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Modulation of spin torque oscillators (STOs) is investigated by analytically solving the time-dependent coupled
equations of an auto-oscillator. A Fourier-series solution is proposed, leading to the coefficients being determined
with a linear set of equations, from which a nonlinear amplitude and frequency modulation (NFAM) scheme
is obtained. In this framework, the NFAM features are related to the intrinsic STO parameters, revealing a
frequency dependence of the harmonic-dependent modulation index that allows a modulation bandwidth to be
defined for these devices. The presented results expose a rich parameter space, where the modulation and the
STO’s operation conditions define the observed modulation features. The Fourier-series representation of the
time signal is suitable for studying periodic perturbations on the auto-oscillator equation.
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I. INTRODUCTION

Spin-torque oscillators1 (STOs) are spin-torque2–4 driven
devices whose high-frequency tunability and nanosized di-
mensions are promising for diverse technological applications.
The oscillators’ functionality can be very broad, depending
on the specific application and its operation frequency. Two
phenomena are of particular use, namely (i) the ability to phase
lock or synchronize to another periodic signal, and (ii) the
possibility of modulating a base-band signal.5 In the case of
STOs, both phenomena have been experimentally observed.

Phase locking of STOs has been extensively studied in the
past few years. Injection locking of an STO to an external
source is already well-established in both experimental6–8

and numerical9–14 works. Phase locking can also be achieved
by mutually coupling several STOs. In this case, a distinc-
tion must be made between nanocontact15 and nanopillar16

geometries. In nanocontacts, synchronization mediated by
propagating spin waves17,18 has been satisfactorily achieved
both experimentally19–21 and numerically22 for GMR-based
STOs. In contrast, the mutual locking of nanopillars has been
mainly successful in numerical studies.23–25

Modulation of STOs has also been shown to be experimen-
tally straightforward giving rise to several suggested applica-
tions. STOs nanopillars have been proposed as hard-drive read-
heads where the stray field from the perpendicular media acts a
modulating source26 both in giant magnetoresistance (GMR)27

and tunnel magnetoresistance (TMR)28 spin valves. From the
perspective of communication applications, frequency modu-
lation (FM) has been observed in GMR nanocontacts29–34 and
more recently in nano-oxide layer nanocontact STOs.35 Digital
communication schemes, in particular frequency shift keying,
has been demonstrated in vortex-based nanocontact STOs up
to the limit of analog FM.36,37 Similar modulation effects are
most likely to be observed in other STO geometries that take
advantage of perpendicular magnetic anisotropy materials38,39

and nanopillars located in a microstrip resonator.40

In the pioneering frequency modulation experiment,29 the
authors took advantage of the strong phase-power coupling of
GMR-based STOs to obtain a frequency-modulated voltage
output from a base-band current tone. Although the gross

features of frequency modulation were present, significant
discrepancies from the model were observed: (i) an unexpected
carrier frequency shift as a function of modulation strength,
and (ii) asymmetric sideband amplitudes in contrast to the
expected nth order Bessel functions. A mathematical model
was proposed by Consolo et al.41 to fit these features. Here,
the temporal signal s(t) was defined to be both amplitude-
modulated and frequency-modulated,

s(t) = A[x(t)] cos(ωc + ωi[x(t)])t, (1)

where ωc is the carrier frequency, and the amplitude A

and instantaneous frequency ωi are polynomial expansions
of a base-band message x(t). This combined action of
amplitude and frequency modulation was named “nonlinear
amplitude and frequency modulation” (NFAM). Using this
approximation, it was possible with very good accuracy to fit
the GMR-STO modulation data with a polynomial expansion
up to the third order.30 However, the information acquired from
these coefficients does not reflect the intrinsic mechanism of
NFAM in STOs, nor its consequences for a specific choice
of experimental conditions and device characteristics. To
investigate the origin of NFAM in STOs, we here derive
the modulation spectrum as a function of the intrinsic STO
parameters.

