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Harmonic transition-state theory of thermal spin transitions
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A rate theory for thermally activated transitions in spin systems is presented. It is based on a transition-state
approximation derived from Landau-Lifshitz equations of motion and quadratic expansion of the energy surface
at minima and first order saddle points. While the flux out of the initial state vanishes at first order saddle points,
the integrated flux over the hyperplanar transition state is nonzero and gives a rate estimate in good agreement
with direct dynamical simulations of test systems over a range in damping constant. The preexponential factor
obtained for transitions in model systems representing nanoclusters with 3 to 139 transition metal adatoms is on
the order of 1011 to 1013 s−1, similar to that of atomic rearrangements.
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I. INTRODUCTION

Metastable magnetic states have been studied experimen-
tally in small systems of various kinds, in particular, molec-
ular magnets1 and supported2–4 and free-standing5 transition
metal clusters. The stability of such states with respect to
thermal fluctuations is an important issue in many contexts,
for example, when assessing the limit to which magnetic
recording devices can be miniaturized. Although the systems
mentioned above are quite different, they are all characterized
by two or more magnetic states which correspond to different
orientations and/or different values of the magnetic moments.
A preparation of a system in a particular magnetic state
can be destroyed by thermally activated transitions to other
states. For long-lived magnetic states, the separation in
time scale between fast precession of magnetic moments
and slow transitions between states make direct dynamical
simulation of spin dynamics6 impractical. This, however,
opens the possibility for the use of a statistical approach
for estimating spin transition rates as well as determining
the transition mechanism. Statistical approaches have been
presented previously for a single macrospin,7,8 but we are
not aware of a previous presentation of a statistical rate
theory for systems with multiple spins. Even in small clusters,
transitions can involve nucleation and propagation of a domain
wall rather than coherent rotation of magnetic moments.2,3 A
macrospin approximation would in such cases give the wrong
activation barrier height and a poor estimate of the rate. In
this paper, a method for finding the mechanism and rate of
thermal spin transitions is developed by adapting transition
state theory (TST)9 to multiple spin degrees of freedom. It
gives an Arrhenius law for the transition rate, which can be
evaluated using only the input that would be needed for a direct
simulation of the spin dynamics—a simulation that would,
however, be impossibly long in the cases of interest.

II. THEORY

TST9 has been used extensively for estimating the rate of
thermally activated atomic rearrangements such as chemical
reactions and diffusion.10 The separation of time scale
mentioned above makes it possible to estimate the rate from
the probability of finding the system in the most restrictive and

least likely region separating the initial state from possible
final states—the transition state. Given a transition state
dividing surface, f (x) = 0, where x represents all dynamical
variables in the system, the reaction rate constant, kTST, can
be estimated for spin systems in a way that is analogous to
atomic systems11 as

kTST = 1

C

∫
R

e−E(x)/kBT δ [f (x)] v⊥(x)

(1)
×H [v⊥(x)] J (x)

∏
i

dxi,

where R denotes the region associated with the initial state
up to and including the dividing surface, J (x) is a Jacobian
determinant, E is the energy of the system, v⊥(x) = ∇f (x) · ẋ
is a projection of the velocity onto the normal of the dividing
surface, and C is a normalization constant given by

C =
∫

R

e−E(x)/kBT J (x)
∏

i

dxi .

A central approximation is that a trajectory only crosses the
dividing surface once,12 and this is taken into account by
inserting a Heaviside step function H into Eq. (1). For spin
systems, the relevant variables are taken to be spherical angles
θi and φi defining the direction of the ith magnetic moment.
The set of variables for a system of spins is denoted as x ≡
{θ,φ} ≡ {θ1,θ2, . . . ,θN ,φ1,φ2, . . . ,φN }. The magnitude of the
magnetic moments Mi is assumed to be a function of the an-
gles, Mi(θ,φ), i.e., an adiabatic approximation is invoked. The
Jacobian determinant is then J (θ ,φ) ≡ ∏

i M
2
i (θ ,φ) sin θi .

