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Hardness analysis of cubic metal mononitrides from first principles
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Density functional theory calculations are performed to evaluate the hardness of various cubic metal nitrides:
rocksalt TiN, VN, ZrN, NbN, AlN, and SiN; zincblende AlN and BN; and diamond C for comparison. The
isotropic elastic stiffness constants cij , bulk modulus K , shear modulus G, Young’s modulus E, and isotropic
Poisson’s ratio ν are calculated. From simulated uniaxial stress-strain curves, ideal strength values σmax in the
[100], [110], and [111] directions are also evaluated for all systems. In particular, rocksalt AlN is found to possess
both high elastic moduli and ideal strength. These quantities are then compared for correlations with existing
experimental Vicker’s hardness data. The bulk modulus is found to be a poor indicator of hardness, while E,
G, 1/ν, and σmax all exhibit stronger correlations. With a view to circumvent the need to run computationally
expensive relaxation steps, different methodologies for approximating uniaxial stress-strain curves are introduced.
Utilizing the anisotropic Poisson’s ratio to approximate the relaxed transverse lattice parameters at a given axial
strain is a good approximation to stress-strain curves, and the ideal strengths obtained in this way exhibit strong
correlations to experimental Vicker’s hardness values.
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I. INTRODUCTION

Hardness describes the extent to which a material resists
elastic and plastic deformation, being defined experimentally
by the ratio of the load to the area of impression when an
indenter is forced onto a material surface.1 Different hardness
scales, including Brinell, Rockwell, Vickers, and Knoop, refer
to particular characteristics of the indenter, and yield experi-
mental hardness values that can vary by more than 10% for a
given sample.2 Since the experimental hardness test involves
a complex mixture of both elastic (reversible) and plastic (per-
manent, bond-breaking) deformations, its quantitative model-
ing from ab initio calculation poses a particular challenge.

A material’s hardness has commonly been estimated by
considering equilibrium elastic quantities such as the bulk
modulus K , shear modulus G, Young’s modulus E, and
Poisson’s ratio ν. These mechanical quantities characterize the
response of materials to small deformations, that is, in the small
strain limit, where the stress-strain relationship is approxi-
mately linear. For some cases, equilibrium elastic properties do
not provide a reliable indication of material hardness because
the hardness measurement involves a complex mixture of
elastic and plastic deformations at high strain.3–5 In particular,
it has been shown that the bulk modulus does not correlate with
hardness for some ionic and covalent materials.1,2,6 While the
shear modulus is a more reliable indicator of hardness,2,6–8 the
dependence is not unequivocal and monotonic.9

Beyond the elastic regime, the use of the ideal strength of
a material as an indicator of hardness has attracted increased
attention recently.10–16 Simulating an infinite, perfect crystal
subjected to increasing strain, the stress-strain curve captures
this deformation process: initially at equilibrium, straining
through the elastic regime, and finally the point of structural
instability. This critical point, which corresponds to a maxi-
mum in the stress-strain curve, is termed the ideal strength,
σmax. As defects usually contribute to losses in strength, the
theoretical ideal strength represents an upper bound on the

stress a physical material can withstand.10 The ideal strength
is an inherent property of a crystal lattice and thus offers insight
into the relationship between the intrinsic chemical bonding
and symmetry of a crystal to its mechanical properties. σmax is
expected to be a better indicator of hardness than equilibrium
elastic properties because it characterizes the material far from
equilibrium, up to its theoretical breaking point.

Superhard materials exhibit a hardness greater than
40 GPa, and have wide applications as blades, grinding and
polishing tools, and wear-resistant coatings.17 As such, active
research efforts are directed towards designing and fabricating
superhard materials with desirable properties, such as low cost,
chemical inertness, and thermal stability. Metal nitride systems
possess desirable properties such as oxidation resistance and
known relevance as potential superhard material components.
For example, the refractory characteristics of TiN and ZrN
have been widely applied as coatings to increase the wear
resistance of cutting tools and as magnetic storage devices.18–20

A new generation of coating development can be achieved
through nanotechnology using metal nitrides: for example,
the ternary Ti–Si–N system can form nanocomposites,21

multilayers, and superlattices21,22 with superhardening effects.
Heterostructures such as TiN/VN, TiN/NbN,23 and AlN/TiN16

multilayered coatings can also possess greater hardness than
single layers of the same materials. The transition metal
nitrides are therefore an interesting and relevant test class
of materials to focus upon. The rocksalt (rs) TiN, VN, ZrN,
NbN, rs-AlN, and SiN, zincblende (zb) structures zb-AlN,
zb-BN, and diamond structure dia-C are treated in this work.
Note that we adopt a convention throughout the paper of only
labeling systems that are not rocksalt structures (and rs-AlN
to distinguish it from zb-AlN).

