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Electrical and thermal conductivity of Al liquid at high pressures and temperatures
from ab initio computations
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We performed first-principles calculations to obtain values of electrical (σ ) and thermal conductivity (κ)
for compressed aluminum liquid at temperatures and pressures up to 8000 K and 110 GPa. To do this we
apply the Kubo-Greenwood formula via density functional perturbation theory to phase trajectories generated
using first-principles molecular dynamics. Our results are consistent with measurements at low pressures, and
indicate that electronic transport coefficients σ and κ increase under compression; with increasing temperature
σ decreases and κ increases. Behavior in response to compression and heating are explained in terms of changes
in occupation of conduction bands by thermally excited electrons. Based on the frequency dependence of σ ,
we further show that liquid aluminum is well described by the Drude picture over a wide range of conditions,
confirming its free-electron nature. At high P and T , our computed σ and κ yield Lorenz numbers up to 7%
lower than the theoretical value, indicating that the Wiedemann-Franz law remains approximately satisfied at
extreme conditions. Using an electronically simple metal such as liquid Al as a guide to the behavior of more
complex metals, we infer that present extrapolation-based estimates of σ and κ for the Earth’s outer core may be
3–4 times too low.
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I. INTRODUCTION

The electronic transport properties of liquid metals at
high pressures are crucial to understanding the processes
associated with the formation and evolution of planetary cores.
Differentiated terrestrial planets such as Earth contain metallic
cores with iron as the primary element,1,2 while interiors of
the gas giants comprise cores which consist of hydrogen in the
metallic state.3,4 The electronic transport properties of liquid
metals at extreme pressures and temperatures consequently
control the generation of planetary magnetic fields by vigorous
magnetohydrodynamic convection.4,5

Unfortunately, our current understanding of the high pres-
sure behavior of σ and κ in liquid metals is based entirely
on extrapolation of low pressure data and studies of solid
metals.6–9 No experimental data of electrical (σ ) and thermal
conductivity (κ) for metallic liquids at high pressures are
available. Due to extreme technological challenges, exper-
imental conductivity measurements are not yet feasible to
perform. Current estimates of electronic transport properties
in the Earth’s core are based on extrapolations10,11 of electrical
conductivities obtained through shock-wave experiments,7,12

which exhibit large uncertainties and describe the behavior
solely along the Hugoniot in the phase stability region of solid
Fe. Values of κ used in current thermal models for terrestrial
planetary cores13,14 are derived from extrapolations10,11 of σ

measurements via the Wiedemann-Franz law

κ

σ
= LT, (1)

where the Lorenz number L is theoretically expected to be
2.44 × 10−8 W � K−2 (e.g., Ref. 15). The Wiedemann-Franz
law is strictly valid for σ and κ that represent coefficients of
linear response to applied time-invariant electrical field and
thermal gradient.

First-principles calculations provide a direct and indepen-
dent route to values of electrical and thermal conductivity,

equally robust at ambient and extreme pressure conditions.
Recent theoretical studies16–23 of σ and κ employed the
Kubo-Greenwood equations24 within the framework of density
functional theory (DFT),25,26 closely reproducing the experi-
mental data for liquids and plasmas of different metals.

In the current study, we apply this method to compressed
liquid Al. Electronic transport properties of this material at low
temperatures and/or low densities17–19,22,27,28 have been widely
studied using both theory as well as experiments, but the
behavior of Al liquid under compression remains unexplored.

Al was chosen, since it is known to be well described
by DFT (e.g., Refs. 29 and 30), and low pressure σ and
κ obtained by the Kubo-Greenwood equation show good
agreement with experiments.17–19,22 Al is a simple metal
with low number of valence electrons and free-electron-like
behavior with low dispersion of electronic bands.28 It is thus
possible to compute the electronic transport properties with
much less computational effort than, e.g., for Fe. Finally, we
use our results to test the assumptions and scaling relations
upon which existing estimates of σ and κ for the Earth’s liquid
outer core are based.

