEBD projection process, the MPS wave

function is usually organized as two-period; i.e., it consists of
two types of tensors Ta and Tb,

∣∣�II
MPS

〉 = Tr

(
N ′∏
i

�aT
m2i−1
a �bT

m2i

b

)
| . . . ,m2i−1,m2i , . . .〉,

(5)

where �a (�b) is χa(b) × χa(b) diagonal matrix on the cor-
responding bond. The exact MPS expressed with one tensor
� can also be rewritten with Ta and Tb. Because the spins
on even bonds are unentangled, bond dimension χa = 1 and
�a = 1, and the other bond dimension χb = 2, with diagonal
matrix �b = 1√

2
I . When J1 < 0, the nonzero tensor elements

are (Tb)↑1,1 = 1, (Tb)↓2,1 = −1, and (Ta)↑1,1 = (Ta)↓1,2 = 1; while

for J1 > 0, (Tb)↓1,1 = 1, (Tb)↑2,1 = −1, and again (Ta)↑1,1 =
(Ta)↓1,2 = 1.

Besides regions I and II, there also exist exact MPS ground
states in regions III and IV. In Fig. 1, those parameter points
are along the line J2 = 0. Owing to the absence of quantum
fluctuations, the model reduces to a classical Ising model with
alternating couplings J1 and L1, and the ground state is the
direct product state, i.e., MPS with bond dimension χ = 1.
When J1 > 0, one ground-state spin configuration is illustrated
in Fig. 2(b), and the MPS is two-period, with (Ta)↑1,1 = 1 and

(Tb)↓1,1 = 1. While for J1 < 0, one spin configuration is shown
in Fig. 2(a), and the MPS is four-period, i.e., consists of four T

tensors. Ignoring the bond indices owing to χ = 1, the nonzero
elements are T

↑
4n−3 = T

↑
4n−2 = 1, and T

↓
4n−1 = T

↓
4n = 1, where

4n − i is used to mark the lattice site, and n = 1,2, . . . ,N ′/2
(N ′ is assumed to be even number).

Apart from the above limiting points, the MPS ground state
cannot be written down generally; however, we can adopt the
ordinary perturbation theory to argue that MPS description
is still a very nice ground-state approximation. First we take
regions I and II as examples, and consider the lowest excited
odd bonds as follows,32

|ψf (2i − 1,2i)〉 = 1√
2
|↑2i−1↑2i + ↓2i−1↓2i〉 (6)

and

|ψaf (2i − 1,2i)〉 = 1√
2
|↑2i−1↓2i + ↓2i−1↑2i〉, (7)

with bond energy J1 + J2 and −J1 + J2, respectively. Here-
after, we denote the one-particle excited state

|E(i)〉 = | . . . φf ψf (2i − 1,2i)φf . . .〉 (8)

for J1 < 0 and

|E(i)〉 = | . . . φaf ψaf (2i − 1,2i)φaf . . .〉 (9)

for J1 > 0. That is, one odd bond (2i − 1,2i) is in state
|ψf (af )〉, while others remain in |φf (af )〉. It is straightforward
to verify that the transition-matrix element of the perturbation
operator between |E(i)〉 and the zeroth-order exact MPS
ground state vanishes; i.e., 〈�MPS|L1σ

z
2j σ

z
2j+1|E(i)〉 = 0. This

fact suggests that the lowest one-particle excited states do not
affect the MPS wave function in the first-order approximation,
and only the multiparticle excited states or higher order
perturbations will modify it. Further analysis shows that
the perturbation term L1σ

z
2j σ

z
2j+1 will move the “particle”

along the chain, i.e., 〈E(i)|L1σ
z
2iσ

z
2i+1|E(i + 1)〉 = L1, so

the one-particle excitation dispersion up to the first-order
approximation can determined as33

ε
I,II
k = 2J2 + 2L1 cos(k), (10)
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in which k = −π + 2π
N ′ , . . . ,π − 2π

N ′ ,π , and |k〉 =
1√
N ′

∑N ′
l=1 eikl|E(l)〉. This dispersion suggests that the

excitation gap of the system is nonzero in the phase diagram
except for the line J2/L1 = 1 (gapless at k = π ).

For regions III and IV, where the term J2σ
x
2i−1σ

x
2i is regarded

as perturbation, the same conclusion can be drawn after similar
arguments; i.e., single-particle excited states will not modify
the MPS ground state up to the first-order single-particle
perturbation, and MPS is also a very nice approximation in
these two gapped regions. What is different, in this case the
excited particle is revealed to be a moving “domain wall”
instead of a single excited odd bond, and the dispersion relation
can be verified as ε

III,IV
k = 2L1 + 2J2 cos(k).

