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Equation of state of two-dimensional 3He at zero temperature
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We have performed a quantum Monte Carlo study of a two-dimensional bulk sample of interacting 1/2-spin
structureless fermions, a model of 3He adsorbed on a variety of preplated graphite substrates. We have computed
the equation of state and the polarization energy using both the standard fixed-node approximate technique
with a simple backflow trial function and a formally exact methodology, relying on bosonic imaginary-time
correlation functions of operators suitably chosen in order to extract fermionic energies. As the density increases,
the fixed-node approximation predicts a transition to an itinerant ferromagnetic fluid, whereas the unbiased
methodology indicates that the paramagnetic fluid is the stable phase until crystallization takes place. We find
that two-dimensional 3He at zero temperature crystallizes from the paramagnetic fluid at a density of 0.061 Å−2

with a narrow coexistence region of 0.002 Å−2. Remarkably, the spin susceptibility turns out in very good
agreement with experiments.
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I. INTRODUCTION

A quasi-two-dimensional (2d) bulk 3He sample at zero
temperature is a very fascinating scenario to explore the
physics of strongly correlated fermions. The liquid phase can
be experimentally realized over a wide range of densities by
adsorbing 3He on a variety of preplated graphite substrates.1–3

Heat capacity and magnetization measurements show that
the system displays a nearly perfect Fermi liquid behavior,
with the effective mass m� and the enhancement of the
spin susceptibility χ/χ0 increasing with the density. These
observations, consistent with a divergence of m� near the
freezing density, have been interpreted3 as a signature of a Mott
transition leading to an insulating crystal. However theoretical
approaches4 suggest that the singularity of m� and freezing
could not have the same origin, and indeed the freezing density
(as well as the magnetic properties of the solid,5 and even
the presence of a possible intermediate phase of a uniform
gas of vacancies6) is influenced by the preplated substrate.
In order to characterize the sole effect of correlations, it
is therefore of particular interest to study the ideal, strictly
two-dimensional liquid on the verge of crystallization, in the
absence of any external potential. The measured properties
of the fluid phase, on the other hand, appear to be largely
independent of the substrate, so that they can be directly
compared to the calculated properties of the ideal model.7

From the theoretical side, such a system provides a severe
test case for microscopic calculations,8 because of the strong
correlations attained at high densities. We thus resort to
quantum Monte Carlo (QMC) simulation, a powerful tool
to study strongly interacting systems, and we calculate the
ground-state energy per particle E = E/N of the 2d 3He liquid
at zero temperature as a function of the number density ρ and
the spin polarization ζ .

The dependence of the energy on the spin polarization is
in general very weak in strongly correlated fluids.9–12 The
so-called fixed-node (FN) approximation,13 used in most QMC
calculations, has been argued to give a significant bias in the
polarization energy of three-dimensional liquid 3He10 at high
density.

We thus perform our study going also beyond the FN level,
following a formally exact method,12 slightly different from
the well known transient estimate (TE) technique.14 Briefly,
we perform simulations relying on the basic Hamiltonian in
an enlarged, unphysical space of states of any symmetry,
including those with Fermi and Bose statistics. The ground
state energy of the physical fermionic 3He is considered as
an excitation energy of the absolute bosonic ground state; it
is obtained by analytical continuation from imaginary-time
correlation functions of suitable antisymmetric operators on
the bosonic ground state, which in turn is sampled exactly
with QMC. The sign problem14 faced by the TE approach
is thus replaced by the (related) difficulties of the analytic
continuation.12 We will refer to this method as “fermionic cor-
relations” (FC). A mixed approach, devised to ease detection
of the asymptotic convergence of TE by a Bayesian analysis
of imaginary-time correlation functions, was proposed by
Caffarel and Ceperley.15

A previous FN QMC calculation of liquid 3He in two
dimensions exists,16 but it is limited to low densities and
only considers the paramagnetic fluid phase. In particular, the
accuracy of the FN approximation in the high density regime
is questionable.10

We find indeed that the FN level of the theory (using
trial functions similar to those employed in Ref. 16) and the
FC calculation predict a qualitatively different behavior: In
the FN approximation the system undergoes a ferromagnetic
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transition well before crystallization takes place upon increas-
ing the density, whereas in the FC calculation the polarization
of the fluid is preempted by freezing, as observed experimen-
tally. From the polarization energy E(ζ ) obtained by the FC
method we further find a spin susceptibility enhancement in
quantitative agreement with the available measurements.