II. THEORETICAL BACKGROUND

Electrical and thermal conductivity represent a linear
response of the system to applied electrical field and thermal
gradient. If both of the external fields are applied simulta-
neously, the response is described by the Onsager kinetic
coefficients matrix Lij (Ref. 31),

�jel = L11 �E + L12 �∇T , (2)

�jq = L21 �E + L22 �∇T , (3)

with electrical and thermal current densities �jel and �jq ,
respectively. The electronic transport properties then follow
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as

σ = L11 (4)

and

κ = 1

e2T

(
L22 − L2

12

L11

)
, (5)

with elementary charge e.
For external fields varying with frequency ω we can employ

the Kubo formalism and write the Onsager kinetic coefficients
as22,32

Lij (ω) = (−1)i+j h̄e2

Vcell

∑
k′,k

F(εk,εk′)δ(εk − εk′ − h̄ω)

×〈ψk|v̂|ψk′ 〉〈ψk′ |v̂|ψk〉(εk − μe)i−1(εk′ − μe)j−1,

(6)

with reduced Planck’s constant h̄, volume of the cell Vcell, εk

the energy of eigenstate k, velocity operator v̂ acting on the
wave function ψk , the electronic chemical potential μe, and
F(εk,εk′) = f (εk) − f (εk′) with the Fermi function f .

Through calculations using the Abinit software package33

we access the Kohn-Sham wave functions, their energy
eigenstates, and the electron velocities, calculated as the
Brillouin zone gradient of the Hamiltonian ∂Ĥ/∂k using
density functional perturbation theory. These quantities were
subsequently employed for evaluation of Eq. (6) using the Con-
ducti module.22 The electronic density was computed using
pseudopotentials with the generalized gradient approximation
for exchange and correlation (PBE34). A 400 eV energy cutoff
for the plane wave expansion was applied, and reciprocal
space was sampled by a 2 × 2 × 2 Monkhorst-Pack grid35 of
k points. We included in the calculations states at least to 6 eV
above the Fermi energy. In this numerical implementation,
the electronic eigenstates in Eq. (6) are convolved with a
Gaussian of width 
/

√
2. The coefficients Lij are evaluated

at frequencies h̄ω that correspond to integer multiples of 
.
Curves of σ (ω) and κ(ω) were found to be well characterized
by 
 = 0.2 eV. Lower values of the smearing factor result
in strongly varying values of σ (ω) and κ(ω) due to limited
number of energy eigenvalues εk; larger values of 
 do not
fully capture the behavior of the electronic transport properties
with frequency.

The computations of the electronic transport properties
were performed for configurations obtained from phase tra-
jectories generated using first-principles molecular dynamics
simulations (FPMD) in the NV T ensemble. Cubic cells
corresponding to five volumes between 0.6 and 1.0 Vexp were
chosen, where Vexp = 11.48 cm3 mol−1 is the volume of liquid
Al at the ambient melting temperature.36 Mean simulation
temperatures were maintained via a Nosé thermostat,37 with
values of 2000, 3000, 4000, 6000, and 8000 K. Simulations
span at least 20 ps, with a time step of 2 fs. For each system
at P -T conditions above the theoretical melting curve29 of
Al, 10 uncorrelated atomic configurations were taken from the
simulation trajectory to compute Lij .

For the FPMD simulations we employed the Vienna Ab-
initio Simulation Package (VASP).38 The electronic density at
each simulation time step was calculated using the projector
augmented wave formalism (PAW)39 with the generalized
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FIG. 1. (Color online) Frequency-dependent electrical conduc-
tivity σ (ω) obtained using a 160 atom supercell (filled circles) and a
64 atom supercell (open circles) for a volume of 0.6 Vexp at 4000 K.
The dashed line represents a fit obtained through the Drude formula
[Eq. (7)]. Each point represents a mean value over sampled con-
figurations for the respective systems. Variations of the calculated
values of σ (ω) among different configurations result in large standard
deviations (represented by error bars) for cells containing 64 atoms;
for 160 atoms simulation cells the error bars are smaller than the
symbol size.

gradient approximation for exchange and correlation (PBE)34

using a 300 eV energy basis set cutoff. Reciprocal space
sampling in the FPMD simulations was restricted to the
Brillouin zone center.

