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Externally driven transformations of vortex textures in flat submicrometer magnets
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Two effects of oscillatory transformations of vortex textures in flat nanomagnets due to the application of
an external field or a spin-polarized electric current are analytically described with relevance to soft-magnetic
structures of submicrometer sizes (whose thickness is significantly bigger than the magnetostatic exchange
length). These are changes of a domain wall (DW) structure in a long magnetic stripe (oscillations between a
transverse DW, a vortex DW, and an antivortex DW) and periodic vortex-core reversals in a circular magnetic
dot which are accompanied by oscillatory displacements of the vortex from the dot center. In nanostructures of
smaller thicknesses (comparable to the exchange length), where nonlocal magnetostatic effects are very strong
because of fast spatial variation of the magnetization, similar phenomena have been widely studied previously.
Here, the dynamics is investigated within a local approach including magnetostatic field via boundary conditions
on solutions to the Landau-Lifshitz-Gilbert equation only. Both the DWs in stripes and vortex states of the dot
are treated as fragments of a cross-tie DW. Despite similarity of the cyclic transformations of the ordering to the
dynamics of more strongly confined nanomagnets, details of motion (trajectories) of the vortices and antivortices
(Bloch lines) of the textures under study are different, which is related to prohibition of rapid jumps of the
polarization of Bloch lines. In addition to the magnetization rotation about the direction of magnetic field or
current polarization, the evolution of textures is shown to relate to oscillatory changes of the direction of a
cross-tie DW with respect to any arbitrary axis in the magnet plane accompanied by oscillations of the DW width.
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I. INTRODUCTION

Application of external (longitudinal) magnetic field or
voltage to the DW-containing ferromagnetic nanowire drives
translational motion of the DW. When the intensity of the
field or electric current exceeds critical value of the Walker
breakdown, the DW translation is accompanied by cyclic
transformations of the DW structure.1 In soft-magnetic nanos-
tripes, strong magnetostatic field stabilizes textures (DWs)
whose topological charges are pinned to the platelet boundary
and whose topology gets transitions with changing thickness
and width of the nanostripe.2–4 There, the field-induced
DW transformations are transitions between the so-called
transverse and vortex DWs (antivortex DWs).5–8

In circular magnetic dots, magnetostatic field can form a
centered vortex of magnetization.9,10 In the nanocontact with
a spin valve structure, the dot conducts in-plane-polarized
electric current in the out-of-plane direction, which leads to the
transition of the vortex (with increase of the current intensity)
to the state of precession about the center of the dot.11–14 At
low current intensity, the vortex sustains displacement moving
out the dot.15

Electrically induced dynamical transformations of planar
spin textures play the key role in magnetic nano-oscillators
for applications to microwave generation and sensing.16–18 In
terms of design of DW-based storage and logic devices,19–21

the DW-structure transformation due to longitudinal magnetic
field or electric current is an undesired effect which limits the
efficiency range of velocities of the DW propagation.22

Since the ordering in soft-magnetic nanostructures is
governed by the exchange as well as by long-range dipolar
interactions (permalloys are the most popular ferromagnetic
materials for the above applications), description of dynamical
phenomena is nonlocal and remains a challenge. At present,
micromagnetic simulations are the main source of knowledge

on details of the texture evolution in spatially confined
magnets. Analytical studies of the dynamics of DWs in
nanostripes23,24 and of vortex states in circular dots25 use modi-
fications of a Thiele method that treats the magnetic vortices as
moving rigid objects.26 The spin-structure transformations are
related to the motion of a number of vortices and antivortices;
thus, the dynamical (Thiele) equations of the (anti)vortex-core
positions constitute complex systems. Moreover, they contain
semiempirical (gyrotropic and viscosity) coefficients to be
estimated.

With relevance to thick-enough planar nanomagnets, in
the present paper, I analytically study the field- and current-
induced transformations of DWs in ferromagnetic stripes
solving the Landau-Lifshitz-Gilbert (LLG) equation instead
of using the Thiele equations. Within a relatively simple local
approach, the magnetostatic effects are included via boundary
conditions only. Also, I apply the present method to the
vortex-state transformations in a circular magnetic dot. I treat
the vortex state in such a quasi-2D system as well as the DW
in the magnetic stripe as fragments of an infinite spin texture
called the cross-tie DW27,28 (recently this approach has been
applied to study DW interactions in Ref. 29).

In contrast to the most frequently investigated nanoelements
of ultimately small thicknesses, in (thicker) systems under
considerations, the exchange interactions dominate over the
magnetostatic effects while the later ones are included as
a perturbation.30 In very flat systems, the dipolar inter-
actions dominate while the exchange is thought of as a
perturbation.31,32 A similar approach is used by popular codes
for micromagnetic simulations that apply the fast Fourier
transform to calculate the dipolar (magnetostatic) field, which
limits their validity.2,33 The crossover between both of the
interaction regimes is relevant to thickness of the magnetic
element close to the critical length lc of a “macrospin
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approximation” defined in Ref. 34 and estimated to be from the
range 4lex to 8lex, where lex denotes magnetostatic exchange
length (lex ≈ 5 nm for permalloys). In elements whose spatial
sizes are smaller than lc the density of exchange energy is
too high to allow an inhomogeneous ordering unless the
anisotropy is nonuniform.35 Decrease of one of the spatial
sizes below lc in the presence of strong local anisotropy can
result in discontinuity of spatial variation (differentials) of the
magnetization.