To our knowledge, a systematic comparison of elastic
quantities, ideal strengths, and experimental hardness has
not been reported and hence forms a core motivation for this
work. Furthermore, despite intense research efforts into metal
nitrides, a systematic theoretical study of their stress-strain
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relationships and consequently their ideal strengths is lacking.
In this paper we report ab initio calculations of elastic prop-
erties, including the stiffness constants cij , bulk modulus K ,
shear modulus G, Young’s modulus E, isotropic Poisson’s
ratio ν, uniaxial stress-strain curves, and ideal strengths for
all the above-mentioned systems. We calculate the Poisson’s
ratio and simulate stress-strain curves in each of the three
primary [100], [110], and [111] directions. These calculated
properties are compared to experimental Vicker’s hardness
measurements as a means of determining useful theoretical
indicators. We also propose a method that uses the anisotropic
Poisson’s ratio to approximate the relaxed transverse lattice
parameters at a given axial strain. This approach greatly
reduces the computational cost of such calculations, and can
produce reliable ideal strength values.

II. COMPUTATIONAL DETAILS

All calculations presented in this work are performed
using density-functional theory (DFT) and the generalized
gradient approximation (GGA)24 for the exchange-correlation
functional, as implemented in the all-electron periodic DMol3

program.25,26 The DMol3 method employs fast converging
three-dimensional numerical integrations to calculate the
matrix elements occurring in the Ritz variational method. The
wave functions are expanded in terms of a double-numeric
quality localised basis set with polarization functions and an
atomic real-space cutoff of 12–13 bohr for metal atoms and
7–8 bohr for N and C atoms.

For all the rocksalt, zincblende, and diamond structures,
the Brillouin-zone integrations are performed using a large
12×12×12 Monkhorst-Pack grid for the unit cell, yielding
56 special k points in the irreducible part of the Brillouin
zone. For the transformed unit cells used for calculating
stress-strain curves, the grids are folded to obtain the same
or similar sampling of reciprocal space. Except where stated
otherwise, full structural relaxation, including lattice constants
and internal atomic parameters, are performed for all systems.

The equilibrium lattice constants are obtained by calculat-
ing the total energy at a range of volumes and then fitting
the obtained curve to the Murnaghan equation of state.27 The
elastic constants are derived by applying a set of homogeneous
deformations and calculating from the second derivative of
the total energy as a function of volume, tetragonal, and
trigonal lattice distortions around the equilibrium structures,
as implemented in DMol3 code.

Submitting a material to uniaxial strain, a transformed unit
cell is required in which one axis corresponds to the required
strain direction. Strain in that crystallographic direction can
then be simulated by varying the appropriate lattice parameter
in that direction. The appropriate unit cells for modeling
applied stain in the three primary directions: [100], [110],
and [111], are shown in Fig. 1. For a rocksalt, zincblende, or
diamond unit cell with an equilibrium lattice constant a0, the
unstrained cell used to model strain in the [100] direction
is cubic, with lattice constants (a0, a0, a0); in the [110]
direction it is orthorhombic, with lattice constants (a0/

√
2,

a0/
√

2, a0); and in the [111] direction it is hexagonal with
lattice constants (a0/

√
2, a0/

√
2,

√
3a0). The atoms in rocksalt

.

(a)

(d) (e) (f)

[111][100] [110]
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FIG. 1. (Color online) The transformed unit cells used to model
strain in the [100], [110], and [111] directions for (a)–(c) rocksalt
and (d)–(f) zincblende/diamond structures. Distortion of these cells
in the direction of the arrow simulates strain in the required direction.
The large dark and small pale spheres represent cations and anions,
respectively.

cells are octahedrally coordinated while in the zincblende (or
diamond) cells are tetrahedrally coordinated.