The modulation spectrum of an STO is obtained by
perturbing the auto-oscillator general equation42 with a slow
time-varying tone. Such perturbation creates coupled phase
and power variations, which lead to NFAM. It is shown that
a Fourier series gives an adequate representation of s(t), in
which case the problem can be reduced to determining the
coefficients from a linear set of equations. Moreover, the
Fourier coefficients obtained by this method give quantitative
information, such as the carrier frequency shift, the modulation
index, and the modulation bandwidth of the STO.

This paper is divided as follows. In Sec. II, the general
formulation of the problem and its solution is given. It is shown
that a carrier frequency shift appears as a consequence of
power and phase coupling. Moreover, the modulation index is
obtained by calculating the power spectral density, and shows
an unexpected modulation-frequency dependence. In Sec. III,
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the analytical solution is evaluated for different modulation
and operation conditions, and shows a qualitative agreement
with experimental observations. Concluding remarks are given
in Sec. IV.

II. MODULATION OF A NONLINEAR AUTO-OSCILLATOR

In this section, the power spectral density (PSD) of a
frequency-modulated nonlinear auto-oscillator is analytically
calculated, using the general model proposed by Slavin and
Tiberkevich:42

dc

dt
+ iω(p)c + �+(p)c − �−(p)c = 0, (2)

where p is the oscillation’s power, c = √
pe−iφ is the

oscillation’s amplitude, φ is its time-dependent phase, and
ω(p), �+(p), and �−(p) are respectively the power-dependent
oscillation frequency, damping, and negative damping. The
power dependencies of these quantities are treated in Ref. 42
as polynomial expansions. The auto-oscillator model of Eq. (2)
is an accurate representation of the Landau-Lifshitz-Gilbert-
Slonczewski equation43 and, in particular, for the nanocontact
geometry shown in Fig. 1. Here, a metallic nanocontact is
patterned on top of an extended GMR spin valve. A strong
magnetic field Happ is applied to ensure the saturation of
the magnetically active or “free” layer material. When a bias
current is driven through the nanocontact, spin torque is exerted
on the underlying free-layer area, counteracting the magnetic
damping action, and leading to a small-angle precession about
the applied field. Depending on the applied field angle, the
free layer might exhibit propagating spin waves or a so-called
localized bullet.44–47 In this paper, we restrict our attention to
a perpendicular applied field without loss of generality.

In order to solve the modulation problem, we recall the
experiment of Ref. 29 where an ac current is added to the dc
bias current. Consequently, we define the slow time-varying

FIG. 1. Nanocontact pseudospin valve consisting of a thick
(fixed) and a thin (free) magnetic layer (gray) decoupled by a thin
metallic spacer (black). A nanocontact is patterned on top of the
free layer, allowing the device to be driven with a spatially confined
current. It is assumed that the auto-oscillator Eq. (2) is a good
approximation for such a structure. The free-layer magnetization m is
free to precess about the applied field Happ. The fixed layer is assumed
to be magnetized predominantly in plane, and its magnetization PS

subtends an angle γ0 relative to the free layer magnetization. A steady
precession is achieved when a spin polarized current exerts sufficient
spin torque on the free layer to compensate for the magnetic damping.

current as

I (t) = Idc (1 + μ cos ωmt) , (3)

where μ is the modulation strength, defined as the ratio
between the ac amplitude and the dc current, and ωm is the
modulation frequency. We assume that ωm � ωSTO (where
ωSTO is the STO’s free-running frequency) in order to be
considered a modulating frequency. On the other hand, if
ωm ≈ ωSTO, the STO might instead become injection-locked.
The current is thus included in the negative damping parameter,
�−(p), which can be generally expanded as a polynomial in
power,

�−(p) = σI (t)(q0 + q1p + q2p
2 + · · ·), (4)

where σ = εh̄γ /2eMSV , ε the spin-polarization efficiency,
γ the gyromagnetic ratio, e the electron charge, MS the free
layer’s saturation magnetization, V the free layer’s current-
carrying volume, and the coefficients qi , i = 0,1,2, . . . , are
assumed to describe the sample’s characteristics. It is further
assumed that I (t) creates a power perturbation of the form
p = p0(1 + 2δp), where p0 is the STO’s free-running power.
This approximation is valid as long as the modulation strength
is small, which we consider a common scenario in STO
modulation experiments (for instance, μ < 0.1 in both Ref. 29
and 30).