Solving the LLG equation for the thick-film regime,
differently oriented static cross-tie DWs are found to be
analogs of the transverse and vortex DWs of very thin
stripes. Upon externally induced driving, the DW textures
oscillatory-transform between these two basic configurations;
however, details of the transitions between transverse and
vortex states are found to differ from those in the thin stripes
in terms of trajectories of the DW-texture defects (vortices
and antivortices). Unlike most of available descriptions of the
vortex dynamics in nanodots which deal with defects in the
in-plane-ordered (curling) state, here evolution of a vortex
texture distorted from the plane at the dot rim is analyzed.
The trajectories of the current-induced vortex translation are
examined as well as trajectories of antivortices which appear
due to enforced reversals of the defect core.

In Sec. II, stationary DW solutions to the LLG equation in
the 2D stripe geometry are found. Externally driven dynamics
of such structures is analyzed in Sec. III. Section IV is devoted
to study of the structure and dynamics of vortex states in
circular dots. Conclusions are collected in Sec. V.

II. DOMAIN-WALL STATES IN FERROMAGNETIC STRIPE

Let us consider stationary DW solutions to the LLG
equation in 2D:

−∂m
∂t

= J

M
m ×

(
∂2m
∂x2

+ ∂2m
∂z2

)
+ γ m × H

+ β1

M
(m · î)m × î − α

M
m × ∂m

∂t
. (1)

Here, M = |m|, J denotes the exchange constant, β1 de-
termines strength of the easy-axis anisotropy, H = (Hx,0,0)
represents the external (longitudinal) magnetic field, and thus,
γ denotes the gyromagnetic factor. Although in permalloy-
like soft-magnetic materials, bulk anisotropy is negligible,
for generality of considerations, I admit the presence of
the easy-axis anisotropy (e.g., due to wire deposition on
substrate36)—however, assuming it to be weak compared
to the exchange, β1 � J/w2, where w denotes the stripe
width. In soft-magnetic stripes, the shape anisotropy due to
dipolar interactions (vanishing of magnetostatic charges at the
magnet surfaces) aligns the magnetization of homogeneously
ordered domains onto the direction of long axis of the stripe
î ≡ (1,0,0).4,37 Therefore, I study solutions that satisfy the
condition lim|x|→∞m = ±(M,0,0).

Since (1) must be solved with the constraint on the
magnetization length, it is comfortable to consider equations
of the unconstrained dynamics that are equivalent to (1).
Introducing m± ≡ my ± imz, one represents the magnetiza-
tion components with a pair of complex functions g(x,z,t),

f (x,z,t) (secondary dynamical variables),

m+ = 2M

f ∗/g + g∗/f
, mx = M

f ∗/g − g∗/f
f ∗/g + g∗/f

, (2)

thus ensuring that |m| = M . Insertion of (2) into (1) leads,
following the Hirota method for solving nonlinear differential
equations,38,39 to the trilinear equations of motion

−f iDtf
∗·g = f

[
αDt + J

(
D2

x + D2
z

)]
f ∗·g

+ Jg∗(D2
x + D2

z

)
g·g − (γHx + β1)|f |2g,

−g∗iDtf
∗·g = g∗[αDt − J

(
D2

x + D2
z

)]
f ∗·g

− Jf
(
D2

x +D2
z

)
f ∗·f ∗+(−γHx + β1)|g|2f ∗,

(3)

where Dt , Dx , Dz denote Hirota operators of differentiation

Dn
xb(x,z,t) · c(x,z,t)

≡ (∂/∂x − ∂/∂x ′)nb(x,z,t)c(x ′,z′,t ′)|x=x ′,z=z′,t=t ′ .

For H = 0, stationary single-DW solutions to (3) are of the
form

f = 1, g = uekx+qz, (4)

where

k2 + q2 = β1

J
(5)

and Rek 	= 0. I denote k ≡ k′ + ik′′, q ≡ q ′ + iq ′′, where k′(′′),
q ′(′′) take real values; hence, (5) is equivalent to

k′2 + q ′2 − k′′2 − q ′′2 = β1

J
,

(6)
k′k′′ + q ′q ′′ = 0.

Assuming one of the DW edges to be centered at x = 0 (then
u = eiφ), the relevant magnetization profile [the single-DW
solution to (1)] is written explicitly with

m+(x,z) = Mei(φ+k′′x+q ′′z)sech[k′x + q ′z], (7a)

mx(x,z) = −Mtanh[k′x + q ′z]. (7b)

Let q ′′ 	= 0 since, in the opposite case, the DW states
are similar to DWs in 1D ferromagnets and cannot exist
in the absence of the bulk anisotropy, while I consider
soft-magnetic systems with very weak anisotropy admitting
the case β1 = 0.39,40 Defining θ ≡ arctan(q ′/k′), via (6), one
finds k′′ = −q ′′ tan(θ ) and k′2 − q ′′2 = β1/{J [1 + tan2(θ )]}.
Also, I assume the magnetization orderings on both the
stripe edges to be similar; thus, the phase factor on the
right-hand side of (7a) changes by nπ along the DW line
k′x + q ′z = 0 between its ends, where n = 1,2, . . . . This
leads to the condition k′′(−wq ′/k′) + q ′′w = nπ and, finally,
to q ′′ = nπ/{w[1 + tan2(θ )]}.