II. QMC SIMULATION

We simulate N particles with the mass m3 of 3He atoms,
interacting with the accurate17 HFDHE2 pair potential18 in
periodic boundary conditions. The number of particles is either
18 or 26 for the FC method, 56 for the triangular solid, and
up to 74 for the FN calculations. The simulation box, of area
�, is a square of side L for the liquid phases; for the solid it
is a rectangle which accommodates a triangular lattice. The
Hamiltonian is

Ĥ = − h̄2

2m3

N∑
i=1

∇2
i +

N∑
i<j=1

v(�̂ri − �̂rj ). (1)

If the particles obey Bose statistics, projection QMC
methods19–21 provide unbiased estimates of the ground-state
energy and other physical observables. This is made possible
by the formal similarity between the Schrödinger equation
in imaginary time and the differential equation governing a
diffusion process in probability theory.

For fermions the wave functions are antisymmetric; an
interpretation in terms of the diffusion of a positive density
probability is still possible, but the sign resulting from the
antisymmetry of the wave function must be included in
the computed averages. This leads to the sign problem, an
exponential increase of the statistical uncertainties with the
number of particles and with the projection time.14

A. Fixed-node approach

The most commonly used approach in the QMC simulation
of fermions is the FN approximation,13 which stochastically
solves the imaginary-time Schrödinger equation subject to
the boundary conditions implied by the nodal structure of a
given trial function �T . This approach gives a rigorous upper
bound to the ground state energy, which often turns out to be
extremely accurate.

For a given spin polarization, i.e., considering N↑ spin-up
and N↓ = N − N↑ spin-down 3He atoms, �T is chosen of the
form

�T (R) = D(R↑)D(R↓)�J (R)χζ (2)

where R ≡ (�r1, . . . ,�rN ), R↑ ≡ (�r1, . . . ,�rN↑), R↓ ≡ (�rN↑+1,

. . . ,�rN ), and the whole dependence on the spin degrees of
freedom is contained in χζ , a spin eigenfunction for the given
polarization

ζ = N↑ − N↓
N

. (3)

The Jastrow factor,

�J (R) =
∏
i<j

exp

[
− 1

2
u(|�ri − �rj |)

]
, (4)

describes pair correlations arising from the interaction poten-
tial; we use a simple pseudopotential of the McMillan form
u(r) = (b/r)5. Finally, the simplest form of the antisymmetric
factors D(R↑,↓) is in the form of Slater determinants of plane
waves:

D(R↑,↓) = det({exp(i�ki · �rj )}i,j ). (5)

More accuracy in the FN results is achieved by also introducing
backflow correlations22 via quasiparticle vector positions:

D(R↑,↓) = det({exp(i�ki · �xj )}i,j )
(6)

�xj
def= �rj +

N∑
i �=j=1

η(|�rj − �ri |)(�rj − �ri).

Following Ref. 16, for the backflow correlation function η(r)
we adopt the simple form:

η(r) = Ae−B(r−C)2
. (7)

We will refer to the two choices respectively as plane waves
fixed node (PW-FN) and backflow fixed node (BF-FN). For
each density, the variational parameters b, A, B, and C are
optimized using correlated sampling23,24 at ζ = 0 and left
unchanged at different polarizations. We have not investigated
the performance of more sophisticated functional forms10

of backflow correlations in two-dimensional liquid 3He. All
BF-FN results reported here, as well as all comments on their
accuracy, refer to the choice of (6) and (7).

Part of the bias related to the finite size of the simulated
system arises from shell effects in the filling of single-particle
orbitals.25 This bias can be substantially reduced adopting
twisted boundary conditions,25 i.e., choosing �k appearing in
(5) and (6) inside the set:

�k�n = 2π �n + �θ
L

(8)

where �n is an integer vector, L is the side of the simulation
box �, and �θ is a twist parameter θi ∈ [0,π ] which, at the end
of the calculations, is averaged over.

In the solid phase, quantum exchanges are strongly sup-
pressed and the energy difference between a fermionic and a
bosonic crystal is negligibly small for the purpose of locating
the liquid-solid transition. We will therefore replace the energy
of 3He with that of a fictitious bosonic Helium of mass m3,
which can be calculated exactly.20,21,26 The small error incurred
by such replacement is bound by the difference between the
fermionic FN energy and the unbiased bosonic energy. This
difference, calculated27 as a check at the melting density where
it is expected to be largest, is indeed in the sub-milliKelvin
range.