III. RESULTS

Zero-frequency values of σ (ω) and κ(ω) are obtained by
extrapolation using the Drude formula15

Re[σ (ω)] = σ0

1 + (ωτ )2
. (7)

with effective relaxation time τ , and σ0 denoting the value in
the dc limit. An analogous expression holds for the thermal
conductivity.15

Monotonically decreasing curves with small uncertainties
of σ (ω) are obtained for simulation cells containing 160
atoms (Fig. 1). Test simulations with 192 atoms at different
volumes and temperatures indicate that σ0 and κ0 are converged
to within the uncertainty quoted in Table I, reflecting the
statistical sampling of the MD simulations. Similarly, using a
denser k-point mesh (4 × 4 × 4) yields values for the transport
properties within the quoted uncertainty.

The zero-frequency values of thermal and electrical con-
ductivity obtained through Eq. (7) are listed in Table I, and the
comparison with experimental data and previous calculations
shown in Fig. 2. We see that values for σ0 and κ0 increase
similarly under compression for all volumes investigated, but
they show distinct temperature dependences: σ0 decreases with
temperature while κ0 exhibits an opposite trend.

In the Drude picture, the response to an applied electrical
field is assumed to be mediated by valence electrons exclu-
sively, i.e., the number of valence electrons should be equal to
the number of conduction electrons Neff given as

Neff = mσ0

e2τ
. (8)

By using the fitted τ and σ0 values from Eq. (7), we extract the
effective number of conduction electrons for each V,T point.
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TABLE I. Zero-frequency limits of the electrical and thermal
conductivities for liquid Al calculated using 160 atom supercells.
Numbers in brackets give the uncertainties in σ0 and κ0 due to the
statistical sampling of 10 MD snapshots.

1.0 0.9 0.8 0.7 0.6

V [Vexp] σ0[(μ� cm)−1]

2000 K 320 (10) 360 (11) 382 (9) – –
3000 K 280 (10) 322 (8) 350 (15) 370 (16) –
4000 K 270 (11) 312 (8) 343 (7) 369 (9) 382 (4)
6000 K 240 (16) 273 (7) 311 (5) 341 (9) 361 (7)
8000 K 222 (7) 253 (9) 287 (7) 315 (8) 338 (5)

κ0[W m−1 K−1]
2000 K 164 (5) 191 (5) 213 (4) – –
3000 K 200 (9) 236 (7) 260 (11) 280 (15) –
4000 K 250 (10) 302 (8) 335 (8) 363 (9) 373 (4)
6000 K 350 (20) 398 (9) 449 (7) 486 (14) 507 (9)
8000 K 430 (10) 490 (17) 560 (13) 610 (15) 640 (10)

Neff was found to be 2.8 ± 0.2 electrons for all conditions
investigated.

Integrating σ (ω) in Eq. (7) over frequency leads to the sum
rule

S = 2mVatom

πNe2

∫ ∞

0
σ (ω)dω, (9)

where N is the number of valence electrons and Vatom the cell
volume per atom. For a fully free-electron metal, i.e., N = 3
in the case of Al, S = 1; as we find Neff = 2.8 ± 0.2, S will be
constrained to be smaller than the ratio of these two numbers
(0.93). We find S = 0.87 ± 0.01 for the simulations with
160 atom cells, and increasing the system size to 192 atoms
does not change the result. This compares very favorably to

results by Pozzo et al.23 on liquid Na, where S is approximately
0.9 for even a larger number of atoms in the simulation cell.

