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We develop a theory of the tunneling spectroscopy for superconducting topological insulators (STIs), where
the surface Andreev bound states (SABSs) appear as helical Majorana fermions. Based on the symmetry and
topological nature of parent topological insulators, we find that the SABSs in the STIs have a structural transition
in the energy dispersions. The transition results in a variety of Majorana fermions, by tuning the chemical potential
and the effective mass of the energy band. We clarify that Majorana fermions in the vicinity of the transitions
give rise to robust zero bias peaks in the tunneling conductance between normal metal/STI junctions.
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Topological superconductors (TSCs) are a state of matter1–3

characterized by nonzero topological numbers of the bulk wave
functions. They support topologically protected gapless sur-
face Andreev bound states (SABSs), and the superconductivity
infers that the gapless SABSs are their own antiparticles, thus
Majorana fermions.4 The realization of TSC and Majorana
fermions in condensed matter physics is of particular interest
because of their novelty as well as their possible application
for quantum devices.5–22

The recently discovered superconductor CuxBi2Se3

(Refs. 23–26) is an intriguing candidate for a TSC because
it is associated with another state of matter, the topological
insulator: The parent material Bi2Se3 is originally a topological
insulator with topologically protected gapless Dirac fermions
on its surface. With intercalating Cu, the superconductivity
appears. On the theoretical side, it has been expected that
CuxBi2Se3 is a TSC by the Fermi surface criterion,27–29

and possible SABSs specific to this material have been
studied.30–32 Recently, a point contact spectroscopy experi-
ment on this material has been done, and it reported a zero-bias
conductance peak (ZBCP).31 With analysis excluding other
mechanisms, it has been concluded that the ZBCP is intrinsic
and signifies unconventional superconductivity.31 Moreover,
similar ZBCPs have been observed independently by other
groups.33–35

Motivated by this finding, we develop in this Rapid
Communication a general theory of Majorana fermions in su-
perconducting topological insulators (STIs) and their relation
to the tunneling conductance. Up to now, the relation between
SABSs and the tunneling conductance has been understood in
quasi-two-dimensional superconductors:1 (1) If the SABS has
a flat band dispersion as a function of the momentum parallel to
the surface, ky , the resulting line shape of conductance always
has a sharp ZBCP, as realized in high-Tc cuprates.1,36 (2) If the
SABS has a linear dispersion as a function of ky , the resulting
line shape of conductance has a broad peak, as observed
in Sr2RuO4.37–39 On the other hand, in three-dimensional
superconductors, little is known about the relation between
SABSs and the tunneling conductance. The only exception
is a study on the superconducting analog of a superfluid
3He B phase.40 As CuxBi2Se3, it is a three-dimensional
TSC supporting helical Majorana fermions on its surface.41–46

However, the resulting tunneling conductance always shows
a double-peak structure.40 Therefore, in order to pursue the
origin of the observed ZBCPs in STIs, one needs to develop a
theory of the tunneling conductance for STIs.

In this Rapid Communication, we study the tunneling
spectroscopy and underlying SABSs in STIs. Based on the
symmetry and topological nature of parent topological insula-
tors, it is shown that SABSs in STIs have a structural transition
of the energy dispersion (Fig. 2). The transition results in a
variety of helical Majorana fermions in SABSs, which we call
cone, caldera, ridge, and valley. We clarify that the transition
explains the robustness of the ZBCP in STIs. From an
explicit calculation, it is found that the tunneling conductances
between normal metal/STI junctions support ZBCPs near the
transition. These features are proper to STIs and distinct
from the simple three-dimensional TSC mentioned above.
Our findings support that the observed ZBCPs in Refs. 31
and 33–35 originate from a helical Majorana fermion in STIs,
and they give evidence of their topological superconductivity.
Our results are summarized in Table I.

First let us briefly review the basic properties of the
parent topological insulators. For concreteness, we consider
the following k · p Hamiltonian to describe the topological
insulators,

HTI(k) = mσx + vzkzσy + vσz(kxsy − kysx),
(1)

m = m0 + m1k
2
z + m2

(
k2
x + k2

y

)
(m1m2 > 0),

where sμ and σμ are the Pauli matrices in the spin and orbital
spaces, respectively. In addition to the time-reversal symmetry,
we have assumed a mirror symmetryMiHTIM†

i = HTI|ki→−ki

with Mi = si (i = x,y) and an inversion symmetry. Although
HTI in the above is axial symmetric along the z axis, even if one
adds higher order terms of ki (i = x,y) as the warping terms,47

our results do not change qualitatively. The topological phase
of this system is classified by the Z2 invariant, (−1)ν =
sgn(m0m1), and when Z2 is nontrivial (m0m1 < 0), the system
becomes a topological insulator. On the surface perpendicular
to the z axis, it supports the topologically protected Dirac
fermion.