III. RESULTS

A. Elastic properties

A generalized version of Hooke’s law assumes that at each
point in a medium the strains are linear functions of the
stresses, and can be written as εi = sij σj or σi = cij εj , where
i,j = 1,2, . . . ,6, sij are the elastic compliances, and cij are
the elastic stiffnesses.28 The calculated stiffnesses cij can be
used to map to the corresponding compliances sij by inverting
the relations given in Ref. 28, as follows:

s11 = c11 + c12

c2
11 + c11c12 − 2c2

12

, (1)

s12 = − c12

c2
11 + c11c12 − 2c2

12

, (2)

s44 = 1

c44
. (3)

The Poisson’s ratio ν measures a material’s tendency
to react to applied strain by altering the lattice parameters
transverse to the applied strain. It is given by

ν = −εtr/ε, (4)

where ε and εtr are the axial and transverse strains, respectively.
Expressions for the Poisson’s ratio for cubic systems (averaged
over transverse directions) in the [100], [110], and [111]
directions have been determined by Wojciechowski29:

ν[100] = − s12

s11
, (5)

ν[110] = − s11 + 2s12 − s44/2

s11 + 2s12 + s44
, (6)

ν[111] = − s11 + 3s12 − s44/2

2s11 + 2s12 + s44
. (7)
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The shear modulus in the Voigt approximation30 is
given by

GV = 1
5 (c11 − c12 + 3c44) , (8)

and in the Reuss approximation31 by

GR = 5

4(s11 − s12) + 3s44
= 5c44(c11 − c12)

4c44 + 3(c11 − c12)
. (9)

The Voigt and Reuss approximations represent upper and
lower bounds for the stiffness matrix coefficients of a given
composite. Taking the mean G = (GV + GR)/2 gives an
approximate measure of the isotropic shear modulus.32 For
cubic systems, the isotropic bulk modulus K , which quantifies
a material’s resistance to volume compression, is equivalent
under both approximations to

K = 1
3 (c11 + 2c12) . (10)

Using these quantities, we can then determine the isotropic
Young’s modulus,

E = 9KG

3K + G
, (11)

which encapsulates a material’s resistance to linear compres-
sion, and the isotropic Poisson’s ratio,

ν = 3K − 2G

2 (3K + G)
. (12)

We label the isotropic Poisson’s ratio ν to distinguish it from
the general anisotropic Poisson’s ratio ν and, specifically,
ν[100], ν[110], and ν[111].

The calculated equilibrium lattice parameters a0, stiffness
constants c11, c12, and c44, and the other isotropic elastic
quantities are given in Table I. Since there is a vast amount of
existing data for the lattice constants and elastic constants in the
literature, we refer to some theoretical34,35 and experimental
results for comparison: for TiN,36–40 ZrN,19,38,39,41 NbN,19,39

VN,37–40 zb-AlN,42,43 zb-BN,43,44 and dia-C1 (and references
therein). In general, our calculated lattice constants and elastic
constants are in good agreement with available data, except for
ZrN from Ref. 41, in which the calculated elastic constants are
304, 114, and 511 GPa for c11, c12, and c44, respectively (our
values, cf. Table I, are 528, 95, and 126 GPa) . We point out that

the data in Ref. 41 are self-contradictory; their elastic constants
will lead to shear modulus GV = 344.6 GPa and GR = 185.7
GPa, not 261 and 251 GPa as reported in the same paper. Our
results are in a much better agreement with the values reported
in Refs. 19, 35, and 39. The calculated tendency of the elastic
constants of NbN (c11 > c12 > c44) and ZrN (c11 > c44 > c12)
is in accordance with the neutron scattering measurements,
and the values are in better agreement with experiments than
DFT-pseudopotential calculations19 for both ZrN and NbN. In
addition, the presently calculated ν[100] values for NbN (0.175)
and ZrN (0.152) exhibit good agreement with experimental
values (0.18 and 0.16, respectively).19