Separating Eq. (2) into real and imaginary parts, and
expanding in power to first order, we obtain a set of differential
equations with variable (time-dependent) coefficients for the
STO’s power and phase:

dδp

dt
= μC1 cos ωmt + (μC2 cos ωmt − �p)2δp, (5a)

dφ

dt
= ωSTO + 2ν�pδp, (5b)

where we define the constants

C1 = �−(p0), (6a)

C2 =
(

�−(p0) + d�−(p)

dp

∣∣∣∣
p0

p0

)
. (6b)

Here, ωSTO = ωo + ν�p, ωo = γμ0(Happ − MS) is the fer-
romagnetic resonance (FMR) frequency, μ0 is the vacuum
permeability, �p = αωo(ξ − 1) is the restoration rate, α is
the Gilbert damping parameter, ξ = Idc/Ith is the supercrit-
icality parameter, and Ith is the threshold current for spin-
torque-driven oscillations. The restoration rate is assumed
to be constant with respect to the free-running oscillations.
Qualitatively, it gives a measure of how fast the STO reacts to
a perturbation, and so plays a fundamental role determining
the synchronization speed for these devices.13,14,25

We propose a Fourier series as a solution of Eq. (5a), based
on the periodicity of the time-dependent term:

δp = A0 +
∞∑

n=1

An sin nωmt + Bn cos nωmt. (7)

Introducing this solution into Eq. (5a) gives an infinite system
of equations for the Fourier coefficients. It is possible to further
reduce the problem to the determination of An, leading to a
system of linear equations which can be solved numerically
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(see Appendix A). The solution, expressed as a single sinusoid,
is

δp = A0 +
∞∑

n=1

√
B2

n + A2
n cos(nωmt − ψn), (8a)

φ = (ωSTO + 2ν�pA0)t

+
∞∑

n=1

2ν�p

nωm

√
B2

n + A2
n sin(nωmt − ψn). (8b)

The notation of Eq. (8) explicitly shows a harmonic-
dependent phase ψn = arctan(An/Bn). This phase plays a
fundamental role in the form of the PSD, as discussed below.
The first indication of NFAM is visible in the first right-hand
term of Eq. (8b), where the oscillation frequency is shifted by
2πfs = 2ν�pA0. From the exact solution given in Eq. (A3),
we obtain

2πfs = −μνC2B1

2
. (9)

Consequently, the shift is directly proportional to the mod-
ulation strength and to the STO nonlinearities, via the
constant C2.

In order to identify the next feature of NFAM—namely
the asymmetry of the sidebands—the PSD must be calculated.
By expressing the sinusoidal functions as exponentials and
performing Taylor expansion (Appendix B), the PSD can be
expressed as a series of convolutions

PSD = p0δ(ωSTO′) ∗
∣∣∣∣∣
[

(1 + A0)δ(0)

+
∞∑

n=1

X̄n

2
δ(nωm) + Xn

2
δ(−nωm)

]

∗
∞∏

n=1

J0(βn)δ(0) +
∞∑

j=1

Jj (βn)

|Xn|j
[
X̄j

nδ(njωm)

+ (−1)jXj
nδ(−njωm)

]∣∣∣∣∣, (10)

where we define the complex variable Xn = Bn + iAn [hence
ψn = arg(Xn)], the convolution product is denoted by an
asterisk (∗), the notation ¯(·) represents the complex conjugate,
and the shifted carrier frequency is written as ωSTO′ = ωSTO +
2πfs . The notation δ(x0) = δ(x − x0) is used, where δ is
the Kronecker delta. The product symbol represents in this
case a series of convolutions. The real harmonic-dependent
modulation index is defined as

βn = 2ν�p|Xn|
nωm

. (11)

Comparison with the FM modulation index, h = �f/fm,
suggests that the peak frequency deviation for STOs can be
defined as 2π�fn = 2ν�p|Xn| for given harmonic frequency
and modulation conditions. Due to the form of |Xn|, it
is expected to be linearly dependent on the modulation
strength μ and proportional to [(nωm)2 + (2�p)2]−1/2. The
latter dependence is of particular interest in terms of the
modulation bandwidth (MBW) discussed in Sec. III.