The normal projection of the velocity, v⊥(θ ,φ), needs to be
estimated at each point on the dividing surface. The equation
of motion is taken to be the Landau-Lifshitz equation (see
Ref. 13)

d M i

dt
= γ M i × ∂E

∂ M i

, (2)

where γ is a gyromagnetic ratio. In the adiabatic limit, this
equation can be split into two equations:

φ̇i = γ

Mi sin θi

∂E

∂θi

and θ̇i = − γ

Mi sin θi

∂E

∂φi

. (3)
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FIG. 1. Comparison of the rate of transitions in a spin trimer
obtained directly from dynamics given by the Landau-Lifschitz-
Gilbert equation of motion as a function of the damping constant
α at T = 23 K (solid line) and a harmonic TST estimate (dotted line).
Inset: the energy surface near a first order saddle point, representation
of a hyperplanar transition state dividing surface (thick line) and the
spin velocity (arrows).

The length of the velocity vector is proportional to the
magnitude of the energy gradient but the velocity and gradient
vectors are perpendicular.

The TST expression for the rate constant can be simplified
by introducing quadratic approximations to the energy surface
around the critical points to give a harmonic TST (HTST)
approximation. The transition state dividing surface is then
chosen to be a hyperplane going through a first order saddle
point on the energy ridge separating the initial state from
product states (see Fig. 1). The hyperplane normal is chosen to
point in the direction of the unstable mode, the eigenvector of
the Hessian matrix along which the saddle point is a maximum.
If second order saddle points on the ridge are high enough
above first order saddle points, then each first order saddle
point corresponds to a specific transition mechanism and a
certain product state. For each possible final state, one or more
minimum energy paths (MEP) can be found. Following an
MEP means advancing each degree of freedom of the system in
such a way that the energy is minimal with respect to all degrees
of freedom perpendicular to the path. The nudged elastic band
(NEB) method14 can be used to find MEPs between a given
pair of initial and final states. A maximum along an MEP
corresponds to a first order saddle point on the energy surface
and the highest one gives an estimate of the activation energy.

Unlike atomic systems, the velocity in spin systems is zero
at a saddle point because the gradient is zero. In the vicinity
of the saddle point, the energy surface, E(θ ,φ), can in general
be approximated as a parabolic function and the magnitude
of the energy gradient and, thereby, the velocity increases
as one moves away from the saddle point. Moreover, since
the energy gradient lies within the dividing surface at points
on the dividing surface, the velocity is perpendicular to the
dividing surface.

The expansion of the energy at the minimum (β = m) and
at the saddle point (β = s) is

Eβ(q) = Eβ(0) + 1

2

D∑
j=1

εβ,j q
2
β,j , (4)

where D is twice the number of spins. The expansion is
in terms of normal mode coordinates, displacements along
eigenvectors of the Hessian matrix. The Landau-Lifshitz
equations become linear with this quadratic approximation to
the energy surface. At the saddle point, one of the eigenvectors,
the one corresponding to the unstable mode, is orthogonal to
the dividing surface. Labeling this mode as qs,1, the velocity
v⊥(θ,φ) = q̇s,1 can according to Eqs. (2)–(4) be written as a
linear combination of normal mode coordinates,

v⊥ =
D∑

i=2

aiqs,i . (5)

The direction of each eigenvector at the saddle point is chosen
so that ai > 0 leads to a positive contribution to v⊥, i.e.,
pointing away from the initial state.

With these quadratic approximations to the energy surface,
the HTST expression for the rate constant becomes

kHTST =
∫

e− ∑D
j=2 εs,j q

2
s,j /2kBT

∑D
i=2 aiqidq2 . . . dqD∫

e− ∑D
j=1 εm,j q

2
m,j /2kBT dq1 . . . dqD

× Js

Jm

e−(Es−Em)/kBT , (6)

where Jβ ≡ J (θβ,φβ). The denominator is simply a product
of Gaussian integrals. The numerator is more complicated
because the integrals involved are carried out over the region
where v⊥ � 0, i.e., over the half-plane a2q2 + a3q3 + · · · +
aDqD � 0. After some algebra (which will be published
elsewhere) one obtains

kHTST = 1

2π

Js

Jm

√√√√ D∑
j=2

a2
j

εs,j

∏D
i=1

√
εm,i∏D

i=2
√

εs,i

e−(Es−Em)/kBT , (7)

which agrees with an Arrhenius expression with an activation
energy Ea = Es − Em and a temperature independent preex-
ponential, ν.