As expected, the isotropic Poisson’s ratio is approximately
an average of the Poisson’s ratio in each of the three primary
directions, that is, ν ≈ (ν[100] + ν[110] + ν[111])/3. We also
note that the values of different elastic properties are not
consistently ordered, suggesting different degree of correlation
to hardness. For example, while K (isotropic bulk modulus)
of TiN is less than that of VN and NbN, G (shear modulus), E
(Young’s modulus), and H (Vicker’s hardness) are all greater.
Interestingly, NbN exhibits a large value of c11 but a small value
of c44 and, consequently, low G, E, and H despite exhibiting a
relatively large K . The artificial rocksalt SiN has a low K , E,
and G, and high ν, consistently indicating that it is a material
with low hardness. By contrast, it is predicted that rs-AlN,
which has a much smaller lattice constant than zb-AlN, may
possess high hardness as it has a small calculated ν, large
stiffness constants, particularly c12 and c44, and large G and
E, albeit a rather modest K value. It is worth noting that our
elastic properties of rs-AlN are in excellent agreement with
those reported recently in Ref. 35, who noted the particularly
high value of c44 compared to the group IVB and VB transition
metal nitrides.

B. Uniaxial stress-strain curves and ideal strength

Uniaxial strain is defined by

ε = a − a′
0

a′
0

, (13)

where a and a′
0 are the stretched and equilibrium transformed

lattice parameters, respectively, in the direction of strain. Note

TABLE I. Calculated equilibrium lattice parameters a0, stiffness constants c11, c12, c44, Poisson’s ratios in the three primary directions
ν[100], ν[110], ν[111], the isotropic Poisson’s ratio ν, bulk modulus K , Young’s modulus E, shear modulus G, and, where available, experimental
Vicker’s hardness values H .

a0 (Å) c11 c12 c44 ν[100] ν[110] ν[111] ν K (GPa) E (GPa) G (GPa) H (GPa)

SiN 4.28 207 150 71 0.420 0.361 0.315 0.367 169 135 49
ZrN 4.62 528 95 126 0.152 0.254 0.275 0.231 239 386 157 18 ± 1a

NbN 4.45 630 134 85 0.175 0.348 0.371 0.307 299 346 133 14 ± 1a

VN 4.13 591 159 137 0.212 0.287 0.304 0.270 303 417 164 15 ± 1a

TiN 4.26 531 118 166 0.182 0.222 0.233 0.213 256 440 181 18 ± 2a

AlN 4.07 434 159 315 0.269 0.140 0.058 0.154 251 521 226
zb-AlN 4.40 309 162 192 0.344 0.233 0.151 0.243 211 325 131 18b

zb-BN 3.63 800 170 450 0.175 0.106 0.076 0.118 380 872 390 63 ± 5a

dia-C 3.57 1036 113 541 0.099 0.063 0.050 0.070 421 1086 508 96 ± 5a

aReference 7.
bReference 33.
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FIG. 2. Uniaxial “relaxed” stress-strain
curves in the [100] direction: solid line/squares;
the [110] direction: dashed line/circles; and the
[111] direction: dot-dashed line/triangles. Local
maximums correspond to points of critical strain
and ideal strength, (εc,σmax), and are labeled
in each case by the relevant symbol (a square,
circle, or triangle). Points on the stress-strain
curves are not raw data points, but are fitted from
the energy-strain data and therefore suppressed
from these plots for clarity. Note the increased
vertical scale for the zb-BN and dia-C structures.

a′
0 corresponds to a0, a0/

√
2, and

√
3a0 for strains in the [100],

[110], and [111] directions, respectively (where a0 is the lattice
constant of the equilibrium, untransformed cubic unit cell).
Stress is defined as

σ = 1

V0

dU

dε
, (14)

where V0 is the equilibrium volume and U is the total energy
of the system.

Stress-strain curves in a given crystallographic direction
are modeled by calculating the total energy at a series of
incremental strains. In this study we consider the strain in
the [100], [110], and [111] directions for the cubic structures,
as shown in Fig. 1. For each system, and in each direction,
we calculate the total energy for at least five different strain
values, ensuring that a sufficient range has been explored to
include the maximum of the stress-strain curve. The transverse
lattice parameters are relaxed to minimize the total energy at
each strain increment. To the total energy versus applied strain
values, we fit a fifth order polynomial, under the constraint that
the first order coefficient be zero. From the U (ε) fit described
above, dU/dε(ε) is determined analytically, where points on
the stress-strain curve are calculated from Eq. (14).