Several features of the spectrum can be readily identified
from the right-hand side of Eq. (10). First we can see the
shifted carrier frequency which, by virtue of the properties
of convolution, shifts the base-band spectrum in frequency.
Second, a nonlinear amplitude-modulation (NAM) spectrum
arises from the power fluctuations. Third, a series of FM
spectra whose harmonics expand with n can be seen to arise
from the combined contributions of the phase modulation and
the nonlinearly enhanced power fluctuations. In the case of a
weakly nonlinear oscillator (ν � 1), the FM series of convo-
lutions can be neglected, and the spectrum reduces to a NAM
spectrum. For a particular applied field angle, the condition
ν = 0 is satisfied, and the spectrum reduces to pure AM.48

On the other hand, if the time-dependent term is neglected
(C2 ≈ 0), only the first harmonic coefficients of Eq. (A3) will
be nonzero, and the PSD will take the form of pure FM.42

The convoluting terms in Eq. (10) define the power of
each harmonic. Although it is tedious to obtain a meaningful
analytical expression, it can be inferred that the power of the
harmonics is sensitive to the phase ψn. We can illustrate this by
approximating each convoluting term to the second harmonic,
and solving for the first upper and lower sideband power.
By expanding the absolute values to first order, we obtain
the power difference of the sideband � = 2J1(β1)(1 + A0)p0,
which is in general nonvanishing. This crude approximation
does not represent the asymmetry of Eq. (10), which is affected
up to the fifth harmonic, as shown in Appendix A.

Summarizing this section, we have obtained a fairly com-
plex spectrum by solving the set of Eq. (5). This complexity,
along with the interdependence of several key parameters
such as the modulation strength and frequency, limits the
analytical insight that can be gained. However, the frequency
shift of the carrier can be explicitly obtained by considering a
Fourier-series approach, and the sideband asymmetry arises as
a consequence of the solution’s harmonic-dependent phases.
The solution of the spectrum leads to the definition of the
harmonic-dependent modulation index, from which the STO
peak frequency deviation can be defined.

III. NUMERICAL RESULTS

In this section, we consider a first order expansion of the
STOs parameters in order to evaluate the PSD of Eq. (10).
The coefficients are calculated up to the tenth harmonic by
solving the linear system of equations (A3) in matrix form.
We consider the nanocontact geometry of Fig. 1 with the
parameters μ0Happ = 1 T, μ0MS = 0.8 T, γ = 28 GHz/T,
α = 0.01, and ν = 100. Evaluating the STO parameters
�+(p), �−(p), and ω(p) according to auto-oscillator theory,42

we obtain the frequency vs supercriticality dispersion shown
in Fig. 2(a). As expected, the frequency is equal to the FMR
frequency at the threshold of the oscillation (ξ = 1).

Three operation points (OP), OP1, OP2, and OP3, were
selected in Fig. 2(a), such that their restoration rates were
�p/2π = 11.2, 44.8, and 156.8 MHz, respectively. Each
OP was modulated, and their PSDs, calculated as the fast
Fourier transform of Eq. (B1), are shown in Figs. 2(b)–2(d)
as a function of β1 and a fixed modulation frequency,
fm = 100 MHz. The first-harmonic modulation index is used
as a reference, since it is assumed to be the main contribution
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FIG. 2. (Color online) (a) Frequency dispersion of the STO
considered in the numerical calculations, as a function of the
supercriticality ξ . Starting from ξ = 1, current-driven oscillations
are sustained. The frequency increases nonlinearly from the FMR
frequency indicated by the horizontal line. Three operation points,
OP1, OP2, and OP3, are selected for the following results. (b)–(d)
PSD as a function of the modulation index β1 and normalized
frequency scale. The frequency shift is proportional to both the
modulation strength and the curvature of (a), following Eq. (9) (solid
white line over the carrier).