IV. DISCUSSION

Our results indicate that the Drude picture provides a
satisfactory description of electrical conductivity of liquid Al
at conditions investigated. This is consistent with the work of
Recoules et al.,20 in which the σ (ω) curves provide Neff slightly
smaller than 3, and validates the assumption of Mostovych
and Chan28 for the extrapolation of conductivity data for Al
plasma measured over a very limited frequency range to zero
frequency.

The free-electron-like behavior is in contrast to the analysis
of Knider et al.,19 in which they claim that there is a significant
contribution of electron transitions between eigenstates to
electrical conductivity even at very low frequencies and that
the Drude contribution is less than 0.1 of σ0.

Despite the discrepancy in terms of the free-electron
contribution between our computations and those of Knider
et al.,19 results for σ0 are consistent between their and our
work (Fig. 2), as well as with experimental data.27 Comparison
to experimental measurements of σ0 and κ0 in Al liquid are
indirect,27,40 as they are conducted at lower temperatures than
those investigated in the current study.

Computations of Recoules and Crocombette22 for a volume
of 11.48 cm3 mol−1 at various temperatures agree reasonably
with ours, with the small discrepancies likely stemming from
their use of smaller supercells, which results in higher values
of σ0 and larger uncertainties (Fig. 1). A similar discrepancy
is observed for their value of κ0, again likely arising due to
their smaller simulation cell. The values of Recoules and
Crocombette22 are thus not converged with respect to the
number of atoms in the simulation cell.
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FIG. 2. (Color online) Results of this study at different temperatures and simulation cell volumes in units of cm3 mol−1 (indicated by
different colors and symbols). Dashed lines denote the empirical model described in Appendix A. Experimental data of Gathers27 (G, triangle
down), Touloukian40 (T, pentagon), and calculations by Recoules and Crocombette22 (RC, triangle up), Knider et al.19 (K, diamond), with
temperatures and volumes (in units of cm3 mol−1) shown by black symbols for comparison.
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FIG. 3. (Color online) Calculated Lorenz number dependence on
temperature and pressure is shown in comparison with the theoretical
calculations by Recoules and Crocombette22 (RC) at temperatures
1000, 1900, 4000, and 7750 K from lower to higher pressures.

In the zero-frequency limit we can translate the δ function
in Eq. (6) into a simple derivative of the Fermi function
with respect to electron scattering energy ε′ = hω. We can
thus write σ0 ∝ ∂f/∂ε′. The decrease of σ0 with T can
therefore be attributed to temperature broadening of the Fermi
function. Similar behavior is observed under decompression
for both σ0 and κ0 due to charge localization and thus lower
total ∂f/∂ε′. Conversely, the increase of thermal conductivity
with T is governed by thermal excitation of electrons, i.e.,
the last two terms in Eq. (6) prevail over the temperature
broadening of the Fermi function and lead to the increase of κ0

with T .
Lorenz numbers determined from our first-principles results

[Eq. (1)] illustrate that the Wiedemann-Franz law holds
approximately at high temperatures, but is violated for temper-
atures below 3000 K (Fig. 3). Deviation from the Wiedemann-
Franz law is attributed to nonelastic scattering of electrons,
indicating that the electric and thermal currents are not affected
by scattering in the same way.15 The Wiedemann-Franz law
generally holds at conditions at which electron scattering
energy |εk − εk′ | 
 kBT , i.e., when the energy change due
to scattering is effectively very small compared to the energy
of the system. As the temperature decreases, this is no longer
satisfied and we observe that L deviates from its theoretical
value. We note that available data at ambient conditions for a
diverse selection of metals show values ranging between 2.1
and 2.9 rather than a single number.15 Our computed Lorenz
numbers are therefore not unusual in their deviation from the
theoretical value.

Using an empirical model for the V,T dependence of σ0

and κ0 (see Appendix A), together with a thermodynamic
model for liquid Al constructed from our FPMD results (see
Appendix B), we model the electronic transport properties
along the theoretical melting curve of Al (Ref. 29). In Fig. 4
we show that electrical conductivity varies insignificantly,
whereas thermal conductivity increases notably.