C. iTEBD and imaginary-time projections

Beyond the perturbation arguments, the imaginary-time
projection technique iTEBD is employed to accurately deter-
mine the variational MPS wave function.27 To be concrete,
the variational ground state |�g〉 (in MPS form) can be
obtained by enacting the imaginary time evolution operator
exp(−βĤ ) on an arbitrary initial state |�0〉. The operator
exp(−βĤ ) is expanded through Suzuki-Trotter decomposition
as a sequence of two-site gates U [i,i+1] = exp(−τ ĥi,i+1),
where ĥi,i+1 is the local bond Hamiltonian, and τ means small
Trotter step length. In the limit β → ∞, the resulting wave
function exp(−βĤ )|�0〉 will converge (or be very close) to
the ground state of Ĥ . Figure 3 illustrates calculation errors
compared with the exact solutions. Some typical parameters
including critical and noncritical points are concerned. The
errors converge rapidly with enhancing χ ; in noncritical
regions very accurate results can be obtained even with the
smallest nontrivial bond dimension χ = 2,4, which convince
us that MPS description of the present system is not only
adequate but also highly efficient and accurate. In practical
implementations, the convergence of results with different
bond dimension χ has always been checked, and for most cases

FIG. 3. (Color online) The calculation errors of energy per site,
eMPS, means MPS numerical result, and eex is the exact solution. For
noncritical regions, even with smallest bond dimensions (χ = 2 or
4), the MPS calculation provides very accurate results. The systems
at or near the critical line (J2/J1 = 1.0 and 1.05 shown above) are
harder to tackle; however, a few more states (say, χ = 20 or 30) are
adequate in practical calculations.

up to χ = 40 is quite enough. The total number of iterations
taken is about 105 ∼ 106. We first start with a step τ = 10−1,
and then diminish it to τ = 10−8 gradually. Whenever τ is
small enough, this procedure would bring the MPS to its
canonical form, which would be convenient for calculating
the entanglement entropies, as well as the local observables
including energy per site and local magnetizations, etc.

During the iTEBD process for two-period MPS [Eq. (2)],
only four tensors (Ta , Tb, �a , and �b) are involved and updated
in each iteration step. In order to capture more symmetry-
broken phases with larger unit cell, sometimes we need four-
period MPS which includes eight different tensors (Ta , Tb, Tc,
Td , �a , �b, �c, and �d ). For example, region III in Fig. 1 is
verified as a stripe AF ordered phase [one such ordered spin
configuration is illustrated in Fig. 2(a)], and this stripe AF
order can be well described with four-period MPSs, but not
two-period ones.

D. Quantum entanglement and fidelity

Quantum entanglement has a close relationship with QPTs
in many-body systems,34 and much effort has been devoted
to studying the quantitative description of entanglement in
quantum systems.35–41 In order to describe the QPTs in the
EQCM, the von Neumann entropy SvN is adopted as a bipartite
entanglement measure.40 When the MPS is gauged to its
canonical form, that is, we can cut an arbitrary bond in the
system and obtain a Schmidt decomposition as

|�〉 =
χ∑

α=1

∣∣�L
α

〉
�α

∣∣�R
α

〉
. (11)

Here, |�L
α 〉 (|�R

α 〉) represent the orthonormal bases of the
subsystem to the left (right) of the broken bond, and � is
a diagonal matrix. Correspondingly, the canonical MPS would
satisfy the following two equations,∑

m

∑
α

(�∗)mα,β ′�
2
α�m

α,β ′′ = δβ ′β ′′ ,

(12)∑
m

∑
β

(�∗)mα′,β�2
β�m

α′′,β = δα′α′′ .

The superscript ∗ means complex conjugate. It is easy to check
that in the above limit cases L1 = 0, the exact MPSs satisfy
Eq. (12), and they are thus in canonical form. Given the MPS
in its canonical form, bipartite entanglement of the half chain
(Shalf) can be directly read out from diagonal matrix � [see
Eq. (11)],

Shalf = −Tr(�2log2�
2) = −

χ∑
α=1

�2
αlog2�

2
α. (13)

Notice, for two-period MPS, we can define two different
bipartite entanglement measures S2i−1,2i = −Tr(�2

alog2�
2
a)

and S2i,2i+1 = −Tr(�2
blog2�

2
b), on odd and even bonds,

respectively. Besides Shalf , people are also interested in the
block entanglement, which is defined as follows,

SL = −Tr[ρLlog2(ρL)] = −Tr
[
ρenvL log2

(
ρenvL

)]
, (14)

where ρL is the reduced density matrix of the L spin system,
and envL means the environment (rest of the chain). SL
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characterizes the entanglement between L adjacent spins and
the environment. In practical calculations, the density matrix
ρenvL is supported by χ Schmidt bases, and employed to
calculate the block entanglement entropy for arbitrary spin
portion L. We would like to stress that the two kinds of
entanglement measures are both von Neumann entropies; it
is just that the bipartition happens to be between the left and
right halves in the first case and between a block and the rest
in the second case.