The theory presented here is classical and makes use of
harmonic approximations to the energy surface. An extension
to full transition-state theory involving statistical sampling
within the dividing surface as well as the inclusion of quantum
tunneling by use of Feynman path integrals, analogous to what
has been formulated for particle systems (see, for example,
Refs. 15 and 16), is an ongoing project.

III. APPLICATIONS

Below, this rate theory is applied to transitions in three
different systems. First, three spins are considered and HTST
results compared with direct simulations of the dynamics.
Then, the method is applied to a cluster of 139 Fe adatoms
on a W(110) surface. These first two systems are described
by a Heisenberg-type Hamiltonian. The third example is a
three atom Fe cluster on a substrate described by a Alexander-
Anderson Hamiltonian for itinerant electrons.
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The Heisenberg-type Hamiltonian can be written in a
general form:

E = −
∑

n

Kn

∑
i

(M i · en)2 − 1

2
J

∑
〈i,j〉

M i · Mj

−D
∑
i �=j

3(r ij · M i)(r ij · Mj ) − r2
ij (M i · Mj )

r5
ij

. (8)

The magnitude of the magnetic moments Mi is independent
of angles. The first term represents anisotropy, J denotes the
exchange coupling, D is dipolar coupling constant, and r ij

is the vector between sites i and j . Exchange interaction
is only between nearest neighbors (indicated by the angular
brackets).

The HTST rate constant estimate, Eq. (7), was tested by
comparing it with the rate of transitions observed in a direct
simulation of the dynamics of a multidimensional system
involving three spins which are coupled through the exchange
interaction. Parameters of the Hamiltonian [Eq. (8)] were
chosen to include easy-axis K⊥ and easy-plane K‖ anisotropies
which could result from the interaction with a substrate. As
a result, minima and saddle points are formed on the energy
surface. Parameter values and temperature were chosen so as to
make the transitions frequent enough to obtain good statistics
in dynamics simulations spanning a long time interval but
infrequent enough for the system to be able to thermalize at
the bath temperature in between transitions. The parameters
were M = 2.7μB , K⊥M2 = 5 meV, K‖M2 = −10 meV, and
JM2 = 15 meV. Two equivalent minima exist on the energy
surface: at θi = π/2 and φi = {π/2,3π/2}. There are two
equivalent saddle points between the minima: at θi = π/2
and φi = {0,π}. The activation energy was found to be Es −
Em = 15 meV. The dynamics of the spins were calculated
numerically from the Landau-Lifshitz-Gilbert equations where
dissipation and random force terms are included to couple
the spins to a thermal heat bath.17,18 Long simulations were
performed, spanning 10−5 s and 109 steps at a temperature
of 23 K. This gave satisfactory statistics in the counting of
transitions. The dynamical simulations were carried out for
various values of the damping constant, α, as shown in Fig. 1.
The agreement with the HTST estimate is good, within a factor
of 2, for a wide range in the damping constant. While the
parameters and temperature have been chosen here to make it
possible to obtain the transition rate from direct simulation of
the spin dynamics, the usefulness of the rate theory presented
here becomes clear when the temperature is lowered, the
activation energy barrier increased, and/or the number of spins
increased. Then, the direct calculation become difficult, or
even impossible, while the evaluation of the rate expression
remains relatively straightforward.