Now consider the corresponding STIs. The STIs are
described by the Bogoliubov–de Gennes (BdG) Hamiltonian
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TABLE I. Momentum-independent odd-parity paring symmetries
in STI. As a comparison, the pairing symmetry in the BW phase
of superfluid 3He is shown. The energy spectrum has a full gap,
nodal, or isotropic (iso) full gap. In cases of low and intermediate
transmissivity of normal metal/STI junctions, the line shapes of the
tunneling conductances show a double peak (DP) and zero bias peak
(ZBP), respectively. (See Fig. 3 and the corresponding discussions in
the text.)

STI BW

Gap Full Nodal Iso
SABS Cone/caldera Ridge/valley Cone
Conductance DP/ZBP ZBP DP

in the Nambu representation (ψσ↑,ψσ↓, − ψ
†
σ↓,ψ

†
σ↑),

HSTI(k) = [HTI(k) − μ]τz + �̂τx, (2)

where μ is the chemical potential, τμ is the Pauli matrix in
the particle-hole (Nambu) space, and �̂ is a 4 × 4 matrix
denoting the gap function. σ denotes the index of the orbital.
For simplicity, we assume that �̂ is a constant matrix, which
is generally realized when the pairing interaction is short
ranged and attractive. Because of the Fermi-Dirac statistics
of electrons, �̂ satisfies �̂ = sy�̂

T sy , thus there are six
independent pairings (�,�σx,�σz,�σysx,�σysy,�σysz) (�
is independent of k), which are introduced by Fu and Berg.28

For each independent pairing, we consider SABS on the
surface normal to the z axis.

In order to solve the SABS, we consider the semi-infinite
STI (z > 0) with a flat surface at z = 0. The wave function in
this system is given by

ψSTI(z > 0) =
∑

I

tI uI e
iqI zeikxxeikyy, (3)

where qI (I = 1, . . . ,8) is a solution of E = E(kx,ky,qI ), with
E(k) being an eigenvalue of Eq. (2), and uI (kx,ky,qI ) is the
corresponding eigenvector. Among the eigenvectors, ψSTI(z)
consists of those with E(kx,ky,qI )/∂qI > 0 or Im qI > 0,
where the former denotes the up-going states and the latter
denotes the localized states in the vicinity of z = 0. Postulating
the boundary condition as ψSTI(z = 0) = 0, we can determine
the coefficients tI and obtain the SABS.

Among the six pairings mentioned above, only the three
(�σysx,�σysy,�σysz) support gapless SABSs on the surface
at z = 0. We notice that all of them are odd-parity pairings,
P�σysμP † = −�σysμ (P = σx), and the existence of the
SABSs is consistent with the Fermi surface criterion for
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FIG. 1. (Color online) Polar plots of the bulk superconducting gap
Eg for full (a) and nodal (b) gaps, where cone/caldera and ridge/valley
SABSs are realized, respectively. It is not plotted in a certain region
for the cases in (b), for visibility.
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FIG. 2. (Color online) Evolution of the energy dispersion of the
SABS with a variation of chemical potential and m0m1. The curve
represents the boundary of parameter regions where the structure
of the energy dispersion has a (a) cone [(c) ridge] or (b) caldera
[(d) valley] for fully (nodal) gapped pairing. The position of the
circle (square) symbol corresponds to the parameters used in the
calculations of tunneling conductances with m1 = 20.18 eV Å (m1 =
5.66 eV Å), where a cone (caldera) or ridge (valley) SABS is realized.

odd-parity TSCs.29 Furthermore, they all are odd under (at
least) one of the mirror symmetries,Mi�σysμM†

i = −�σysμ

for i �= μ. As illustrated in Fig. 1, �σysx and �σysy have
point nodes in the bulk spectrum on the ky and kx axes,
respectively, while �σysz is fully gapped. The point nodes
change the qualitative structure of the SABSs, as is shown
below. In the following, we focus on �σysz (≡�̂f) and �σysy

(≡�̂n) because the result of �σysx is obtained by exchanging
kx and ky in that of �σysy .