Except for the entanglement measures, fidelity per site f is
also used to detect the QPTs,42 which is defined as

f = lim
N→∞

〈�|�ref〉
N

. (15)

|�〉 is the ground-state wave function of the present system,
and |�ref〉 is a reference state; f indicates how fast the overlap
of two distinct states decays to zero with increasing length
of the chain. The bifurcation and singular points of f can be
utilized to locate the QPTs.42,43

Remarkably, the von Neumann entropy and the fidelity
per site f can be conveniently obtained in the framework
of MPS. Therefore, we will adopt them, along with the energy,
magnetization, and nearest-neighbor correlators, to study the
phase transitions of 1D EQCM in the following sections.

III. QPTS IN THE ONE-DIMENSIONAL EQCM

A. Ground-state energy, entanglement entropy,
and local order parameter

First, we consider the QPTs along the line J2 = 2.0 ×
(1.0 − J1) [dashed line (a) in Fig. 1]. As the phase diagram
illustrates, with increasing J1, the system should undergo two
sequential QPTs: one first-order QPT from region I to region II
and then the second-order one from region II to region IV.
The bipartite entanglement entropies S2i−1,2i and S2i,2i+1 are
plotted in Fig. 4(a). From Fig. 4(a), it is clearly seen that
there exists only one singular point J1 = 0.5 (and J2 = 1.0)
where a second-order QPT takes place. From Fig. 4(b), an
energy level crossing happens at J1 = 0, which indicates that
a first-order QPT should occur there. However, as shown in
Fig. 4(a), the bipartite entanglement changes continuously
across the first-order QPT.44 Therefore, the first-order QPT
in EQCM is missed by the entanglement measurement Shalf .

FIG. 4. (Color online) (a) Half-chain entanglement entropy on
odd bond S2i−1,2i and even bond S2i,2i+1. (b) Ground-state energy per
site; two dotted lines represent energies of the adiabatically evolved
states from left and right sides of the first-order QPT point.

FIG. 5. (Color online) (a) The odd (even) bond energy eb and
(b) their first-order derivatives along the line J2 = 2(1 − J1).

Notice that the adiabatic continuations are plotted with dashed
lines in Fig. 4(b), which illustrate the adiabatically evolved
states from the left (or right) of the transition point, explicitly
revealing the nature of level crossing at the first-order QPT.13

Next, we pay attention to the ground-state energy on odd
and even bonds (denoted as e2i−1,2i and e2i,2i+1, respectively)
and their first-order derivatives [see Figs. 5(a) and 5(b)]. We
find that the first-order QPT at J1 = 0 can be detected by
the energy level crossing of the odd bond energy [Fig. 5(a)]
or the discontinuous behavior of its first-order derivative
[Fig. 5(b)]. Furthermore, the singular behavior of the first-order
derivatives (of both e2i−1,2i and e2i,2i+1) at J1 = 0.5 indicates
the occurrence of the second-order QPT. According to the
Feynman-Hellmann theorem

∂e

∂λ
= 〈ψ |∂

ˆH (λ)

∂λ
|ψ〉, (16)

where λ is a tunable parameter in the Hamiltonian. One can
speculate that the first-order derivative of bond energy is in
fact a second-order derivative of site energy e. Take even bond
energy e2i,2i+1 as an example, de2i,2i+1/dJ1 = d2e/(dJ1dL1),
and it is thus expected to show singular behaviors around the
second-order QPTs [as Fig. 5(b) shows].

On the other hand, de2i−1,2i/dJ1 = 〈σ z
2i−1σ

z
2i〉 +

J2d〈σx
2i−1σ

x
2i〉/dJ1, and the short-range correlators 〈σ z

2i−1σ
z
2i〉

and 〈σx
2i−1σ

x
2i〉 on odd bonds are calculated and shown in Figs. 6

and 7. From Fig. 6, we find that the short-range correlation
〈σ z

2i−1σ
z
2i〉 is +1 in region I, but abruptly changes into −1

FIG. 6. Nearest-neighbor correlator 〈σ z
2i−1σ

z
2i〉.
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FIG. 7. Short-range correlation 〈σx
2i−1σ

x
2i〉 (a), and its first-order

derivative (b).

upon entering into regions II and IV. So, the first-order QPT
takes place with a sign change of the two-site correlation
function 〈σ z

2i−1σ
z
2i〉 on odd bonds, and causes a discontinuity

in the de2i−1,2i/dJ1 curve. In Fig. 7(a), the two-site correlator
〈σx

2i−1σ
x
2i〉 on odd bonds behaves continuously, and the

divergent peak of its first-order derivative [Fig. 7(b)] can
signal the critical point (J1 = 0.5). Consequently, derivative
de2i−1,2i/dJ1 also has a divergent peak at J1 = 0.5. At last,
it is worth noticing that, although derivatives de2i−1,2i/dJ1

and de2i,2i+1/dJ1 are both divergent at J1 = 0.5, they have
different signs and cancel with each other; the first-order
derivative de/dJ1 = d(e2i−1,2i + e2i,2i+1)/dJ1 is continuous
across the second-order QPT point.