The calculated uniaxial stress-strain curves for all systems
are shown in Fig. 2. Because the transverse lattice parameters
were relaxed at each strain increment, we label this method
“relaxed,” in contrast to other approximations that will be
explored in Sec. III C below. We derive two summary statistics
from each of these curves: the ideal strength σmax and the
critical strain εc, which are the stress and strain values at
the local maximum, respectively. Intuitively, εc corresponds
to the minimum strain required to plastically deform an
infinite defect-free crystal. For all systems in each of the three

directions, these values are presented in Table II in the columns
labeled relaxed. A material with high hardness is expected to
have large σmax and εc values, and preferably in all directions.
The stress-strain curve also gives a visual indication of the
(anisotropic) Young’s modulus E, which is the gradient of the
stress-strain curve in the low strain limit (ε → 0).

The stress-strain relationships studied here are clearly
anisotropic, which is consistent with the results of other ab
initio studies, including those of rocksalt AlN and TiN,16 and
carbon networks.45,46 For the rocksalt structures, the observed
trend σ[111] > σ[110] > σ[100] can be understood in terms of
the bonding arrangement. In strong directions there exists an
angle between the bonding direction and that of the applied
strain such that additional work is required to induce angular
distortions.46 While strain applied in the [110] and [111]
directions stretch the metal–N bonds at an angle to the bond
direction, [100] strain results in stretching directly along the
metal–N bonds, maximizing the work put into bond breaking.
The ideal strength σ[100] is consequently minimal for the
rocksalt structures. For the [111] direction, metal–N bonds are
at the greatest angle to the direction of applied strain; [110] is
an intermediate case. Thus we have the observed trend σ[111] >

σ[110] > σ[100] for the rocksalt structures. The anisotropy of
the zincblende/diamond structures σ[100] > σ[111] > σ[110] can
be explained using similar arguments. Since under uniform
distortion a crystal breaks at the strain threshold of its weakest
direction, the large differences between ideal strength values
along different crystallographic directions are important. If a
crystalline material is grown preferentially on a substrate in the
strong strength direction, there should be a substantial increase
in strength in this direction over that of the bulk sample.

We note the ideal cleavage strength values for TiN and
VN in Ref. 37 are of the same trend as, but systematically
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TABLE II. Ideal strengths σmax (upper rows, GPa), and corresponding critical strains εc (lower rows, in parentheses), of all systems obtained
from the stress-strain curves in each of the directions [100], [110], and [111]. Three methods are shown, using the anisotropic ν (Poisson’s
ratio), performing transverse relaxation at each strain increment (relaxed), and leaving the transverse lattice constants fixed at their equilibrium
values (unrelaxed).

σmax (εc) Poisson’s ratio σmax (εc) Relaxed σmax (εc) Unrelaxed

[100] [110] [111] [100] [110] [111] [100] [110] [111]

SiN 5 18 60 5 19 64 18 40 65
(0.08) (0.28) (0.34) (0.10) (0.36) (0.33) (0.19) (0.33) (0.37)

ZrN 27 41 78 27 39 76 31 48 75
(0.13) (0.33) (0.39) (0.13) (0.27) (0.40) (0.18) (0.29) (0.40)

NbN 28 50 84 27 36 76 34 46 76
(0.13) (0.57) (0.50) (0.12) (0.44) (0.50) (0.18) (0.34) (0.47)

VN 30 47 85 29 44 84 36 56 89
(0.16) (0.43) (0.49) (0.14) (0.39) (0.49) (0.19) (0.35) (0.50)

TiN 31 50 90 31 47 90 35 57 92
(0.15) (0.34) (0.39) (0.14) (0.31) (0.41) (0.19) (0.33) (0.43)