to the sideband power. In order to evaluate Eq. (A3), the
modulation strength is calculated from β1, returning different
ranges for each OP. The frequency axis is normalized to the
modulation frequency and centered on the carrier frequency.
On this scale, all operation points share the same number
of visible sidebands, as well as the position of the carrier.
It is observed that the frequency shift is more pronounced
near the threshold (OP1). This is expected from Eq. (9),
shown as the white lines in Figs. 2(b)–2(d), since both the
modulation strength and the curvature are higher near the
threshold Fig. 2(a). Such curvature dependence has been
observed in experiments30 away from the oscillation threshold,
presumably due to higher order nonlinearities. These effects
can be included in the present framework through Eq. (6b), as
the derivative of the negative damping may be substantially
different. A numerical fit of experimental data is not within the
scope of the present paper, but we argue that such a fit could
be achieved by measuring the auto-oscillator parameters, as
has been recently shown in Ref. 7.

The power of the normalized carrier and of the first upper
and lower sidebands is shown in Figs. 3(a)–3(c) for each OP
and with modulation frequency fm = 100 MHz. The combined
action of the frequency shift and the harmonic-dependent
phase introduced by the Fourier series results in power
asymmetry between the sidebands. This asymmetry is notably
higher for OP1 in correlation with its similarly enhanced
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FIG. 3. (Color online) (a)–(c) Carrier (black) and first upper
(red) and lower (blue) sidebands for each OP as a function of the
modulation index β1. The sideband asymmetry is clearly visible,
and is substantially higher at OP1 due to the strong frequency shift.
Panels (d)–(f) show the normalized power difference of the sideband
� as a function of both modulation strength and frequency. White
lines denote the slice shown in (a)–(c). The color maps show that the
asymmetry increases together with both modulation parameters.

frequency shift. In the color plots of Figs. 3(d)–3(f), the nor-
malized power difference of the first upper and lower sidebands
� is shown as a function of β1 and fm. The white horizontal line
denotes the slice shown in panels (a)–(c), respectively. Being
a common feature, the sideband asymmetry increases together
with both the modulation strength and the frequency. These
dependencies can be qualitatively understood from Eq. (10)
and Eq. (A3). A stronger μ increases the power of the higher
harmonic coefficients, so that they become non-negligible in
the PSD. Thus an increase in the asymmetry is expected. On
the other hand, the dependence on the modulation frequency
arises from the relation between An and Bn. Roughly, one can
approximate A1 = (ωm/2�p)B1, so that the complex variables
in the PSD can be expressed as X1 = B1(1 + iωm/2�p). From
here, it is clear that as ωm increases past the parameter 2�p, the
imaginary term becomes dominant or, in other words, the har-
monic phase increases toward ±π/2. Consequently, the power
contribution of each harmonic to the sideband becomes heavily
weighted by the phase, leading to enhanced asymmetry.

Finally, we discuss the features of the peak frequency
deviation �fn in relation to the modulation bandwidth. The
frequency dependence of �f for each OP and fixed μ = 0.05
is shown in Fig. 4, both by evaluating the first-harmonic
modulation index, Eq. (11) (solid lines), and by calculating
the maximum of the instantaneous frequency from Eq. (8b)
(circles). The magnitude of the deviation is shown relative
to the OP oscillator frequency, while the logarithmic scale is
used to enhance the frequency dependence. Both approaches
agree very well, so that the first harmonic modulation index
suffices to perform the following calculations approximately.
A practical consequence of this feature is that choosing
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FIG. 4. (Color online) Peak frequency deviation �f dependence
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neous frequency. The dashed lines represent the cutoff frequency 2�p

for each OP, while the dash-dotted black line is a guide for the eye,
showing a 0.1%/decade slope.

a maximum modulation strength does not guarantee the
frequency excursion estimated from the STO’s frequency vs
current characteristics. This is closely related to the modulation
bandwidth of oscillators.