To attain a comprehensive understanding of the QPTs in
EQCM, we also compute the local magnetizations |〈σx〉| and
|〈σ z〉| (shown in Fig. 8), whose values are site independent
owing to the translationally invariant MPS. It is observed that
across the critical point J1 = 0.5, the EQCM goes into a region
(IV) with nonzero |〈σ z〉|, and their values have different signs
on odd and even sites, i.e., staggered magnetization, and thus
region IV can be recognized as a semiclassical Néel phase.
Thus, the magnetization |〈σ z〉| (to be more strict, staggered
magnetization Mz

Neel = 1
2 |〈σ z

2i−1 − σ z
2i〉|) can be recognized as

the local order parameter characterizing region IV in Fig. 1;
however, the regions I and II are both disordered phases, and

FIG. 8. (Color online) Local magnetizations |〈σx〉| and |〈σ z〉|.

FIG. 9. (Color online) (a) Bipartite entanglement measures
S2i−1,2i and S2i,2i+1 along the line J2 = 1.0 − J1. (b) Ground-state
energy per site e; the dotted lines represent energy of adiabatically
continued states.

cannot be distinguished by the local order parameters.45 On
the other hand, Fig. 8 reveals that |〈σx〉| vanishes in regions I,
II, and IV on either odd or even sites.

In order to discuss the bipartite entanglement behavior
across the multicritical point (J1 = 0,J2 = 1.0), we consider
the line J2 = 1.0 − J1. Along this line, with increasing J1, the
ground state of EQCM will go from region I into region IV
through the multicritical point. The odd and even bond bipartite
entanglement measures are plotted in Fig. 9(a). We notice that
the QPT can be recognized by the sharp peaks of S2i−1,2i and
S2i,2i+1, which confirms it as a quantum critical point. It should
also be mentioned that, except for the similar second-order
QPT character in entanglement measure, a distinctive ground-
state energy level crossing is also clearly shown in Fig. 9(b),
where adiabatic continuations are again employed to verify
this conclusion. Therefore, both the first- and second-order
QPT features at this multicritical point are revealed by our
calculations. Besides, the local magnetization |〈σx〉| and |〈σ z〉|
in regions I and IV are also evaluated (not shown for the sake
of space), and similar behaviors from disordered region I to
Néel ordered region IV as discussed above are again observed.

Lastly, we consider the QPTs along the line J2 = 0.8 ×
(1.0 − J1). With increasing J1, the ground state of EQCM will
go from region I to region III, and then enter into region IV.

FIG. 10. (Color online) (a) Bipartite entanglement on odd bond
S2i−1,2i and even bond S2i,2i+1 along line J2 = 0.8(1.0 − J1) (Ref. 46).
(b) Ground-state energy per site e (the dotted lines are adiabatic
continuations).
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FIG. 11. (Color online) (a) Ground-state energy of odd and even
bonds and (b) their first derivatives.

The bipartite entanglement on odd and even bonds and the
ground-state energy per site e are plotted in Figs. 10(a) and
10(b), respectively. We find that although the second-order
QPT at J1 = −0.25,J2 = 1 is signaled by a singular peak
of the entanglement entropy, the first-order QPT at J1 = 0
with distinct ground-state energy level crossing [Fig. 10(b)]
is again missed by the entanglement measure [Fig. 10(a)].
However, as shown in Figs. 11(a) and 11(b), the bond energy
and their first-order derivatives are able to capture all the QPTs.
In addition, magnetization is calculated and shown in Fig. 12;
nonzero |〈σ z〉| is found in region III and IV, and |〈σx〉| vanishes
along the whole line on either odd or even sites.

Moreover, in Fig. 12, although the magnitude of |〈σ z〉|
changes smoothly through the phase transition point J1 =
0,J2 = 0.8, the magnetic order is quite different in region III
from that of region IV. Calculations indicate that the correlators
〈σ z

2i−1σ
z
2i〉 = 1 in region III show a distinct difference from

those in the Néel phase (region IV), where 〈σ z
2i−1σ

z
2i〉 = −1.

In fact, the magnetic order in region III is four-period stripe AF
order, quite different from the Néel order in region IV. In the
Néel phase, the spins are arrayed in an “up-down-up-down”
pattern [see Fig. 2(b)]; while in the stripe AF phase, they
are in “up-up-down-down” arrangements; one typical spin

FIG. 12. (Color online) Local magnetization |〈σx〉| and |〈σ z〉|
[J2 = 0.8(1 − J1)]. The magnetic order is stripe AF in region III, and
Néel AF in region IV.

FIG. 13. (Color online) (a) Entanglement entropy SL (with block
size L = 4) along line J2 = 1.2(1.0 − J1) and (b) SL saturates rapidly
with increasing L in the vicinity of the first-order QPT line.

configuration of such phase is illustrated in Fig. 2(a). The stripe
AF order in 1D EQCM was previously proposed in Ref. 23
with finite-size calculations with the Lanczos method, and it
is confirmed here by our results directly in the thermodynamic
limit.