An additional boundary condition is related to minimization
of the surface (magnetostatic) energy and it discriminates
between different values of φ, n, and θ . I evaluate the energy
of the DW with dependence on these parameters using the
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Hamiltonian H = H0 + HZ , where

H0 = J

2M

(∣∣∣∣∂m
∂x

∣∣∣∣
2

+
∣∣∣∣∂m
∂z

∣∣∣∣
2)

+ β1

2M
[M2 − (m · î)2],

(8)
HZ = −γ H · m

(HZ denotes its Zeeman part). Total energy of the DW E =
E0 + EZ + EB is the sum of the bulk energy E0 + EZ , defined
by E0(Z) ≡ ∫ ∞

−∞
∫ w

0 H0(Z)dzdx, and of the boundary energy
EB which is of the magnetostatic origin.

Since evaluating the magnetostatic energy of the stripe
within phenomenological approach is a complex mathematical
problem whose systematic solution is beyond the scope of
this paper, I search for energy of the stripe boundary using a
heuristic argumentation. The formula for EB is determined
referring to a theorem by Carbou who proved that the
magnetostatic energy of any ferromagnetic element of finite
thickness τ , ∼1/λ2

∫
S
(m · n)2ds, tends to 1/�2

∫
∂S

(m · n′)2dl

with τ → 0.41,42 Here, S denotes the surface of the bulk
ferromagnet and ∂S denotes the boundary of the base of its
solid, n is normal to the magnet surface, and n′ denotes the
unitary vector outward to the line of the base boundary. The
coefficient �2 scales with τ and with a diameter w following
�2 ∼ λ2/[τ | ln(τ/w)|] (with relevance to a stripe, w represents
its width).31,32 One has to notice that the Carbou theorem is
not strictly applicable to systems with open boundaries (infinite
stripes); however, it shows some tendency in ordering at the
stripe edges. In particular, it indicates that the magnetostatic
interactions in flat magnets induce more than one hard
direction of magnetization parallel to the main plane whereas
strength of the hard-axis anisotropy increases with size of the
platelet along this axis. I propose to effectively describe the
magnetostatic energy in the form of an integral over the stripe
edge

EB =
∫ ∞

−∞

[
− 2

�1

(
M2 − m2

x

) + 2

�2
m2

z

]
z=0

dx, (9)

while, e.g., the approach of Ref. 32 corresponds to 1/�1 =
0. By analogy to finite platelets, this coefficient is expected
to scale with the stripe width following �1 ∝ λ2/w. More
detailed estimation of EB is performed in Appendix A.

I mention that if the x direction was not one of the local hard
axes at the boundaries of a wire (stripe) of finite length, the
DW would be unstable due to a magnetostatic field at the wire
(stripe) ends.43 This local anisotropy prevents spontaneous
DW motion toward one of the wire ends.

Inserting (7a) and (7b) into the Hamiltonian (8), one arrives
at

E0(θ,n) = 2JMw

√
β1

J
[1 + tan2(θ )] + π2n2

w2
. (10)

Evaluating EB , I divide it into two parts (EB = EB1 + EB2):

EB1(θ,n) ≡ −2M2

�1

∫ ∞

−∞
sech2

{
nπx

w[1 + tan2(θ )]

}
dx,

EB2(φ,θ,n) ≡ 2M2

�2

∫ ∞

−∞
sin2

{
φ − nπ tan(θ )x

w[1 + tan2(θ )]

}

× sech2

{
nπx

w[1 + tan2(θ )]

}
dx. (11)

x

z

k′′x+q′′z=2π

k′′x+q′′z=0 k′x+q′z=0

vortex
center

x

z

w

half-vortex
center

half-antivortex
center

(a)

(b)

half-antivortex
center

w

z/w

m /My

x/w

x/w

z/w

m /Mx

m /My

m /Mx

z/w

z/w
x/w

x/w

1

0

0
-1

1
2

-1

1

0

0

0
-1

1

1

1

0

-1

2

1
0

0
-1

-2

1

1

2

0

-1

0
1

-2
-1

0

0

1

1

2

-1

FIG. 1. (Color online) DW configurations: (a) a transverse DW,
(b) a vortex DW. In the upper drawings, arrows indicate magnetization
alignment.

The minimization of EB(φ,θ,n) leads to φ = 0,π indepen-
dently of other parameters of the DW. These values of φ

correspond to the presence of half vortices (half antivortices)
at the stripe edges (as shown in Fig. 1). In the regime of
narrow stripes w/τ ∼ 1, �2 � �1 (1/�2 is small; thus, E0

dominates over EB), via minimization of E0(θ,n) the smallest
possible value of n is preferable while the minimization of
both E0(θ,n), EB(0,θ,n) points out θ = 0,π to be preferred.
Increase of the stripe width w with fixed thickness τ results
in transition to the regime �2 > �1. Furthermore, since
β1 � J/w2, from (10), E0(θ,n) ≈ E0(n) is independent of w,
while, from (11), EB ∝ w/�1. Hence, for big-enough w, EB
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becomes comparable to E0. By the minimization of EB1(θ,n),
the biggest possible value of tan2(θ ) and the smallest value
of n are preferable, whereas for θ 	= 0,π , the minimization of
EB2(0,θ,n) indicates big values of n to be preferable. Hence,
the transition from the DW state of n = 1, θ = 0,π to a state
of n = 2, θ 	= 0 takes place with increase of w. For n = 2,
the condition tan2(θ ) > 1 has to be satisfied in order that
EB(0,θ,2) < EB(0,0,1).