AlN 23 60 107 21 60 107 29 66 106
(0.19) (0.29) (0.31) (0.16) (0.25) (0.33) (0.21) (0.30) (0.32)

zb-AlN 85 45 51 81 43 50 79 47 51
(0.43) (0.27) (0.29) (0.44) (0.27) (0.28) (0.47) (0.30) (0.38)

zb-BN 182 92 113 185 92 113 184 98 112
(0.41) (0.26) (0.31) (0.46) (0.25) (0.31) (0.45) (0.31) (0.33)

dia-C 209 119 135 215 119 134 214 122 135
(0.36) (0.26) (0.30) (0.40) (0.26) (0.30) (0.40) (0.30) (0.30)

lower (by 10%–15%), than the ideal strength values reported
here, indicating that TiN and VN tend to fail by brittle
cleavage. Consistent with its high elastic constants, it is
important to notice the remarkable calculated ideal strength
of rs-AlN, which is significantly higher than that of zb-AlN.
By calculating the phonon density-of-states at the equilibrium
and understrain structures, for different strain directions, we
confirm that there is no imaginary phonon frequency, and thus
no mechanical instability of the studied rs-AlN configurations.
The octahedrally coordinated rs-AlN is isoelectronic to both
BN and diamond, the latter two being the two hardest known
bulk materials with tetrahedrally coordinated structure. AlN
ordinarily crystallizes in the wurtzite (wz) structure, but can
also form a zincblende structure with a similar (slightly less
favorable) energy.47 rs-AlN has a notably smaller calculated
lattice constant compared to the zb phase, namely 4.07 Å
versus 4.40 Å. The calculated value of 4.07 Å is in
excellent agreement with other ab initio results, for example,
4.049 Å,35 and with experiment 4.08 ± 0.02 Å quoted in
Ref. 35. rs-AlN also has a significantly higher formation
energy (by 10.5 eV/formular unit) compared to zb-AlN.
Nevertheless, rs-AlN layers have been epitaxially grown on
VN48 and TiN49 substrates as superlattices, where a hardness
enhancement has been reported. Beyond a certain critical
thickness of AlN, a phase transformation occurs in which
AlN changes to the energetically preferred wurtzite structure,
concomitant with a lower hardness.50 The present theoretical
results for high ideal strength and high elastic moduli, together
with those in Ref. 35, suggest that these characteristics of
rs-AlN may contribute to the measured hardness enhancement
of VN/AlN48 and TiN/AlN49 superlattices, in addition to
affording the formation of semicoherent TiN/AlN interfaces,
as discussed in Ref. 16. Indeed, we also calculated the elastic

constants for wz-AlN, and the obtained values are 379, 122,
97, 362, and 119 GPa for c11, c12, c13, c33, and c44, respectively.
The derived bulk modulus, Young’s modulus, and shear
modulus for wz-AlN are 194, 357, and 149 GPa, respectively,
consistently lower than those of rs-AlN, namely 251, 521, and
226 GPa.

C. Methodological approximations

The relaxed method for calculating stress-strain curves,
described above, is computationally expensive, mainly due
to the task of minimizing the transverse lattice parameters at
each strain increment. As such, we propose that this process
can be simplified by exploiting the anisotropic Poisson’s
ratio. For conventional materials, the Poisson’s ratio values
lie within the range 0 � ν � 0.5. At one extreme, taking
ν = 0, implies that εtr = 0 and transverse lattice parameters
remain at their equilibrium values, independent of strain. This
approach, which we term the “unrelaxed” method, consistently
overestimates the unit cell volume relative to letting the trans-
verse lattice parameters relax to their equilibrium values under
tensile strain. At the other extreme, with ν = 0.5, transverse
lattice parameters adjust so as to maintain the equilibrium
volume V0, consistently underestimating the relaxed unit cell
volume under tensile strain. We find that this “fixed volume”
method produces large differences in energy compared to the
fully relaxed case for the systems studied here and therefore
yields dramatically different stress-strain curves. Of course,
one can also calculate the actual Poisson’s ratio of a material
in a given strain direction and use this to predict the transverse
lattice constants at each strain increment. This approach, which
we term the “Poisson’s ratio” approximation to calculating
stress-strain curves, is detailed below.
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FIG. 3. Comparison of methodologies for obtaining stress-strain curves. (a) Unit cell volume, (b) total energy (relative to equilibrium), and
(c) stress as a function of strain for VN in the [111] direction using the unrelaxed (triangle/dashed line) and Poisson’s ratio (circle/dotted line)
approximations to the fully relaxed (square/solid line) method.