The Néel order parameter Mz
Neel defined in region IV,

Mz
stripe = 1

2 |〈σ z
4n−3 − σ z

4n−1〉|, where n = 1,2, . . . ,N ′/2, can
be defined as the local order parameter in region III. Then,
Mz

Neel is nonzero in region IV, and vanishes abruptly in region
III; while the reverse is Mz

stripe, which appears in region III,
and drops to zero in region IV. Therefore, the first-order QPT
between regions III and IV can be recognized by evaluating
local order parameters, quite different from the transition
between regions I and II discussed above.

B. Block entanglement entropy

Besides the half-chain entanglement, the block entan-
glement entropy SL are also calculated, which provides a
measurement of the amount of entanglement between L

adjacent spins and the rest of the system (environment). With
the MPS wave function, we are able to obtain the reduced
density matrix of the environment supported by the bond
bases, and hence can calculate the SL with length L up to
several hundreds of sites at ease. The block entanglement
entropy (SL) with L = 4 along the line J2 = 1.2 × (1.0 − J1)
is plotted in Fig. 13(a). With increasing J1, two sequential
QPTs will take place: one first-order QPT from region I to
region II and the other second-order QPT from region II to
region IV. However, from Fig. 13(a), we find that only the
second-order QPT at J2 = 1 can be detected by the peak of
the block entanglement entropy SL; the first-order QPT (at
J1 = 0, J2 = 1.2) between phase I and phase II is missed
again. SL continuously approaches the same value whether
J1 → 0− or J1 → 0+ with fixed J2. In Fig. 13(b), for the
noncritical ground state, when block size L increases, the block
entropy SL enhances and quickly becomes saturated, well
satisfying the entanglement area law.30 These observations
on the block entanglement are consistent with those proposed
in Ref. 22. Therefore, the entanglement measures, including
block entanglement entropy SL and half-chain entanglement
Shalf , are indeed not able to detect the first-order QPTs in 1D
EQCM.
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FIG. 14. (Color online) Scaling of the block entanglement en-
tropy SL on the second-order QPT line J2 = 1.0; the solid line is fit
to numerical data.

Next, the scaling behavior of the block entropy SL on the
second-order QPT line J2 = 1 is investigated. As shown in
Fig. 14, the block entropy SL exhibits divergent behavior
with increasing block size. As derived in Ref. 47, in a 1 + 1
dimensional conformal field theory, the entropy of a subregion
of length L reads

SL = c + c̄

6
log2(L) + k, (17)

with a coefficient given by the holomorphic and antiholomor-
phic central charges c and c̄ of the theory. From Fig. 14, we
find that the divergent SL on the second-order QPT line can be
well fitted by SL = 1

6 log2(L) + 0.5202, with central charges
c = c̄ = 1/2; i.e., the SL displays a logarithmic divergence
on the second-order QPT line. Therefore, we disclose that the
critical behavior of EQCM can be described by a free fermionic
field theory,34 with central charges cf = c̄f = 1/2.

C. Fidelity calculations

Except for the entanglement, the fidelity measure defined
in Eq. (15) is also utilized to study the QPTs in EQCM.
Facilitated with MPS framework, it is straightforward that f

can be obtained by evaluating the maximum eigenvalue of the
transfer matrix defined as

Pα′α,β ′β =
∑
m

�̃α′ (�̃∗)mα′,β ′�α�m
α,β, (18)

in which �̃ (along with �̃) represents the reference state.
Considering the multiperiod MPS wave functions (period 2 for
regions I, II, and IV, and period 4 for region III), we slightly
modify it and define the fidelity per unit cell, which is the
maximum eigenvalue of the transfer matrix defined in a unit
cell. For instance, the transfer matrix of two-period MPS can

FIG. 15. (Color online) Fidelity per unit cell along three different
lines are present in (a), (b), and (c). The discontinuities of the
curves indicate the occurrence of first-order QPTs, and the bifurcation
phenomena manifest the spontaneous Z2 symmetry breaking, where
second-order QPTs take place. Four-period MPS is adopted during
the calculations. Notice that the reference state in (c) is different from
that in (a) and (b); see the text for more information.

be defined as follows,

P
a,b
α′α,γ ′γ =

∑
β ′,β,m2i−1,m2i

(�̃a)α′ (T̃ ∗
a )m2i−1

α′,β ′ (�̃b)β ′(T̃ ∗
b )m2i

β ′,γ ′

× (�a)α(Ta)m2i−1
α,β (�b)β(Tb)m2i

β,γ , (19)

which is a χ2
a × χ2

a matrix. The transfer matrix of four-period
MPS can be similarly written down.