The modulation bandwidth (MBW) gives a measure of the
frequency range in which an oscillator has optimal modulation
properties. A common criterion is the 3 dB power attenuation
that is likewise used to characterize filters. Since the power in
a FM scheme depends on the Bessel functions, the methods
used to measure the MBW rely on indirectly estimating the
degradation of the linearity of the modulation index. In the
present framework, the modulation index is defined from
the calculation of the power spectrum (Appendix B), and
one can directly estimate the MBW from Eq. (11). This
can be accomplished by considering a vanishing modulation
frequency and an arbitrary μ, so that the first-harmonic
modulation index is βi . The task is then to keep the ratio
μ/ωm constant while looking for βf = βi/

√
2. Performing

this calculation gives the result that the MBW for STOs is 2�p.
Since the lack of linearity in our framework is given by 2π�f ,
one can now understand Fig. 4 as a STO transfer function under
modulation having a characteristic low-pass filter form with
a 0.1%/decade rolloff slope (dash-dotted black line) after the
cutoff frequency 2�p (dashed vertical lines).

IV. CONCLUSIONS

The NFAM spectrum is obtained from the auto-oscillator
general model by considering the power perturbation created
by the modulating signal. These power fluctuations are
enhanced by the STO’s nonlinearity, resulting in a spectrum
consisting of a series of convolutions between NAM and
FM spectra. Its implicit dependence on the total damping
parameter and nonlinearities suggests that the NFAM char-
acteristics will exhibit sample-to-sample variation. In fact,
such characteristics have been observed in experiments,30 and
their dependence on the modulation parameters qualitatively
agrees with the results shown here. In contrast to the originally
proposed model,41 we found a frequency dependence of
the modulation index which leads to the estimation of the

modulation bandwidth for STOs. Moreover, the STO under
modulation has a low-pass filter behavior with a cutoff
frequency given by 2�p, which usually depends on the
operation point of a specific sample. Although the modulation
bandwidth for STOs has yet to be measured experimentally,
we expect a correlated degradation of STO modulation
characteristics in frequency-dependent studies. On the other
hand, the Fourier-series solution proposed in this paper can, in
principle, reduce to a linear set of coupled equations any STO
geometry described by the auto-oscillator general equation (2)
perturbed by slow time-varying signal.
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APPENDIX A

The Fourier-series solution proposed in Eq. (7) is intro-
duced into Eq. (5a). The variable term can be expanded using
trigonometric identities:

cos(ωmt)δp = A0 cos(ωmt)

+
∞∑

n=1

An

2
[sin(ωm(1 + n)t) − sin(ωm(1 − n)t)]

+ Bn

2
[cos(ωm(1 + n)t) + cos(ωm(1 − n)t)].

(A1)

This series can be then rearranged by expanding the sum-
mation and identifying equal harmonics. Changing the index
accordingly, we obtain

cos(ωmt)δp =
(

A0 + B1

2

)

+ 1

2
[(2B2A0) cos(ωmt) − A2 sin(ωmt)]

+ 1

2

∞∑
n=2

(An−1 − An+1) sin(nωmt)

+ (Bn−1 + Bn+1) sin(nωmt). (A2)

This expression treats the harmonics separately, so that Eq. (5a)
can be solved by collecting harmonic terms. The resulting
system of equations for the coefficients is

0 = μ
C2

2
B1 + 2�pA0, (A3a)

ωmA1 = μ

(
C1 − C2A0 − C2

2
B2

)
− 2�pB1, (A3b)

ωmB1 = 2�pA1 − μ
C2

2
A2, (A3c)

0 =
∞∑

n=2

2�pBn + nωmAn + μ
C2

2
(Bn−1 − Bn+1),

(A3d)
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are 40 and 400 MHz. The error introduced by the recursive method is
generally small, but diverges close to the minimum of the sideband,
which is indicated by vertical dashed lines.