The state of n = 1 and θ = 0,π corresponds to k′′ = q ′ =
0, |q ′′| = π/w, |k′| =

√
π2/w2 + β1/J and it is called a

transverse DW. With relevance to the state of n = 2, I take
β1 = 0 for simplicity, and |θ | to be close to its infimum
|θ | = π/4. The resulting magnetization structure corresponds
to |q ′| = |q ′′| = |k′| = |k′′| = π/w and one calls it a vortex
DW. The polarity of vortex (transverse) DW (the magnetization
orientation in the center of the vortex/half-vortex, parallel or
antiparallel to the y axis) is determined by the value of φ

while q ′′/k′ = ±1 determines its chirality (the direction of
magnetization rotation in the stripe plane in the vortex or
antivortex cores, clockwise or anticlockwise).

The treatment of the ordering of the soft-magnetic stripe
within the present local approximation of micromagnetics
provides a unified description of transverse and vortex DWs
which is consistent with the previously known exact DW
solution for the so-called exchange-dominated regime of
ultrathin nanostripes (n = 1)31,32 and for 2D stripes with the
exchange interactions (n = 2).44

III. DYNAMICAL TRANSFORMATIONS
OF DOMAIN WALL

The application of a longitudinal magnetic field (H 	= 0)
enforces the DW translation along the wire (stripe) whose
direction (parallel or antiparallel to the x axis) is determined
by the decrease of Zeeman energy with time. Two regimes of
the field intensity, separated by a critical (Walker breakdown)
value HW , have to be distinguished. For weak field |Hx | < HW ,
the dynamics is restricted to the stationary DW translation,
whereas for |Hx | > HW , the magnetization rotation about the
long axis of the stripe is allowed. The phenomenon of Walker
breakdown has been predicted by solving the LLG equation
in the framework of the 1D model with two-axis anisotropy.1

Although numerical estimations of HW for nanostripes show
invalidity of the 1D model to the systems under study, the
field- and current-induced Walker breakdowns are observed in
them.45

In order to include the breakdown phenomenon in the
description of flat magnets, I discriminate between “weakly
dissipative” and “purely relaxational” dynamical regimes. By
analogy to the construction of a time-dependent Ginzburg-
Landau equation in the theory of dynamic critical phenomena,
in the “weakly dissipative” regime, the evolution is governed
by Eq. (1) while the “purely relaxational” dynamics corre-
sponds to a modified [by changing the left-hand side of (1)
into zero] equation of motion. I claim the conservative kinetic
term (the left-hand side) of (1) to be irrelevant to the case of a
weak field (weak current) since such a field induces low-energy
spin excitations that have to be overdamped in an anisotropic
medium.46 In the stripe model of Sec. II, the anisotropy
is local (it is introduced via boundary conditions) and the

mechanism of breakdown accompanied by disappearance of
the kinetic term in Eq. (1) is similar to overdamping low-energy
excitations (the central peak in excitation spectra) of isotropic
systems doped with anisotropy centers.47,48

Searching for the field-driven DW evolution, I modify the
ansatz (4) into

f = 1, g = uekx+qz−lt . (12)

With relevance to the “weakly dissipative” dynamical regime
of |Hx | > HW , via (3), for k and q of the previous section, I
find

l = γHx

i + α
. (13)

The imaginary part of l is equal to the frequency of the
magnetization rotation about the x axis. This rotation will be
shown to imply additional oscillations of the orientation of the
DW in the stripe plane due to effect of the magnetostatic field at
the stripe boundary. Below the breakdown, for |Hx | < HW , the
DW solution to the “purely relaxational” secondary evolution
equation [the left-hand sides of (3) are changed into zero]
corresponds to l = γHx/α. In both the cases of “weakly
dissipative” and “purely relaxational” dynamics, motion of
the cross-tie DWs can be thought of as a translation of
vortices and antivortices of the DW texture. For |Hx | < HW ,
the velocity of this motion is constant and oriented along the
stripe, whereas for |Hx | > HW , its direction is not conserved.
In the last case, since directions of the vortex (antivortex)
translation deviate from the x axis, the value of the energy EB

evolves, which results in an evolution of the DW parameters
θ , n. In order to determine θ (t), n(t), I minimize the energy
E0[θ (t),n(t)] + EB[γHxt/(1 + α2),θ (t),n(t)] with respect to
these functions. Since I assume θ (t), n(t) to be independent of
spatial variables, the DW stays in a cross-tie structure during
the entire evolution time, which is due to domination of the
exchange interactions over the dipolar ones. Hence, the density
of Bloch lines (the distance between vortices) and the DW
width are uniform along the wall;49 however, unlike in theories
of the Bloch wall and Bloch line motion in platelets (which are
valid to small propagation distances),50 they are not conserved
as far as |Hx | > HW .

The constraint

n(t)/{1 + tan2[θ (t)]} = 1 (14)

corresponds to transitions between states (n = 1,θ = 0, or θ =
π ), (n = 2,|θ | = π/4), . . . , transverse DWs, and (multi)vortex
DWs. The motivation for writing (14) is the following. Along
any straight z = z0 ∈ (0,w), the magnetization component
mx(x,z0,t) sustains a shift without changing its profile,
mx(x,z0,t) = mx[x − x0(t),z0,0]. This is because the applied
longitudinal field H drives only the rotation of the remaining
magnetization components about the x axis while any straight
z = z0 does not intersect the stripe edges where a local
anisotropy is present. This condition is fulfilled when the
DW parameter k′ = ±q ′′ is conserved and q ′ is transformed
into q ′(t) = ∓k′′(t) = k′ tan[θ (t)], which is equivalent to (14).
Inserting the unperturbed magnetization components

m+(x,z,t) = Mei(−l′′t+k′′x+q ′′z)sech[k′x + q ′z − l′t],
mx(x,z,t) = −Mtanh[k′x + q ′z − l′t] (15)
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FIG. 2. (Color online) (a) Sum of the exchange and boundary
energies E0 + EB with dependence on DW direction and time
for arbitrary chosen values of the parameters J�1/(Mw) = 0.025,
J�2/(Mw) = 0.020. (b) The corresponding density plot of the
derivative of E0(a) + EB (a,t) over a. The contour in the plot center
represents the solution to ∂[E0(a) + EB (a,t)]/∂a = 0.