In Fig. 15, the results of fidelity per unit cell are present
(the MPSs are generally set as period 4) along three differ-
ent lines, J2 = 2(1 − J1), J2 = 1 − J1, and J2 = (1 − J1)/2,
respectively. In Fig. 15(a), the line traverses regions I, II,
and IV, and in Fig. 15(b), regions I and IV are involved.
During these calculations, the ground state of Hamiltonian
Eq. (1) with parameter J1 = 1,J2 = 0 is set as the reference
state (i.e., an Ising AF state). Owing to the spontaneous Z2

symmetry breaking in the Néel phase, f shows bifurcation
behaviors in Figs. 15(a) and 15(b), and the bifurcation points
locate the second-order QPTs. Besides, the first-order QPTs
can also be recognized from the discontinuities in fidelity
curves. It is worth noticing that the results in Fig. 15(b)
again reveal multicritical properties of the transition occurring
at J1 = 0,J2 = 1; i.e., the discontinuity of f indicates a
first-order QPT, while the bifurcation phenomenon reveals
second-order QPT character. In Fig. 15(c), we choose J1 =
−0.5,J2 = 0.75 as the reference point, the bifurcation at
J1 = −1 indicates second-order QPT between regions I and
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FIG. 16. (Color online) The entanglement spectra of several noncritical [(a), (b), and (d)] and critical (c) points. In (a) and (d), �2
b’s are

doubly degenerate.

III, and the discontinuity at J1 = 0 suggests the first-order
QPT between stripe AF and Néel phases (regions III and IV,
respectively).

D. Entanglement spectrum, dual transformation,
and string order parameters

Through the previous analysis in subsection III A, it is
uncovered that no local order parameter can be utilized to
distinguish the two disordered phase regions I and II in Fig. 1,
as well as to detect the first-order QPTs between them. In this
subsection, the nonlocal string order parameters in regions I
and II are computed and discussed.

In Fig. 16, several typical entanglement spectra of 1D
EQCM are shown, which exhibit the eigenvalues of the
reduced density matrix of the half-infinite chain by dividing the
system via any bond. For the canonical MPS, the entanglement
spectrum can be recognized as the diagonal elements of �2 in
Eq. (11). For the present two-period system, it is free to cut an
even or odd bond; thus we have two entanglement spectrums
(�2

a and �2
b) for a single parameter point. In Figs. 16(a),

16(b), and 16(d), noncritical points are concerned, and the
eigenvalues decay roughly exponentially; while in Fig. 16(c),
for the critical point, the entanglement spectrum decays much
slower, and in some algebraical way. Another distinct feature
is the doubly degenerate �2

b for disordered phases I and II
[Figs. 16(a) and 16(d)], which implies the existence of the
nonlocal string order parameters.48

Previous studies suggested that along the line J1 = 0 there
exist two topological distinct disordered phases for J2/L1 > 1
and J2/L1 < 1, and the phase transition between them (at
J2/L1 = 1) is disclosed as a topological QPT,49 characterized
by nonlocal string order parameters. Other than this disordered
line, it is an interesting question as to whether the string order
parameters in regions I and II still exist or not. To accomplish
this task, standard Kramers-Wannier dual transformation50 is
employed to map the present model to the quantum-Ising
system. The dual mapping of each term in Hamiltonian Eq. (1)

is as follows (here we adopt the formalism introduced in
Ref. 51, and a permutation of even and odd bonds is taken
before dual transformation),

J1σ
z
2iσ

z
2i+1 → −J1τ

z
i τ z

i+1,

J2σ
x
2iσ

x
2i+1 → −J2σ̃

z
i σ̃ z

i+1, (20)

L1σ
z
2i−1σ

z
2i → L1σ̃

x
i ,

and thus the Hamiltonian is as

H̃ =
N ′∑
i=1

−J1τ
z
i τ z

i+1 − J2σ̃
z
i σ̃ z

i+1 + L1σ̃
x
i , (21)

where σ̃ and τ are Pauli matrices on the dual lattice. Dual
Hamiltonian Eq. (21) can be regarded as two decoupled Ising
spin chains (couplings −J1 and −J2, respectively),52 and the
σ̃ chain is under the transverse field (L1σ̃

x
i term). There may

exist two types of spontaneous long-range orders, i.e., 〈̃σ z
k σ̃ z

n 〉
and 〈τ z

k τ z
n〉, which can be mapped back to the original system

as the following nonlocal string order parameters,

(−1)n−k
〈
τ z
k τ z

n

〉 → 〈
σ z

2kσ
z
2k+1 . . . σ z

2n−2σ
z
2n−1

〉
,

(22)
(−1)n−k

〈̃
σ z

k σ̃ z
n

〉 → 〈
σx

2kσ
x
2k+1 . . . σ x

2n−2σ
x
2n−1

〉
.

The two types of σ operator strings can be denoted as Ozz(n −
k) and Oxx(n − k), respectively. Owing to the absence of
transverse field on τ spins in the dual model Eq. (21),
Ozz(n − k) is always nonzero in the whole phase diagram.
To be specific, it is found that Ozz(n − k) = 1 for region I
(and also region III), while Ozz(n − k) = (−1)n−k for region II
(and IV). This is owing to that in the dual model there exists
ferromagnetic long-range order (〈τ z

k τ z
n〉 = 1) for J1 > 0, and

AF long-range order (〈τ z
k τ z

n〉 = (−1)n−k) for J1 < 0. On the
other hand, this conclusion can be easily verified by noticing
the nearest-neighbor correlators 〈σ z

2i−1σ
z
2i〉 = 1 for region I

(III) and −1 for region II (IV), which can also be regarded as
good quantum numbers for ground states.