The obtained SABSs in the STI are illustrated in Fig. 2. The
SABSs appear when m2

0 < μ2. An important feature of the
SABSs is that there exists a structural transition of the energy
dispersion. Combined with the nodal structure mentioned
above, the transition results in a variety of Majorana fermions,
which we call (a) cone, (b) caldera, (c) ridge, and (d) valley: For
the fully gapped pairing �̂ = �̂f , we find that the cone and the
caldera are possible. For larger values of μ and m1, the energy
spectrum of the SABS is an axial symmetric and monotonic
function of k[≡(k2

x + k2
y)1/2], and its shape is a deformed cone

[Fig. 2(a)] including higher order terms of k. For smaller values
of μ and m1, however, a second crossing of the zero energy
appears at finite k and a caldera SABS is realized [Fig. 2(b)].
This result is consistent with that of Refs. 30 and 32. On
the other hand, for the nodal pairing �̂n, we obtain the ridge
[Fig. 2(c)] and the valley [Fig. 2(d)], instead. Although the
structural transition occurs on the same critical line, Majorana
fermions in this case have a flat dispersion due to the existence
of bulk point nodes. As a result, the cone (caldera) is deformed
into the ridge (valley). We can also show that the flat dispersion
between the point nodes has a topological origin, and thus is
not accidental.48–50

Now we show that the structural transition is intrinsic to
the STI. Due to an argument based on the symmetry given
below, we find that the STI may have a remnant of the surface
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Dirac fermion in the parent topological insulator, and this is
the origin of the structural transition. To see this, consider how
the superconductivity of �̂g=f,n may affect the Dirac fermion.
When μ is small and is in the bottom of the bulk band, the
surface Dirac fermion near the Fermi energy is well separated
from the bulk band. Thus, it can be treated separately, and the
problem reduces to constructing a pairing term of the Dirac
fermions that is consistent with symmetry of �̂g . In particular,
the induced pairing should have an odd mirror parity as �̂g ,
because the mirror symmetry Mi is a good symmetry on the
surface at z = 0. However, one finds that no pairing term is
allowed to be consistent with the symmetries. This means that
the Dirac fermion remains gapless near the Fermi energy when
adding �̂g , in contrast to the case of conventional s-wave
pairing.16,51 By hybridizing with the Majorana cone (ridge)
specific to TSCs, the gapless Dirac fermion results in a caldera
(valley) structure of the Majorana fermions. Now consider
tuning μ deep into the bulk band. As one increases μ, the
surface state near the Fermi energy merges into the bulk band,
and finally disappears. One now obtains a conventional Majo-
rana cone or Majorana ridge because there is no hybridization
of the Dirac fermion. Therefore, a structural transition of the
Majorana fermions must occur between these two limits.

We note that when the transition occurs, the velocity of
the Majorana fermions at (kx,ky) = 0 changes its sign. The
velocity along the x direction ṽ is given by ṽ = va�/m0, with

a =
1 −

√
1 + 4m̃1 + 4m̃2

1μ̃
2

2m̃1μ̃2
, (4)

where m̃1 = m0m1/v
2
z and μ̃ = μ/m0. The transition line

determined by a = 0 is given by μ̃2 = 1/(−m̃1), which is
shown in Fig. 2. Only for the case with m0m1 < 0, the value
of a can become zero, namely, the topological insulator
triggers the structural transition of SABS.

Now we calculate the tunneling conductance of a nor-
mal metal/STI junction, generalizing theories of the tunnel-
ing spectroscopy of conventional52 and unconventional36,53

superconductors. We suppose a free electron in the nor-
mal metal with the Hamiltonian HN (k) = [(k2

x + k2
y +

k2
z )/(2me) − μN ]σ0s0τz. The wave function in the normal

metal (z < 0) is given by

ψN (z < 0) = ei(kxx+kyy)

[
χσsee

ikezz +
∑
σ ′s ′

(aσsσ ′s ′χσ ′s ′he
ikhzz

+ bσsσ ′s ′χσ ′s ′ee
−ikezz)