To demonstrate the methodology presented here on a more
challenging system, we applied it to a larger, rectangular island
of 139 Fe atoms (see Fig. 2). The parameters in Eq. (8)
were chosen to mimic roughly Fe on W(110) substrate:2,19

dipole-dipole interactions were included as well as anisotropy
in the [11̄0] direction (which is perpendicular to the long axis
of the cluster) resulting from the interaction with the sub-
strate. The parameter values were KM2 = 0.55 meV, JM2 =
12.8 meV,2 and D/J = 10−3.19 Two degenerate states with
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FIG. 2. Minimum energy path (solid line) for a magnetic transi-
tion in a rectangular shaped 139 Fe atom island on W(110) surface.
A relaxation starting from a straight line interpolation (dotted line)
representing a uniform rotation of the spins between spin up and spin
down states revealed an intermediate metastable state, as shown by
the insets. The discretization points used in the NEB calculation are
shown with filled circles but the minimum for the metastable state and
a saddle point obtained by subsequent optimization are marked with
X. Insets: noncollinear spin configurations at various points along the
path.

spins parallel to the anisotropy axis represent the most stable
states. A NEB calculation starting from a uniform rotation
revealed a more complicated transition mechanism involving
a metastable intermediate state, as shown in Fig. 2. The
metastable state can be seen as the emergence of a new domain,
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FIG. 3. Minimum energy path for a transition between a parallel
(P) and antiparallel (AP) state of a Fe trimer on a metal substrate
described with the Alexander-Anderson model. Spin configurations
corresponding to locations marked with X on the path are shown with
arrows denoting magnitude and direction of the magnetic moments.
The direction of spin 1 is taken to be fixed but the relative angles, θ2

and θ3, are variable. The energy is given in units of the d-level width,
�, due to s-d hybridization. Inset: energy surface showing minima
corresponding to P and AP states, and the calculated minimum energy
path for the transition. Saddle point (SP) is also shown.
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BESSARAB, UZDIN, AND JÓNSSON PHYSICAL REVIEW B 85, 184409 (2012)

but the cluster is too small for it to form fully. The activation
energy for transitions out of the metastable state is 14 meV
and the calculated preexponential, according to Eq. (7), is
ν = 7.4 × 1012 s−1. The lifetime of the intermediate state can
be estimated as τ (T ) = 1/kHTST.

Although the Landau-Lifshitz equation was first formulated
in order to describe the precessional motion of classical
magnetization, it has proven to be an equation of motion
also for quantum systems.13,20 This expands the range of
applicability of the rate theory presented here. We demonstrate
this on a triatomic Fe island described within the noncollinear
Alexander-Anderson model (see Ref. 21) which captures the
main features of magnetic ordering in 3d transition metal
clusters on a metal surface. In particular, several different
magnetic states close in energy have been found for supported
trimers of Fe, Cr, and Mn.21 The question is how large an
energy barrier separates these states and how long their lifetime
is at a given temperature. While a triatomic island is too small
to support long-lived metastable states, we use this as an
illustration of the methodology because the energy surface
can be visualized easily.

The implementation of the model within a mean field
approximation and the parameter values used here to represent
Fe trimer are given in Ref. 21. The interaction of d-electrons
with the itinerant s- and p-bands is included, but not spin-orbit
interaction so spin space and the real space are not connected.
There is no energy barrier to uniform rotation of magnetic

moments and only relative orientation of spins is relevant.
The quantization axis for the system is chosen to be along
the magnetic moment of one of the trimer atoms, atom 1. The
configuration is then specified by only four degrees of freedom.
There are two energy minima and both of them correspond
to in-plane orientation of the spins. The global minimum
represents a state with parallel (P) magnetic moments, but
a metastable state with antiparallel (AP) moments also exists.
Figure 3 shows a contour graph of the energy as a function
of two angles θ2 and θ3, while for all atoms we set φi = 0.
The minimum energy path between AP and P states turns out
to lie in-plane and is also shown in Fig. 3. The activation
energy for leaving the metastable state is Ea = ESP − EAP =
0.007�, where � is the width of the d-level due to s-d
hybridization.21 If � = 1 eV, the calculated preexponential
is ν = 2.4 × 1011 s−1. A study of the effect of island size and
shape on such metastable states and the rate of transitions
between the states is ongoing and the results will be presented
at a later time.
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