The behavior of the other string order parameter Oxx(L)
[L = 2(n − k) is the number of sites in the string] is more
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FIG. 17. (Color online) The nonlocal order parameter Oxx ; inset
shows the behaviors of Oxx(L) with portion length L (shown for every
two sites). The converged value Oxx(∞) is nonzero in disordered
regions I and II, and vanishes in ordered phases III and IV. The fitting
lines illustrate the asymptotic behavior |Oxx(∞)| ∼ (1 − J 2

2 )1/4 in
the vicinity of the second-order QPT.

intriguing, and the numerical results are shown in Fig. 17. The
inset of Fig. 17 shows that the Oxx(L) converges very rapidly
with L (except for points in the vicinity of second-order QPT
line J2 = 1). The converged Oxx(∞) monotonously decreases
with enhancing the parameter J1 (and hence decreasing J2),
and changes continuously through the first-order QPT line
J1 = 0, vanishing immediately after crossing the second-order
QPT line J2 = 1. The asymptotic behavior of Oxx near
line J2 = 1 can be predicted by the dual spin correlation
function,49,53 as |Oxx(∞)| ∼ (1 − J 2

2 )1/4, which can be well
verified from the fitting in Fig. 17.

Therefore, the above investigations uncover that in regions I
and II, the string order parameters Oxx and Ozz are nonzero,
which reveals the hidden Z2 × Z2 symmetry breaking in the
EQCM system. In addition, Ozz can be used to distinguish
two disordered phases and detect the first-order QPTs between
them, while Oxx changes continuously through the transition
line J1 = 0, and vanishes at critical line J2 = 1. On the other
hand, it is reported in Ref. 54 that the nonzero string order
Oxx in the disordered region is robust even under some finite
external magnetic fields h < hc (below the critical field).

IV. SPECIFIC-HEAT CURVES

Besides the ground-state properties, in this section the
LTRG method55 is employed to investigate the finite-
temperature properties of 1D EQCM. LTRG adopts the iTEBD
technique for contracting the transfer-matrix tensor network,
and can accurately (and efficiently) obtain the thermodynamic
quantities including free energy, energy, susceptibility, and
specific heat. In Ref. 55, the LTRG method has been applied
to calculate the isotropic XY model and achieved very accurate
results. In order to verify the applicability and accuracy of
LTRG for the anisotropic cases (for the present EQCM, there
exist strong anisotropies in spin couplings), the specific-heat

FIG. 18. (Color online) Specific-heat curves for anisotropic XY
model. The solid and dashed lines represent the exact solutions, and
the scatters are the LTRG results which show perfect agreements with
the lines. The couplings Jx and Jy are defined in Eq. (23); Jy = 1 is
set as energy scale here.

curves of the anisotropic XY model with Hamiltonian

H =
∑
〈i,j〉

Jxσ
x
i σ x

j + Jyσ
y

i σ
y

j (23)

are calculated, and shown in Fig. 18. The results of LTRG
show perfect coincidence with the exact solutions in Ref. 56.

In Figs. 19 and 20, the specific-heat (C) curves of 1D EQCM
are present, and close attention is paid to their low-temperature
behaviors, which reveal the low-energy excitation features
of the system. In Fig. 19(a), the specific-heat curves are
evaluated along the critical line J2/L1 = 1. It is observed that
with gradually decreasing |J1|, there appear low-temperature
subpeaks moving toward T = 0, which disappear when J1 =
0. In Fig. 19(b), the low-temperature T parts of the C curves are
magnified, and the linear relations with T are clearly shown,
which can be ascribed to the gapless low-energy excitations
along the critical line of EQCM.

Along the parameter line J2/L1 = 1.5, the C curves (versus
temperature) are illustrated in Fig. 20, where subpeaks also

FIG. 19. (Color online) (a) Specific-heat (C) curves along the
critical line J2/L1 = 1. (b) The low-temperature sections of C. The
specific-heat curves with the same absolute values |J1| (but different
signs) almost coincide with each other at low temperatures. The exact
solutions (see Ref. 57) are also plotted with lines, with which the
LTRG results show very nice agreements.
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FIG. 20. (Color online) (a) Specific-heat (C) curves along the
line J2/L1 = 1.5. (b) The low-temperature parts of C; log-log plot
reveals the exponential decay explicitly, and the slope of the (nearly)
straight part of C is intimately related with the excitation gap. In (b),
the lines of J1 = ±0.5 (as well as J1 = ±0.8) almost coincide with
each other, and J1 = ±0.8 lines are also very close to the line J1 = 0.

appear and similar movement behaviors are again observed
in Fig. 20(a). It is worth noticing that there exist excitation
gaps along the line J2/L1 = 1.5, as revealed in Fig. 20(b),
where the low-temperature C with J1 = 0 is shown to decay
exponentially. Furthermore, from Fig. 20(b) (judging from the
slope of the C curves in the log-log plot), it is found that
the excitation gap �(J1) tends to zero when the parameters
approach the J1 = 0 line from both sides, but the J1 =
0,J2/L1 = 1.5 point itself is far from gapless.