B. Fermionic correlations approach

For the fluid phases the FN approximation may not be accu-
rate enough, particularly at high density where correlations are
stronger and the energy balance between different polarization
states is more delicate. Indeed, a FN study of three-dimensional
3He, despite the use of sophisticated backflow correlations,
strongly suggests that this is the case.10 We thus perform
calculations beyond the FN approximation, using a technique12

which is in principle exact, albeit practically limited to
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moderate system sizes. The idea, in part related to the TE
method,14,15 is that of formally viewing (1) as an operator
acting inside the Hilbert space H(N ) ≡ [L2(�)]⊗N , that is
forgetting spin and statistics: One can use quantum Monte
Carlo to sample the lowest-energy eigenfuction ψ0(R) of Ĥ

among the states of any symmetry. It is known28 that ψ0 must
share the Bose symmetry of the Hamiltonian, so that

EB
0 ≡ 〈ψ0|Ĥψ0〉H(N)

〈ψ0|ψ0〉H(N)
(9)

is the ground state energy of a fictitious system of N bosons
of mass m3 interacting via the potential v(r).

The bridge that gives access to fermionic energies may be
built up as follows: Let us fix a spin polarization which is
surely a good quantum number since the basic Hamiltonian
is spin independent. As discussed in Ref. 12, we define an
operator ÂF such that, inside H(N ),

ψF (R) = (ÂF ψ0)(R) (10)

has nonzero overlap with the configurational part of the exact
fermionic ground state of Ĥ for the given ζ , and we define the
imaginary-time correlation function

CF (τ ) ≡ 〈ψ0|(eτĤ Â†
F e−τĤ )ÂF ψ0〉H(N)

〈ψ0|ψ0〉H(N)
, τ � 0, (11)

which can be straightforwardly evaluated in a bosonic QMC
simulation. In this work we have used the reptation QMC21

and the shadow path integral ground state19,26 methods. By
formally expressing (11) on the basis {ψn}n�0 of eigenvectors
of Ĥ corresponding to the eigenvalues {En}n�0, we have

CF (τ ) =
+∞∑
n=0

e−τ (En−EB
0 ) |〈ÂF ψ0|ψn〉H(N)|2

〈ψ0|ψ0〉H(N)
. (12)

By symmetry, the matrix element 〈ÂF ψ0|ψn〉H(N) selects in
the summation of (12) only fermionic states, and among
the fermionic states only those with specified values of
conserved quantities (e.g., the total momentum) as implied
by the definition of ÂF . The lowest energy contribution in
CF (τ ) provides the exact gap between the fermionic and the
bosonic ground states. A quite natural choice12 is to define ÂF

borrowing suggestions from the form of the trial wave function
for the FN calculation, i.e.,

(ÂF ψ0)(R)
def= D(R↑)D(R↓)ψ0(R), (13)

where we can choose either the definition (5) of D or the
definition (6). We will refer to such choices simply as the
plane waves fermionic correlations (PW-FC) and the backflow
fermionic correlations (BF-FC). Naturally the final results
for the Bose-Fermi gap should coincide within statistical
uncertainties, and the actual comparison can be a good test for
the robustness of the approach. We remark that the FC method
is suited to calculate energies (and maybe their derivatives),
but not other quantities.

III. ANALYTIC CONTINUATION

Once we have achieved a QMC evaluation of CF (τ ), the
information about the Bose-Fermi gap 
BF = E0 − EB

0 is
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FIG. 1. (Color online) Upper panel: Imaginary time correlation
functions, CF (τ ), corresponding to the two different choices of the
operator in (13). Lower panel: Reconstructed spectral functions sF (ω)
obtained with the GIFT method.

contained in the resulting correlation functions. The results
for CF (τ ) appear as simple smooth decreasing functions,
whose values can be evaluated only in correspondence with a
finite number of imaginary-time values, say {τ0,τ1,τ2,...,τl};
moreover the data are perturbed by unavoidable statistical
uncertainties. The Bose-Fermi gap 
BF is thus hidden inside
the sets of limited and noisy data. How can we extract it?
In the upper panel of Fig. 1 we show two imaginary time
correlation functions CF (τ ), respectively a PW-FC and a
BF-FC, corresponding to the same spin polarization and twist
parameter. The long-τ tails of the two curves tend toward a
linear behavior (in logarithmic scale) with the same slope.
This feature, common to all the correlation functions we
have evaluated, indicates that the fermionic spectrum has
a significant gap, i.e., the lowest-energy term exp(−
BF τ )
in the correlation function (12) appears to be quite well
resolved with respect to contributions from higher fermionic
energies. The presence of a gap in the spectrum of liquid
3He is due to the finite number of particles in the simulation
(as well as to selection rules, whereby contributions to a
particular correlation function only come from states with a
given total momentum). Upon increasing the system size the
fermionic gap per particle in the spectrum decreases, while
the Bose-Fermi gap per particle stays constant, and this will
prevent the analytic continuation from resolving the former.
Thus we see that the conditions where the CF method is
viable are analogous to those where TE converges.14 A direct
comparison of the relative efficiency of the FC and TE methods
is presently lacking.