(with l′ ≡ Rel, l′′ ≡ Iml) into the sum E0 + EB , for β1 ≈ 0
and |l′/l′′| = α � 1, and applying (14), one finds

E0(a) = 2JMπ (1 + a2),

EB(a,t) = −2M2

�1

∫ ∞

−∞
sech2

(
πx

w

)
dx

+ 2M2

�2

∫ ∞

−∞
sin2

{
γHxt/(1 + α2) − πax

w

}

× sech2

(
πx

w

)
dx, (16)

where a ≡ tan(θ ). The variable a is a genuine variational
parameter for the present extremum problem (a = 0 corre-
sponds to the transverse DWs, a = ±1 to the vortex DWs).
For some arbitrary chosen values of J , �1, �2, w, the
energy function E0(a) + EB(a,t) is plotted in Fig. 2(a).
The corresponding density plot of the derivative of E0(a) +
EB(a,t) over a is presented in Fig. 2(b) where the contour
∂[E0(a) + EB(a,t)]/∂a = 0 is shown. This contour indicates
three extremal curves a(t) which relate to different trajectories
of vortices and antivortices of the DW structure. The straight
a(t) = 0 does not minimize E0(a) + EB(a,t), as seen from
Fig. 2(a), while the magnetization rotation about a constant
direction with the frequency |l′′| = γ |Hx |/(1 + α2) corre-
sponds to a(t) � 0 or a(t) � 0. The trajectories of vortices and
antivortices in the DW texture are sketched in Fig. 3, where
periodically created and annihilated transverse and vortex
(antivortex) DWs are indicated with thin solid lines.

It is seen from (16) that the dependent-on-�1 contribution
to the energy of the DW [EB1 of (11)] does not play any role in
the dynamical transformation of the texture since it is neither
dependent on the variational parameter a nor on time.

TW
TW

VW AVW

TW

x

z

FIG. 3. Trajectories of vortices (dashed line) and antivortices
(dash-dotted line) in the field-induced motion of a head-to-head DW.
The arrows indicate the magnetization directions in relevant DW
areas.

IV. VORTEX IN CIRCULAR DOT AND ITS
TRANSFORMATIONS

I study transformations of a magnetic vortex in a relatively
thick dot (of thickness τ > 4lex) in a pillar nanocontact
structure that contains a spin valve. The application of voltage
to such a structure induces spin-polarized electric current
through the dot plane and enforces cyclic magnetization
motion. Unlike in very thin dots, where vortices are of small
radii compared to dot radii because of strong effect of the
magnetostatic field,51 in thicker exchange-ordered dots, the
radius of the vortex core is comparable to the dot radius and
the out-of-plane component of the magnetization at the dot
boundary can be nonzero.52

Since Skyrmions are static solutions to the isotropic LLG
equation in 2D,53 they seem to be natural candidates to repre-
sent the vortices in dots. Indeed, in strongly flattened nanodots,
ordering of vortex cores corresponds to Skyrmion profiles (see
Ref. 54 for a review of models of the centered vortex in the
nanodot). Analytical approaches to the vortex-state dynamics
of Refs. 25 and 55 are based on transformations between local
two-Skyrmion or Skyrmion–anti-Skyrmion textures embed-
ded in an in-plane ordered curling background. They follow the
observation that the vortex in such a state can be shifted from
the dot center and deformed due to interaction with another
(virtual) vortex without production of surface magnetostatic
charges.56 However, in circular dots thick enough to allow
using local approximation of the magnetostatics, the centered
Skyrmion is found not to be a stable state (Appendix B), while
any significant shift of the position of the static vortex from the
dot center is not confirmed experimentally.57 Moreover, when
the dot is built into a spin-valve-containing pillar structure, a
weak magnetic anisotropy can be present whose easy axis
is directed in the dot plane. In the presence of such an
anisotropy, Skyrmions are not solutions to the LLG equation
while cross-tie DWs are. Therefore, I consider a single Bloch
line of the cross-tie DW to be the center of a vortex in the
magnetic dot, which is consistent with an observed breakdown
of rotational symmetry of the dot ordering.57,58

Studying magnetization configurations in the circular dots
for H = 0, I use a static solution to (1) in the form (7a) and (7b)
with k′′ = −q ′′q ′/k′ = −q ′′ tan(θ ), k′2 − q ′′2 = β1/{J [1 +
tan2(θ )]} ≈ 0. Following the analysis of the previous section,

184421-5



ANDRZEJ JANUTKA PHYSICAL REVIEW B 85, 184421 (2012)

0

0

5

E +E0 B

l′′t

0-2 2
a

0

4

8

12

l′′t

(a)

(b)

a

-4 4

4

1,4

1,8

-4
-2

2

10
(c)

0-2 2
a

-4 4

0-2 2
a

-4 4
0

4

8

12

l′′t

0

4

8

12

l′′t

(d)

FIG. 4. (Color online) (a) Sum of the exchange and boundary
energies E0 + EB with dependence on DW direction and time
for arbitrary chosen values of the parameters J , R, and �2 = �

[J�/(MR) = 0.022]. (b) The corresponding density plot of the
derivative of E0(a) + EB (a,t) over a. The contour in the plot
center represents the solution to ∂[E0(a) + EB (a,t)]/∂a = 0. (c) The
corresponding plot for �2 = 2�, and (d) for �2 = 4�.

the assumption of the orderings at the ends of any dot
diagonal to be similar to each other leads to the relations q ′′ =
nπ/{2R[1 + tan2(θ )]} = ±k′, where n = 1,2, . . . , where R

denotes the dot radius. The exchange energy of such a dot
state takes the form

E0(a) = JMk′2(1 + a2)
∫ 2π

0

∫ R

0
sech2{k′r

× [sin(ϕ) + a cos(ϕ)]}rdrdϕ, (17)

where a ≡ tan(θ ). Specific states characterized by φ = 0 or
φ = π correspond to the presence of a vortex or antivortex
in the dot center. The boundary energy (of the magnetostatic
origin)

EB = 1/�2

∮
∂S

(m · n′)2dl (18)

(where n′ denotes the unitary vector outward to the dot
boundary and �2 ∼ λ2/[τ | ln(τ/2R)|] scales with the dot
thickness τ ) is evaluated with

EB(a,φ) = M2R

�2

∫ 2π

0
(−tanh{k′R[sin(ϕ) + a cos(ϕ)]}

× sin(ϕ) + sech{k′R[sin(ϕ) + a cos(ϕ)]}
× sin{φ + k′R[cos(ϕ) − a sin(ϕ)]}
× cos(ϕ))2dϕ. (19)

The plot of energy E0(a) + EB(a,0) corresponds to the cross
section of the 3D plot in Fig. 4(a) at t = 0. Looking at this
this cross section, one sees that absolute energy minimum
corresponds to |a| ≈ 1 (|θ | ≈ π/4) which represents a vortex
DW [Fig. 5(a)].

(b)

(c)

(e)(d)

p
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z/2R z/2R

(a) m /Mxm /Mzm /My
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FIG. 5. (Color online) In (a), density plots of magnetization
components of the dot state |a| = 1, the gray scale is linear in
the range [−1,1]. Below, schemes of consecutive textures (of the
head-to-head DW type) and trajectories of vortices (dashed lines) and
antivortices (dash-dotted lines) during the transformation induced by
a spin-polarized current of the magnetic dot: (b), (d) �2 < �c; (c),
(e) �2 > �c. The arrows in (b) and (c) indicate the magnetization
alignment in relevant dot areas.

One includes an electric current perpendicular to the dot
plane and spin polarized in this plane via adding the spin-
transfer torque

σ

M
m × (m × p)

to the right-hand side of (1). Here σ is proportional to the
current intensity and p denotes its spin polarization (|p| =
1).25,55,59 Applying the transformation (2), for β1 ≈ 0 and p =
(1,0,0), one arrives at the secondary equations of motion

−f iDtf
∗ · g = f

[
αDt + J

(
D2

x + D2
z

)]
f ∗ · g

+ Jg∗(D2
x + D2

z

)
g · g − iσ |f |2g,

(20)
−g∗iDtf

∗ · g = g∗ [
αDt − J

(
D2

x + D2
z

)]
f ∗ · g

− Jf
(
D2

x + D2
z

)
f ∗ · f ∗ − iσ |g|2f ∗.

These equations can be obtained from (3) via change of γHx

into iσ ; thus, insertion of the ansatz (12) into (20) leads [by
analogy to (13)] to

l = σ

1 − iα
. (21)
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In the weak-current regime, below the Walker breakdown σ <

σW , the left-hand sides of (20) should be changed into zero
and then

l = iσ

α
= il′′. (22)

Since, in this regime, the real part of l is equal to zero,
unlike magnetic field, the polarized current does not induce
any translation of the DW while it is responsible for rotation
of the magnetization in the wall area about the x axis.

Including the magnetostatic field at the dot boundary,
I analyze vortex-state dynamics as an evolution between
different cross-tie DWs; thus, following the method of the
previous section, I look for the time dependence of the DW
parameters θ , n. I use the constraint (14) which is motivated
by considering the mx magnetization component along the
straight z = 0. For σ < σW , this component is conserved
[mx(x,0,t) = mx(x,0,0)] upon application of a longitudinally
polarized current because this current drives the dynamics of
the remaining magnetization components only; thus, it does
not induce deviation of the magnetization from the local
easy plane yz at the ends of the dot diagonal z = 0 [at
(x,z) = (±R,0)]. On lines z = z0 	= 0, the profile of mx is
also conserved while its center sustains a shift mx(x,z0,t) =
mx[x − x0(t),z0,0] because the current induces a deviation
of m from an easy plane at (x,z) = (±

√
R2 − z2

0,z0). With
the constraint (14), transforming the texture parameter q ′
into q ′(t) = ∓k′′(t) = k′ tan[θ (t)], I substitute φ in (19) with
l′′t and plot the energy E0(a) + EB(a,t) for some arbitrary
values of J , �2, R [Fig. 4(a)] as well as its derivative over
a [Figs. 4(b)–4(d)]. The contour ∂[E0(a) + EB(a,t)]/∂a = 0
indicates the trajectory a(t) = tan[θ (t)]. There exists a critical
value �c such that the function a(t) is discontinuous for
�2 > �c. Jumps of a(t) are connected to changes of its sign
as follows from Fig. 4(d). For �2 < �c, the sign of a(t) is
constant [see Figs. 4(b) and 4(c)]. A number of consecutive
textures created during a single period of the vortex-structure
transformation are visualized in Figs. 5(b) and 5(d) together
with the shape of the corresponding vortex and antivortex
trajectories [Figs. 5(c) and 5(e)].