V. SUMMARY AND OUTLOOK

A. Subsequent problems

The exact soluble 1D EQCM provides an ideal play-
ground for performing calculations and testing MPS-based
algorithms; remarkable accuracy and perfect accordance with
previous analytical results have been achieved. Nevertheless,
we would like to stress that the power of MPS-based numerical
methods is their accessibility to more complex problems which
do not permit exact solutions. Among others, we regard
the following two extended compass models particularly
interesting,

HXYZ1 =
N ′∑

n=1

Jxxσ
x
2n−1σ

x
2n + Jyyσ

y

2n−1σ
y

2n + Jzzσ
z
2nσ

z
2n+1

(24)

and

HXYZ2 =
N

′′∑
n=1

Jxxσ
x
3n−2σ

x
3n−1 + Jyyσ

y

3n−1σ
y

3n + Jzzσ
z
3nσ

z
3n+1,

(25)

where N ′ = N/2 and N ′′ = N/3; N is the total site number.
The first one is two-period, with Jxx and Jyy couplings on odd
bonds and Jzz couplings on even ones; the second model is
three-period, with Jxx , Jyy , and Jzz on three different types
of bonds, respectively. These two models are more complex
than EQCM in Eq. (1), while they are still very basic ones.

Owing to the existence of three noncommuting spin coupling
components in the Hamiltonian, they cannot be diagonalized
by simply taking fermionic transformations, and are expected
to show more interesting QPTs in their phase diagrams. In the
first model HXYZ1, compared with Hamiltonian Eq. (1), the
Jzz couplings on odd bonds are replaced with Jyy couplings,
so the expectation values of parity operators σ z

2i−1σ
z
2i on odd

bonds are no longer good quantum numbers. Some preliminary
results are obtained by iTEBD calculations, which reveal
that there also exist first- and second-order QPTs, as well
as multicritical points in the phase diagram of model HXYZ1.
A distinct difference between the phase diagram of HXYZ1 and
Fig. 1 is that the Néel and stripe AF zones in the present EQCM
are extending along the J1 axis to infinity, while for the former
case HXYZ1, they are confined in a finite region. More details
about the ground-state phase diagrams and QPTs in these two
EQCMs will appear elsewhere.

B. Conclusions

Employing the MPS wave function, and with the aid of
the related algorithms iTEBD and LTRG, we investigated the
ground-state properties and QPTs, as well as specific-heat
curves, in the 1D EQCM.

Our calculations, including energy per site, bond energy,
entanglement entropy, and local magnetizations, validate the
phase diagram proposed by previous works. Four different
phases are identified in Fig. 1, including two disordered
regions I and II, the Néel ordered phase (region IV), and a
stripe AF phase in region III.

The second-order QPTs along the J2/L1 = 1 line can be
detected by the singularities of entanglement entropy, as well
as the derivatives of bond energy. The first-order QPTs along
J1 = 0 are however indeed missed by entanglement measures
according to our calculations. Furthermore, at the multicritical
point (J1 = 0,J2/L1 = 1.0), besides the second-order QPT
feature revealed by entanglement entropy, a distinctive ground-
state energy level crossing (observed by taking adiabatic
continuations) occurs. Therefore, at the multicritical point,
there coexist both the first-order and the second-order QPT
characters. Furthermore, a logarithmic divergent behavior of
block entanglement SL on the second-order QPT line J2/L1 =
1 are observed, from which the central charge c = 1/2 is
determined.

Fidelity per unit cell is also used to investigate the QPTs,
and it is disclosed that both the first- and second-order QPTs
in the EQCM can be detected by identifying the discontinuous
and bifurcation points in calculated fidelity curves.

Moreover, the disordered regions I and II are found to
possess doubly degenerate entanglement spectra, as well as
two types of nonzero string order parameters Oxx and Ozz. By
taking dual transformations, it is revealed that the string order
parameters reflect the hidden Z2 × Z2 symmetry breaking,
and parameters Ozz can be used to detect the first-order QPT
between regions I and II.

Subsequently, the specific-heat curves have been studied via
LTRG calculations, and low-temperature linear behaviors are
observed along the critical line J2/L1 = 1, while for J2 
= L1,
the exponential decay of C at low temperatures implies the
existence of a nonzero excitation gap.
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In conclusion, the fidelity per unit cell is shown to be
sensitive to detecting not only the first-order but also the
second-order QPTs, while the entanglement measures can only
detect the latter ones. In the phase diagram Fig. 1, there exist
two symmetry-broken phases in regions III (stripe AF) and IV
(Néel) with different local order parameters, and two hidden
symmetry-broken phases in regions I and II with nonzero string
order parameters.
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134415 (2007).
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