The difference between the two curves of Fig. 1, upper
panel (in particular the rigid shift between their asymptotic
tails) arises from the spectral weight of the ground state
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contribution, which is higher when backflow correlations are
taken into account, as expected. In this favorable situation, the
Bose-Fermi gap can be reliably extracted by simply fitting an
exponential to the long-time tail of the correlation function.

This key result is strongly supported by a more sophisticated
approach, which evaluates 
BF by performing the full Laplace
transform inversion of CF (τ ), i.e., solving

CF (τ ) =
∫ +∞

0
dωe−τωsF (ω), (14)

for the unknown spectral function sF (ω). Recently a new
method, the genetic inversion via falsification of theories
(GIFT) method,29 has been developed to face general inverse
problems, and in particular it has allowed us to reconstruct
the excitation spectrum of superfluid 4He starting from
QMC evaluations of the intermediate scattering function in
imaginary time;29 the results were in close agreement with
experimental data.29 Moreover the method has allowed us to
also extract multiphonon energies with a good accuracy level.
When applied to the two curves depicted in the upper panel
of Fig. 1, we find the two spectral functions in the lower
panel of Fig. 1; it is apparent that the lowest-ω peak is indeed
well resolved from higher-energy contributions. Crucially, its
position does not depend on the actual choice of the operator
ÂF , and it is in excellent agreement with the smallest decay
constant found by the simple exponential fit. The spectral
weight instead is different, consistent with the differences
between PW-FC and BF-FC.

In this work we adopt an implementation of the inversion via
falsification of theories, detailed in the Appendix, which avoids
the rather CPU-intensive genetic algorithms.30 This is crucial
in the present study, which involves an extremely large number
of reconstructed spectra. Indeed, a single QMC simulation
for a given density produces correlation functions pertaining
to PW or BF operators, several spin polarizations, and 15
twist parameters in the irreducible wedge of the Brillouin
zone of the simulation cell; on top of this, data are collected

TABLE I. Ground state energy per particle of 3He in K. For the
fluid phases the energy is calculated by the FC method using N = 26
particles (except N = 18 for the lowest density, ρ = 0.020). For the
solid phase the energy is assumed to equal the bosonic energy, and
the number of particles is N = 56.

Density Liquid ζ = 0 Liquid ζ = 1 Solid

0.020 0.1707(18) 0.3218(25)
0.045 0.8168(86) 0.9075(86)
0.050 1.1500(81) 1.2123(88)
0.055 1.5972(93) 1.6574(91)
0.060 2.2069(68) 2.2493(54) 2.2506(54)
0.065 3.0065(73) 3.0359(45) 2.9195(26)
0.070 4.0644(33) 4.0915(34) 3.7878(35)
0.075 4.8728(44)
0.080 6.2445(35)
0.085 7.9589(39)
0.090 10.0661(46)
0.095 12.6739(39)
0.100 15.8536(45)

TABLE II. The equations of state of 3He for the paramagnetic
fluid and the solid (solid lines in Fig. 2) are of the form α1ρ + α2ρ

2 +
α3ρ

3 + α4ρ
4 + α5ρ

5. This Table lists the values of the parameters
αi , with lengths in Å.

Liquid Solid

α1 21.23782 57.35474
α2 −1344.413 −2598.784
α3 45 093.37 58 695.29
α4 −569 306.0 −532 201.7
α5 4 383 507 3 063 129

in several blocks, individually processed to obtain statistical
uncertainties on the position of the lowest-energy peak.

IV. RESULTS

We fit a fifth order polynomial to the density dependence of
the energies of the triangular crystal and of the paramagnetic
and the ferromagnetic fluids, listed in Table I. The best fit
parameters are shown in Table II. Our FC results for the fluid
phases are based on simulations of 26 particles (18 particles
for the lowest density). From FN calculations with up to 74
particles we estimate that the finite size error on the energy per
particle incurred with N = 26 increases with density, reaching
values of the order of 0.01 K at freezing for N = 26. Such a
bias does not significantly affect our main results.