Using the definitions for ε [Eq. (13)] and ν [Eq. (4)],
the volume of an orthorhombic unit cell, corresponding to
[100] and [110] directions, is V = axayaz, and that of a
hexagonal unit cell, corresponding to the [111] direction, is
V = axayaz

√
3/2, where ax,ay,az are the lattice parameters

of the equilibrium, untransformed unit cell (cf. Fig. 1). Both
of these expressions can be written as a function of strain as

V = V0(1 + εtr)(1 + εtr)(1 + ε) = V0(1 − νε)2(1 + ε).

(15)

Differentiating, we have

dV

dε
= V0(1 − νε)(1 − 2ν − 3νε), (16)

where V0 is the equilibrium volume and ν is the anisotropic
Poisson’s ratio in the direction of strain. In the small strain
limit, ε → 0, we evaluate Eq. (16) and integrate, yielding

V = V0 [1 + ε (1 − 2ν)] . (17)

Since V = V0(1 + εtr)2(1 + ε), Eq. (17) can be written as

(1 + εtr)
2 = 1 + ε(1 − 2ν)

1 + ε
. (18)

Therefore, since atr/a
′
0 = 1 + εtr, the transverse lattice con-

stants are given by a strain-dependent factor of their equilib-
rium value a′

0 according to

atr(ε; ν) = a′
0

√
1 + ε(1 − 2ν)

1 + ε
. (19)

Therefore, assuming a linear variation of volume with strain,
the anisotropic Poisson’s ratio ν of a material in a given
crystallographic direction can be used to approximate the
relaxed transverse lattice constants atr as a function of
the uniaxial strain ε. Instead of explicitly optimizing over
the transverse lattice parameters at each strain increment, their
relaxed values are predicted using the relevant (anisotropic)
Poisson’s ratio.

The performance of these two approximations relative to the
fully relaxed method is illustrated in Fig. 3, using VN in the
[111] direction as an example. The volume-strain relationship
is shown in Fig. 3(a); in this case the Poisson’s ratio method
gives closer agreement to the relaxed relationship compared
to the unrelaxed method, which consistently overestimates

the unit cell volume. The total energy and stress versus
strain curves are shown in Figs. 3(b) and 3(c), respectively.
Despite overestimating the unit cell volume, the unrelaxed
method produces a reasonable approximation to the fully
relaxed stress-strain curve, however the Poisson’s ratio method
reproduces the relaxed results almost exactly. The values of the
predicted ideal strength σmax and corresponding critical strain
εc for the three approaches, relaxed, unrelaxed, and Poisson’s
ratio for all systems are in Table II.

In Fig. 4 we further plot percentage deviations from
σmax values calculated using unrelaxed and Poisson’s ratio
methods relative to that obtained by the relaxed method.
Figure 4(a) compares the average ideal strength σmax =
(σ[100] + σ[110] + σ[111])/3 for the two approximate meth-
ods, and Fig. 4(b) compares the minimum ideal strength
min(σmax) = min(σ[100],σ[110],σ[111]). In general, the Poisson’s
ratio method is shown to be an improvement over the
unrelaxed method, with a mean deviation from σmax of 3%
and from min(σmax) of 2%. By contrast, the unrelaxed method
has a mean deviation of 42% for σmax (or 17% excluding
the SiN outlier), and 10.6% for min(σmax). Comparing the
ideal strength in the weakest direction, that is, min(σmax) in
Fig. 4(b), shows that the Poisson’s ratio method is a significant
improvement over the unrelaxed method, deviating from the
relaxed values by no more than 5% (except for NbN).

D. Correlations with Vicker’s hardness

For the studied cubic systems we analyzed proportional
correlations between various equilibrium elastic quantities and
ideal strengths with experimental Vicker’s hardness, as shown
in Fig. 5. Coefficients of determination R2 are calculated for
lines constrained to pass through the origin, as a means of
comparing each elastic quantity as a proportional indicator
of material hardness. The isotropic ideal strength σmax is
approximated as the average of the ideal strengths in each
of the [100], [110], and [111] directions.