0 =
∞∑

n=2

2�pAn − nωmBn + μ
C2

2
(An−1 − An+1).

(A3e)

There are two possible solutions to the set of Eq. (A3). One
can, for instance, express a system of equations depending
only on the A’s, so that An ∝ An+2,An+1,An−1,An−2. This
new system can easily be solved numerically using matrix
algebra. The error will depend on the size of the matrix or,
in other words, on the maximum harmonic where the series
is truncated. The total error is shown in Fig. 5(a) for two
frequencies of different orders of magnitude. The case for
N = 20 harmonics is used as a reference. It is observed that
in both cases, N � 5 returns a total error smaller than 10−5%.

Another solution is grounded on the fact that the harmonic
coefficients decay with n, so that we can assume in general
that An ∝ An−1,An−2. This approach can be implemented
numerically as a recurrent series, and this is shown for
different values of N and fm in Figs. 5(b) and 5(c). Here we
observe that N = 5 also converges to a minimum error in this
approximation. However, as β1 is swept, it is clear the the error
increases toward the minimum of the first sideband (indicated
by a dashed line). It is noteworthy that the maximum error in
Fig. 5(c) is slightly shifted, which corresponds to the impact
of higher harmonic terms.

APPENDIX B

The power spectral density (PSD) of the proposed solution
is obtained from Eq. (8), which defines both time-dependent
power and phase variations. The PSD is defined as

PSD = p0|f̂ (1 + δp) ∗ f̂ (cos(φ))|, (B1)

where f̂ is the Fourier transform and the convolution product
is denoted by an asterisk. In the following, we perform
each Fourier transform separately, and express the result as
a convolution. The first term on the right-hand side has the
form of a NAM. The phase introduced by the sine function
leads us to define the complex variable Xn = Bn + iAn, so
that

f̂ (1 + δp) = (1 + A0)δ(0)

+
∞∑

n=1

X̄n

2
δ(nωm) + Xn

2
δ(−nωm), (B2)

where the notation δ(x0) = δ(x − x0) is used and δ is the
Kronecker delta.

The second term on the right-hand side of Eq. (B1)
is calculated by using Euler’s formulas, and subsequently
expanding in Taylor series. We obtain

cos(φ) = e−iωSTO′

2

∞∏
n=1

( ∞∑
k=0

(bn − ian)k

k!2k
einkωmt

×
∞∑

k=0

(−1)k
(bn + ian)k

k!2k
einkωmt

)
+ c.c., (B3)

where an = 2ν�pAn/(nωm), bn = 2ν�pBn/(nωm), and c.c. is
the complex conjugate. The two summations can be multiplied
by expanding and rearranging the terms. Defining 2xn = bn +
ian, it becomes possible to rewrite the product terms as

∞∏
n=1

(·) =
∞∑

k=0

(−1)k
xnx̄n

k!k!
+

∞∑
k=0

∞∑
j=1

(−1)k
xnx̄n

k!(k + j )!

× [(x̄ne)j + (−xne
−1)j ]. (B4)

From this expression, we can identify the summations on k as
Bessel functions of order j and argument βn = 2

√
xnx̄n (upon

renormalization of the coefficients by βn/2). The product takes
the form

∞∏
n=1

(·) = J0(βn) +
∞∑

j=1

2Jj (βn)

βn

[(x̄ne)j + (−xne
−1)j ].

(B5)

The Fourier transform of Eq. (B5) is easily performed
by expressing the result as a product of convolutions. By
further evaluating xn in terms of the complex variable
Xn, and convoluting each harmonic contribution, we obtain
Eq. (10).
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9J. Persson, Y. Zhou, and J. Åkerman, J. Appl. Phys. 101, 09A503
(2007).

10B. Georges, J. Grollier, M. Darques, V. Cros, C. Deranlot,
B. Marcilhac, G. Faini, and A. Fert, Phys. Rev. Lett. 101, 017201
(2008).
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