For a current of high intensity σ > σW , the relation (21)
leads to prediction of a texture motion along the polariza-
tion direction p = (1,0,0) with the velocity v = Rel/k′ =
σ/[k′(1 + α2)]. In the confined geometry, however, this motion
is suppressed when a decrease of energy due to the spin-
transfer-induced shift of the vortex core from the dot center
equals an increase of the boundary energy EB . A nonzero value
of l′′ corresponds to the magnetization rotation in the DW
area (in the vortex core) with frequency l′′ = σα/(1 + α2)
about the x axis. In order that such a rotation would not
induce any instability of the structure (the boundary and
exchange energies were constant), it should be accompanied by
a precession of the vortex (the DW texture) in the plane of the
dot shown in Fig. 6. The above determined frequency l′′ of the
vortex precession in a circular dot coincides with the relevant
formula obtained in Ref. 60 by solving the Thiele equation
where it has been verified with micromagnetic simulations.
The radius of the vortex precession can be small compared to
the dot diameter.57,58

p

FIG. 6. Consecutive textures (of the head-to-head DW type) in
a strongly driven (σ > σW ) circular dot. The arrows indicate the
magnetization directions in relevant dot areas.

V. CONCLUSIONS

Cyclic transformations between transverse and vortex DWs
in a strong longitudinal magnetic field have been described
with relevance to magnetic stripes with dominance of the
exchange interactions over magnetostatic ones. A similar
effect has been observed in experiments and simulations for
very thin magnetic stripes (of the thickness of up to four
magnetostatic exchange lengths, which corresponds to 20 nm
for permalloys), where the magnetostatic field is strong in bulk
and dynamical distortions of the DWs take place. Such DW
distortions cannot be included in the present approach. The
predicted dynamics can be verified with thicker stripes whose
DW structures are expected to be more robust.

A specific feature of the DW dynamics above the Walker
breakdown are consecutive pinnings and depinnings of a single
half vortex or half antivortices to the alternating stripe edges
during the transformations of transverse DWs into vortex DWs
and vice versa.28 It is similar to the behavior shown in Fig. 3;
however, since there is no DW distortion in the present study,
the half (anti)vortices are not strongly pinned to one of the
stripe edges while they move away from the stripe on a small
distance. Another difference with respect to DW dynamics in
very thin nanostripes is the lack of an effect, simulated and
explained with the Thiele equation, of dynamical reversal of
the vortex-core polarity during its collision with the stripe
edge.7,24,61 This is because of different structures of the
“magnetostatically ordered” DWs of the cited works compared
to the ones of “exchange ordered” walls. In thin nanostripes,
the field-excited texture can take the form of a transverse DW
of total Skyrmion number G = 0 (G ≡ ∑

a paqa with pa =
±1 denoting the polarity and qa = ±1/2, ±1 denoting the
chirality of the ath defect in the DW texture62) or a vortex DW
of G = ±1. This means that the polarities of the half vortex
and half antivortex in the transverse wall could be the same
while the polarities of half antivortices at the edges of a vortex
DW can be opposite. In the present considerations, only values
of G = ±1 for the transverse DWs and G = ±2 for the vortex
DWs are allowed (the DWs are of a rigid cross-tie structure).

Two intensity regimes of the spin-polarized electric current
are found to relate to periodic transformations of the vortex
states in circular dots with frequencies of different orders
of magnitude. Since α � 1, the increase of the oscillation
frequency l′′ with σ is much faster for currents weaker than
a threshold value σ < σW (when l′′ = σ/α) than for stronger
currents σ > σW [when l′′ = σα/(1 + α2)]. The regime σ >

σW corresponds to a vortex gyration in the dot plane (this
regime of the current intensities is used to be studied with
relevance to the dc-induced generation of microwaves), while
the regime σ < σW corresponds to a vortex motion along an
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open trajectory. Most frequently, the vortex motion has been
studied dealing with very thin dots with current above the
threshold intensity. Schematic snapshots of the gyrating vortex
of Fig. 6 can be compared to the ones observed in relatively
thick (30 nm) and of big diameter (3 μm) dots during the
magnetic-field-induced gyration [since descriptions of both
the processes are similar except change of the parameter (21)
into (13)].58 A small number of data on the vortex dynamics
below the threshold are available. Similar (nongyrotropic)
evolution of the vortex state to the one of Fig. 5(a) has
been observed in hexagonal dots (of 50 nm thickness) upon
application of a nanosecond electromagnetic pulse (such a
pulse induces a spin-polarized current and a longitudinal
magnetic field simultaneously).63
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APPENDIX A: ESTIMATION OF BOUNDARY ENERGY

The magnetostatic energy of a magnetic element contains
contributions that relate to interactions of surface charges,
volume charges, and interaction between surface and volume
ones

EMS =
∫ ∫

ρ(x)ρ(x′)
|x − x′| dV (x)dV (x′)

+
∫ ∫

σ (x)σ (x′)
|x − x′| dS(x)dS(x′)

+
∫ ∫

σ (x)ρ(x′)
|x − x′| dS(x)dV (x′), (A1)

where ρ = −∇ · m, σ = n · m. Influence of magnetostatic
interactions on the magnetization of the main body of any
ferromagnetic platelet decreases with increase of its thickness,
while it is not so in terms of magnetization of the platelet
boundary. Following Ref. 64, reducing one of the spatial
dimensions with relevance to flat systems of thickness τ

and neglecting volume and base-surface terms, the above
expression is transformed into the energy of the boundary
of 2D system (up to the multiplayer τ )