As shown in Fig. 5(a), the bulk modulus K , despite being
a conventional indicator of material hardness, is found to give
the worst correlation with hardness. This finding is consistent
with other studies.2,6–8 And although other studies highlight a
discrepancy,3,51 we find a reasonable proportional correlation
between Young’s modulus E and Vicker’s hardness H for
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FIG. 4. Percentage deviations of σmax obtained using the unrelaxed (circles, dotted line) and Poisson’s ratio (squares, solid line)
approximations to their fully relaxed values: (a) averaged over individual deviations in each of the [100], [110], and [111] directions,
and (b) in the weakest principle direction (i.e., [100] for rocksalt structures, and [110] for zincblende/diamond structures). The raw data on
which these graphs were obtained is in Table II. Vertical axis limits are chosen to reveal the variation across the systems, obscuring an outlying
point for the unrelaxed method in (a), which overestimates σmax for SiN by 236% (as labeled).

the systems treated in this work [Fig. 5(b)]. The inverse of
the isotropic Poisson’s ratio 1/ν has not to our knowledge
been used previously as an indicator of hardness, but for the
systems studied here, it also yields a good proportional fit
[Fig. 5(d)]. As shown in Figs. 5(e)–5(g), all three methods for

obtaining ideal strengths show similar correlations to Vicker’s
hardness, with R2 > 0.97. Thus, although the magnitudes of
σmax can vary between the methods for obtaining stress-strain
curves (cf. Fig. 4 and Table II), for the systems studied here,
these discrepancies do not significantly affect correlations to
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FIG. 5. Correlations of calculated mechanical properties with experimental Vicker’s hardness H for all systems for which hardness data
is available (cf. Table II): ZrN, NbN, VN, TiN, zb-AlN, zb-BN, and dia-C. We plot (a) bulk modulus K , (b) Young’s modulus E, (c) shear
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σmax using the (e) unrelaxed, (f) Poisson’s ratio, and (g) relaxed methods. In (h) we explore the relationship between Vicker’s hardness and
the quantity G3/K2 proposed in Ref. 52, including their hypothesized relationship H = 2(G3/K2)0.585 − 3 with a dotted line. Dashed lines
represent linear fits to the data that are constrained to pass through the origin. Coefficients of determination R2 are also included in each case.
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Vicker’s hardness. Also, due to the small sample size of the
studied systems, we are unable to reliably distinguish between
E, G, ν−1, and σmax, all of which exhibit relatively strong
correlations to H . For a wider range of more complicated
materials, distinguishing the best indicators of hardness would
be possible. Moreover, our proposed Poisson’s ratio method is
applicable to more complicated structures, yet its validity is to
be explored.

Finally we investigated a recently proposed relationship
between experimental Vicker’s hardness and the bulk modulus
H = 2(G3/K2)0.585 − 3, which was shown to hold for a large
number of materials.52 This relationship and the data for
systems analyzed in this work are shown in Fig. 5(h). The
obtained very high coefficients of determination R2 = 0.991
is partially due to the inclusion of several systems (such as
TiN, NbN, c-BN, and diamond) in the fitting in Ref. 52.
Although we consider a relatively small number of systems
in this work, the data are consistent with this proposed
relationship.

IV. SUMMARY AND CONCLUSIONS

We have performed a systematic all-electron DFT study to
investigate the hardness of various cubic metal mononitrides.
The calculated elastic moduli are in good agreement with
experimental and most theoretical data. Uniaxial stress-
strain curves and ideal strength values were also presented.

Significantly, rocksalt AlN exhibits much higher elastic moduli
than the corresponding zincblende and wurtzite structures.
To reduce the computational cost, different methodologies,
including the unrelaxed, Poisson’s ratio, and relaxed methods,
for obtaining uniaxial stress-strain curves were developed and
compared. In particular, a Poisson’s ratio method that uses
the anisotropic Poisson’s ratio to approximate the relaxed
transverse lattice parameters at a given axial strain, produces
excellent agreement with the ideal strength values obtained
via the relaxed method. For the systems considered here, the
correlations between various theoretical mechanical properties
and experimental Vicker’s hardness values were investigated.
The bulk modulus was found to be a poor indicator of hardness,
while other quantities, particularly the shear modulus, the
inverse of Poisson’s ratio and the ideal strength, exhibited good
proportional correlations. Future work, exploring the same
quantities as in the present work, for a wider range of material
systems would be valuable and may be able to distinguish
which of these properties is the best indicator of hardness.
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