The resulting equation of state of two-dimensional 3He
is shown in Fig. 2. With the FC method, we find a
transition between the paramagnetic fluid and the triangular
crystal at ρ = 0.0609(1) Å−2, with a narrow coexistence of
0.0020(1) Å−2, while the ferromagnetic fluid is never stable
(see Table I). In the experimental samples, crystallization is
influenced by the substrate. Liquid-solid coexistence has been
observed in the density range 0.051–0.054 for 3He adsorbed
on graphite preplated by a double HD layer3, and in the range
0.055–0.064 for the second 3He layer on bare graphite.31

On the other hand, for a given density, the properties of the
fluid phase do not depend significantly on the strength of the
adsorption potential.2 In the ideal strictly two-dimensional
model, therefore, the liquid phase reaches higher densities

 0

 1

 2

 3

 4
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3He, this work
3He, Ref. 16
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FIG. 2. Equation of state of 3He in two dimensions. Solid line
(broken across the coexistence region): liquid and solid 3He; dashed
line: mass-3 boson fluid; dotted line: liquid 3He, after Ref. 16. The
latter is only reliable at low densities.
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FIG. 3. (Color online) Bose-Fermi gap in the energy per particle,

BF /N , as a function of the spin polarization, ζ , evaluated via PW-
FN, BF-FN, and BF-FC. Upper panel, ρ = 0.020 Å−2 and N = 18;
middle panel, ρ = 0.045 and N = 18; lower panel, ρ = 0.070 Å−2

and N = 26. The statistical uncertainties are below the symbols size.

in the strongly interacting regime, but it is still a realistic
description of the real system at the densities experimentally
attained in the homogeneous fluid phase. Figure 2 also
shows the energy of the bosonic mass-3 liquid. This fictitious
system, simulated to extract the PW-FC and BF-FC energies,
crystallizes at ρ = 0.069 Å−2. The freezing density of 3He
is considerably higher than the highest density simulated
in Ref. 16. Correspondingly, the equation of state given in
Ref. 16 is only reliable at relatively low density. In particular,
while it is only slightly below our results for ρ � 0.045 Å−2
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FIG. 4. FC versus FN equation of state. Thick solid line (broken
across the coexistence region): paramagnetic liquid and solid 3He
(FC); dashed line: paramagnetic liquid (FN); dotted line: ferromag-
netic liquid (FN); the dashed and dotted lines terminate at the FN
freezing density; thin solid line: energy of the solid, down to the FN
melting density. For each density, the energy is relative to the energy
EB of the mass-3 boson fluid.
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FIG. 5. (Color online) Fixed-node results for the polarization
energy E(ζ ) − Efit(0) relative to the Fermi energy EF at ρ = 0.020,
0.045, 0.050, 0.055, 0.060, 0.065, 0.070 Å−2 from top to bottom
(respectively, open triangles, open squares, filled squares, open
diamonds, filled diamonds, open circles, filled circles). The function
Efit(ζ ) is a quadratic polynomial in ζ 2 fitted to the simulation data;
the solid line is the density-independent result for noninteracting
particles.

as a consequence of the difference of interparticle potential
adopted,32 it becomes (unphysically) even lower than the
bosonic equation of state near the melting density, by an
amount far larger than what could be due to the potential.

The treatment of the spin polarization state requires a
special care.9–12 In contrast to Ref. 16, we find that the
BF-FN energy can be significantly higher than the FC energy.
Starting from negligible values at low density, the BF-FN error
quickly increases approaching the strongly correlated regime.
As expected,10 it is larger for the paramagnetic than for the
ferromagnetic fluid. These findings are exemplified in Fig. 3.
The inadequacy of the BF-FN is striking in the phase diagram:
Figure 4 shows that BF-FN incorrectly predicts a transition to
a ferromagnetic fluid well before crystallization takes place.
Such a transition is also evident from Fig. 5, which shows
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FIG. 6. (Color online) FC results for the polarization energy
E(ζ ) − Efit(0) relative to the Fermi energy EF at ρ = 0.020, 0.045,
0.050, 0.055, 0.060, 0.065, 0.070 Å−2 in order of decreasing
dispersion (respectively, open triangles, open squares, filled squares,
open diamonds, filled diamonds, open circles, filled circles). The
function Efit(ζ ) is a quadratic polynomial in ζ 2 fitted to the simulation
data; the solid line is the density-independent result for noninteracting
particles.
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FIG. 7. Enhancement of the spin susceptibility as a function of
the density: (filled circles) as measured in the second layer of 3He on
graphite2; (open circles) as calculated assuming a quadratic dispersion
over the whole polarization range in Fig. 6. The corresponding Fixed-
node result from Fig. 5 would diverge at ρ 
 0.050 Å−2.

the BF-FN results for the polarization energy E(ζ ) at various
densities. The FC results, shown in Fig. 6, display instead a
paramagnetic behavior even in a metastable fluid phase well
beyond the freezing density.