τEB = τ 2
∫

∂S

∫
∂S

σ (x)σ (x′)ln(|x − x′|/τ )dl(x)dl(x′)

+ τ 2
∫

∂S

∫
Sbase

[σ (x)ρ(x′) + ρ(x)σ (x′)]

× ln(|x − x′|/τ )dl(x)dS(x′). (A2)

Here Sbase denotes the surface of the platelet base.
For a circular dot, ρ(x) is not defined at its boundary; thus,

I neglect the second term and obtain

τEB = τ 2
∫

∂S

∫
∂S

(n · m)(x)(n · m)(x′)

ln(|x − x′|/τ )dl(x)dl(x′)

∼2πRτ 2ln(R/τ )
∫

∂S

(n · m)2(x)dl(x). (A3)

For any DW in the stripe, ρ(x) ∼ −∂mx/∂x ∼
[M2 − m2

x]/(Mδ) with a constant δ close to DW width,
since −∂mx/∂x = M∂[tanh(x/δ + cz/δ)]/∂x = [M2 −
M2tanh2(x/δ + cz/δ)]/(Mδ), and |∂mz/∂z| � |∂mx/∂x|. I
estimate the boundary energy with

τEB = τ 2
∫

∂S

∫
∂S

(n · m)(x)(n · m)(x′)ln(|x − x′|/τ )

× dl(x)dl(x′) − τ 2
∫

∂S

∫
Sbase

[
(n · m)(x)

∂mx

∂x
(x′)

+ ∂mx

∂x
(x)(n · m)(x′)

]
ln(|x − x′|/τ )dl(x)dS(x′)

∼2δτ 2ln(δ/τ )
∫ ∞

−∞
m2

z(x,0,0)dx

− 2κwτ 2ln(δ/τ )
∫ ∞

−∞

[
M2 − m2

x(x,0,0)
]
dx, (A4)

where κw corresponds to an effective thickness of the surface
layer of the stripe edge over which the magnetization is
independent of normal coordinate z (κ � 1 and κ ∝ δ). Since
δ ∼ w, one arrives at EB of (9).

In order that boundary conditions to the LLG equation
(within 2D approximation) were determined, one requires
the relation l2

ex/w
2 � τ/wln(w/τ ) to be satisfied following

Kurzke,65 while, unlike what is assumed in his thin-film-limit
approach, another condition τ/w � l2

ex/w
2 is not fulfilled in

the present considerations. In Ref. 42, the last inequality was
used in order to show that the bulk-bulk and bulk-boundary
terms of the magnetostatic energy vanish faster than the
boundary-boundary term in the thin-film limit; thus, they
are negligible for very thin structures (also, then, a strong
easy-plane anisotropy justifies using the XY model). DWs of
this “exchange” limit are described with an exact formula in
Refs. 31 and 32. When τ > lex (the platelet is thick enough),
the bulk-boundary term can be nonnegligible. Its importance
grows with increase of lateral diameter of the platelet [stripe
width, increase of the coefficient κ of (A4)] with constant τ .
In most of the experiments (and in the present paper), sizes
of the system lie far from the Kurzke regime, approaching the
region τ/w � l2

ex/w
2.

APPENDIX B: INSTABILITY OF SKYRMION
IN CIRCULAR DOT

I determine the energy of a Skyrmion centered with
respect to a circular magnetic dot using a solution to (1) for
β1 = 0, Hx = 0 (in absence of the anisotropy and external
field), with the boundary conditions my → −M , mz + imx →
0 with

√
x2 + z2 → ∞. Applying the Hirota method, via

transforming magnetization to secondary dynamical variables

mz + imx = 2M
gf

|f |2 + |g|2 , my = M
|f |2 − |g|2
|f |2 + |g|2 , (B1)

the Skyrmion solution to the resulting equation (3) is found to
be of the form

f = 1, g = eiη+iq·arctan(x/z)

√
x2 + z2

R , (B2)
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where R is a characteristic texture width, q = 1 (Skyrmion)
or q = −1 (anti-Skyrmion). The exchange and magnetostatic
energies of the Skyrmion and anti-Skyrmion are evaluated
with (8) and (18):

E0(R) = JM

2

∫ 2π

0

∫ R

0

2/R2 + 16r2/R4 + 2r4/R6

(1 + r2/R2)4
rdrdϕ

= JMπ
R2/R2 + 5R4/R4 + 2R6/R6

(1 + R2/R2)3
, (B3)

EB(R,η) = M2

�2

∫ 2π

0

R2/R2 cos2[(1 − q)ϕ − η]

(1 + R2/R2)2
Rdϕ

=
{

M2

�2

R3/R2

(1+R2/R2)2 2π cos2(η) q = 1,

M2

�2

R3/R2

(1+R2/R2)2
π
2 q = −1.

(B4)

Via minimization of E0(R) + EB(R,η), infinitely big
texture radius R is preferred, which leads to the
instability of the centered Skyrmion (anti-Skyrmion)
state.

It should be emphasized that the above conclusion is valid
as far as the local approach is suitable. Full evaluation of
the magnetostatic energy can indicate stability of a centered
vortex embedded in a curling in-plane magnetization state,
especially for dots of high radius-to-thickness ratio.54 Such
stable centered vortices are often called Skyrmions because of
Skyrmion-like core magnetization; however, in a nomenclature
widely used in different branches of physics, they are not
Skyrmions since they are not defects in the ferromagnetically
ordered background.
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