Since the electrical conductivity stays approximately con-
stant, the Wiedemann-Franz law [Eq. (1)] dictates that the
thermal conductivity is linearly proportional to temperature
T . In other words, the change of thermal conductivity along
the melting curve should be equal to the Clapeyron slope
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FIG. 4. (Color online) Electrical conductivity (top) and thermal
conductivity (bottom) calculated for aluminum liquid for P,T

conditions along the theoretical Al melting curve by Vočadlo and
Alfè.29

of melting, i.e., (∂κ/∂P )Tm = dTm/dP . Therefore, in metals
with strongly pressure dependent melting Clapeyron slopes,
especially those showing maxima on the melting curves
(e.g., Na, Pu—Ref. 41), the simple Lindemann-like scaling
assumption that σ0 is constant along the melting curve will
most likely break down.

V. PLANETARY IMPLICATIONS

The current thermal models for terrestrial planetary
cores10,11,13,14 extrapolate the experimental values of electrical
conductivity for Fe to the P,T conditions characteristic of
planetary cores (for Earth’s outer core: 3500–4500 K, 136
GPa at the core-mantle boundary and 5000–6000 K, 330 GPa
at the inner core boundary13,14,42,43). This extrapolation was
based on the following set of assumptions:10,11 (a) electrical
conductivity is inversely proportional to temperature, i.e.,
σ0 ∝ 1/T ; (b) electrical conductivity is constant along the
melting curve of the metal; (c) the Wiedemann-Franz law can
be used for calculation of κ0 from σ0.

These assumptions remain untested in liquid metals at high
P and T . Based on the premise that if an assumption fails
for a simple metal liquid, it is unlikely to hold for a more
complex transition metal or alloy, we investigate the validity
of the above three assumptions for liquid Fe in the context of
our results for Al.

In liquid Al the 1/T behavior is seen to be insufficient
(Fig. 2), and would falsely predict a much steeper decrease of
σ0 with T . The relative decrease between 2000 and 4000 K is
only about 12% for all the volumes investigated, whereas 1/T

behavior requires a 50% decrease. If a similar T dependence
holds for Fe, then the current estimates of the electrical
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conductivity of the Earth’s outer core may be too low by a
factor of 3–4.

According to our results for aluminum liquid (Fig. 4) the
value of the electrical conductivity along the melting curve
can be considered constant to within 5% accuracy. We can
therefore not disprove the validity of this assumption for pure
Fe along its melting curve.

For liquid Al the high pressure Lorenz number is lower
than the theoretical value by at most 7%. If the deviation is
similar for Fe at pressures above 100 GPa, correct values of
σ0 would falsely lead to κ0 values that are about 5%–10% too
high. However, this is not sufficient to offset the discrepancy
that would result from the strong underestimation of σ0 due to
its incorrectly assumed T dependence. Present estimates of κ0

for Earth’s core are therefore also likely to be 3–4 times too
low. Moreover, the significant variation of κ0 with P,T in Al
liquid suggests that it will not be constant in planetary cores,
as is generally assumed.13,14

VI. CONCLUSIONS

Our first-principles calculations for electrical and thermal
conductivity of compressed liquid aluminum show strong
dependence on pressure and temperature. The details of this
dependence can be understood in terms of thermal excitation
of electrons and increased occupation of conduction electronic
states. We also demonstrate that liquid Al remains a free-
electron-like metal at the conditions investigated. As a result,
the extent to which the Wiedemann-Franz law is satisfied
varies, with closest agreement to the theoretically expected
scaling relation at high temperatures. Our results serve as a
basic guide for the behavior of electronic transport properties
in deep planetary cores, suggesting that current estimates for
terrestrial planets may be quite far off.

ACKNOWLEDGMENTS

The authors appreciated discussions with Martin French,
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APPENDIX A

For description of the V,T behavior of electrical and
thermal conductivity we construct an empirical model for σ0

based on the Bloch-Grüneisen formula,

1

σ0(V,T )
= a

(
V

Vref

)b

+
[
c

(
V

Vref

)d

+ e

] (
T

Tref

)
.