From the FC polarization energy E(ζ ) we can estimate the
spin susceptibility enhancement χ/χ0. Assuming a quadratic
dependence over the whole polarization range, which is
generally consistent with the data of Fig. 6, we find an excellent
agreement with the measured susceptibility. Figure 7 shows the
comparison between the calculated χ/χ0 and the experimental
data. We display only the values measured in the second
layer of 3He on graphite2 since they extend to the highest
density in the fluid phase, but experiments carried on with
differently preplated substrates lead to equivalent results in
their respective density ranges. The agreement among the
results obtained using different substrates induces us to expect
that our ideal model actually captures the physical mechanisms
underlying the behavior of χ/χ0.

V. CONCLUSIONS

We have calculated the equation of state and the polarization
energy of 3He in two dimensions by means of the FC method.12

The system crystallizes into a triangular lattice from the
paramagnetic fluid at a density of 0.061 Å−2, with a narrow
coexistence region of 0.002 Å−2; the ferromagnetic fluid is
never stable. From the polarization energy we obtain a spin
susceptibility enhancement in excellent agreement with the
experimental values. The usefulness of the FC approach is
witnessed by the failure of the FN approximation with simple
backflow correlations to predict the lack of a polarization
transition experimentally observed in the fluid phase, let alone
an accurate value for the spin susceptibility.

The FC correlation technique is in principle unbiased, but
the estimation of the Bose-Fermi gap requires the inversion of
the Laplace transform in the presence of a limited set of noisy
data, which is in general an ill-posed problem. This poses
limitations on the system sizes that can be studied. For the
present FC results (in most cases obtained with 26 particles)
we found empirical support, based on the agreement between
different inversion procedures, that the obtained correlation

functions can be safely inverted obtaining robust results. While
the size effect remains the main source of uncertainty of
the present calculation, the agreement of the calculated and
measured spin susceptibility suggests that finite-size errors
are relatively small.
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APPENDIX: GIFT ALGORITHM VARIANT

The inversion procedure that has been employed in this
work is a variant of the GIFT algorithm.29 This new algorithm
puts together the idea of the falsification principle29 and a mod-
ified implementation of the Prony’s method,33 a noniterative
parametric technique for modeling using a linear combination
of exponential functions. Starting from the basic relation in
(12), which has the general form

f (τ ) =
∞∑
i=0

sie
−ωiτ , (A1)

provided that we are allowed to truncate the previous series,∑∞
i=0 �

∑n−1
i=0 , the Prony’s method is computationally very

efficient (it runs in polynomial time) in deducing the coeffi-
cients {si}n−1

i=0 and {ωi}n−1
i=0 from a limited set of estimations,

f (kδτ ) = f ∗
k at k = 0,1, . . . ,2n − 1 of f (τ ), being δτ the

time step of the QMC simulation. The main steps of this
algorithm are the following:

(1) solve the regularized linear system

Ka = b (A2)

defined by the Henkel matrix Kij = f ∗
i+j and by the coeffi-

cients bi = f ∗
n+i (i,j < n),

(2) find the roots {zi}n−1
i=0 of the polynomial

zn + an−1z
n−1 + · · · + a1z + a0 (A3)

as eigenvalues of its respective companion matrix and obtain
ωi = − 1

δτ
ln zi ,

(3) solve the regularized linear system

As = c (A4)

defined by the Vandermonde matrix Aij = zi
j and by the

coefficients ci = f ∗
i (i,j < n).

The transition from a nonlinear problem to two linear prob-
lems and one eigenvalues problem is the main characteristic of
this algorithm; from a mathematical and computational point
of view this is an advantage. Of course, the ill-posedness of
this problem remains (our implementation uses the truncated
singular value decomposition regularization) and some care
is necessary to deal with instability against noise.34 Such
method fits the general scheme of the GIFT approach,29

providing a very efficient alternative to genetic algorithms in
the implementation of the falsification principle (when dealing
with Laplace transform inversion).
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