(A1)

TABLE II. Fit parameters of V,T -dependent model of elec-
trical and thermal conductivity with reference volume Vref =
11.48 cm3 mol−1 and temperature Tref = 2000 K.

a 2.58 × 103 � m
b 2.74 × 10−1

c 3.66 × 102 � m
d 5.79
e 1.60 × 102 � m
f 2.55 × 10−8 W � K−1

g 3.66 × 10−2

h −4.46 × 10−2

Thermal conductivity is described as

κ0 (V,T ) =
[
f

(
V

Vref

)g (
T

Tref

)h
]
σ0 (V,T ) T . (A2)

The fitting parameters are listed in Table II.

APPENDIX B

We provide a description of thermodynamic properties of
the Al liquid over the whole range of conditions investigated,
using the approach of de Koker and Stixrude,44 with the
temperature of onset for metallic behavior explicitly set to
0 K. The excess term was described by Eulerian finite strain
and for the temperature dependence of the excess energy
an exponent m = 0.33 was found to be optimal. In order to
constrain the Helmoltz energy of liquid Al, the entropy was
anchored by an experimental value45 at 2000 K and 0 GPa,
though it should be noted that this choice does not affect
E(V,T ) and P (V,T ). The fit to the first-principles results
and the fitting parameters are shown in Fig. 5 and Table III,
respectively. The thermodynamic properties at 0 GPa and
2000 K are summarized in Table IV.
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FIG. 5. (Color online) Equation of state fitted to the liquid Al
FPMD simulation results for internal energy (left), pressure (middle),
and electronic entropy (right). Error bars are smaller than the symbol
size.

184201-5
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TABLE III. Fit parameters of the thermodynamic model for liquid
Al equation of state at P0 = 0 GPa and T0 = 2000 K with reference
volume V0 = 12.25 cm3 mol−1. The total entropy at these conditions
is fixed at its experimental value 95.7 J mol−1 K−1 (Ref. 45). For
explanation of parameters, see de Koker and Stixrude.44

Fxs (V,T )
Fxs0 −290 kJ mol−1

Pxs0 −1.46 GPa
KT,xs0 39 GPa
K ′

T ,xs0 4
αKT,xs0 2.29 × 10−3 GPa K−1

V0

(
∂αKT

∂V

)
T ,xs0

−4.79 × 10−3 GPa K−1

T0

(
∂αKT

∂T

)
V,xs0

−1.37 × 10−3 GPa K−1

V 2
0

(
∂2αKT

∂V 2

)
T ,xs0

1.44 × 10−2 GPa K−1

CV,xs0 7.60 J mol−1 K−1

V0

(
∂CV

∂V

)
T ,xs0

11.2 kJ mol−1 K−1

V 2
0

(
∂2CV

∂V 2

)
T ,xs0

4.18 × 10−2 kJ mol−1 K−1

Fel (V,T )

ζ0 1.11 J mol−1 K−2

ξ 0.58

TABLE IV. Thermodynamic properties of the Al liquid at 0 GPa
and 2000 K obtained from thermodynamic model fitted to FPMD
results. Values at melting temperature and ambient pressure are shown
for comparison where experimental data at T = 2000 K are not
available.

This study Experiment

V0 12.25 12.40,a 13.17†,b cm3 mol−1

KT 40 28g–34h GPa
KS 51 50∗,c GPa
α 76 112,∗,d 135∗,f ×10−6 K−1

CV 22.29 18.08h–21.30g J mol−1 K−1

CP 28.00 31.75e J mol−1 K−1

γ 1.70 2.20g–2.80h

*Value at melting temperature at P = 0 GPa; †extrapolated to T =
2000 K at P = 0 GPa; aRef. 27; bRef. 36; cRef. 46; dRef. 40; eRef. 45;
fcalculated from Ref. 36; gcalculated from Refs. 27, 46, 40, and 45;
hcalculated from Refs. 36, 46, and 45.
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