]
, (5)

where χσsτ is the eigenvector of HN (k) with orbital σ and spin
s for electrons (τ = e) or holes (τ = h), and kez = √

k2
e − k2 =

ke cos θ , ke = √
2me(μN + E), khz =

√
2me(μN − E) − k2,

and aσsσ ′s ′ (bσsσ ′s ′ ) is the Andreev (normal) reflection coef-
ficient. The first term of the wave function denotes an injected
electron, and the second (third) one denotes a reflected hole
(electron) with a reflection coefficient aσsσ ′s ′ (bσsσ ′s ′ ). On the
other hand, the wave function in the STI side (z > 0) is
given by Eq. (3) with the transmission coefficient tI . These
wave functions are connected at the interface (z = 0) by
the condition54 ψN(0) = ψSTI(0) and vNψN(0) = vSTIψSTI(0),
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FIG. 3. (Color online) The normalized tunneling conductances
G/GN near the structural transition of SABSs as functions of bias
voltage eV/� for the cone, caldera, ridge, and valley SABSs. The
values denoted in the panel are of μ/μN for each line.

with the velocity operator vN(STI) = ∂HN(STI)/∂kz|kz→−i∂z
. The

above equation determines the coefficients aσsσ ′s ′ , bσsσ ′s ′ , and
tI . Finally, the normalized charge conductance G is given by

G

GN
=

∑
σs

∫ 2π

0 dφ
∫ π/2

0 dθ sin 2θ Tσs(θ,φ,eV )∑
σs

∫ 2π

0 dφ
∫ π/2

0 dθ sin 2θ Tσs(θ,φ,0)|�=0

, (6)

with the angle resolved transmissivity Tσs(θ,φ,E) = 1 +∑
σ ′s ′ (|aσsσ ′s ′ |2 − |bσsσ ′s ′ |2) with kx = k cos φ, ky = k sin φ,

where the energy E of the injected electron is fixed at the
bias voltage eV .

In the following, the band mass of the normal metal is
fixed as mem2 = 1 for simplicity, and we set � = 0.6 meV
and m̃1 = −0.59 or m̃1 = −0.17. The other parameters are
the same as those used in Ref. 31, i.e., m0 = −0.28 eV, m2 =
56.6 eV Å2, vz = 3.09 eV Å, v = 4.1 eV Å, and μ̃ = −1.8. We
control the transmissivity of the normal metal/STI interface
by changing the value of μN . The transmissivity becomes
maximum in this model for μN/μ ∼ 0.6 since the magnitude
of the Fermi momentum in the normal metal coincides with
that in STI. As μN increases, the magnitude of transmissivity
is reduced.

The obtained tunneling conductances G/GN near the struc-
tural transition of SABSs as functions of bias voltage eV/�

are shown in Fig. 3. With the decrease of the magnitude of
transmissivity (μN/μ = 60,1200), the robust ZBCPs appear
stemming from the gapless SABSs in Fig. 2. Only for the
low transmissivity case with μN/μ = 1200, as shown in
Fig. 3(a), G/GN has a double-peak structure. The latter is
consistent with the fact that the corresponding surface local
density of states does not have a zero energy peak but a
double-peak structure.31 In junctions with high transmissivity
with μN/μ = 0.6, we obtain G/GN ∼ 2 for |eV | ∼ 0, which
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FIG. 4. (Color online) The normalized tunneling conductance
G/GN as a function of bias voltage for the BW state.

is also consistent with the fact that an injected electron is
almost perfectly reflected as a hole due to Andreev reflection.

We now focus on STI with �̂f . It is noted that the difference
in the line shapes of G/GN between Figs. 3(a) and 3(b)
can be understood from the different types of SABSs. In the
case of Fig. 3(b), a caldera SABS is realized, as shown in
Fig. 2(b). From Eq. (4), the slope of the dispersion of the
SABSs at k = 0 becomes gradual near the structural transition.
This enhances the surface local density of states at E = 0
and makes the ZBCP for the tunneling conductance in the
STIs. Thus the G/GN at eV = 0 is enhanced in comparison
with that for the cone-shaped SABS. As a result, even
in the low transparent limit μN/μ = 1200, no double-peak
structure of G/GN appears in Fig. 3(b). The present feature
is different from preexisting three-dimensional TSCs with
spin-triplet p-wave pairing realized in the Balian-Werthamer
(BW) phase of superfluid 3He, where, in contrast to Figs. 2(a)
and 2(b), the energy dispersion of the SABS becomes a
conventional Majorana cone.41–46 In this case, the angle
resolved transmissivity T (θ,φ,eV ) is given by

T (θ,φ,eV ) = σN

2

∑
s=±1

1 + σN |�|2 + (σN − 1)|�|4
|1 + (1 − σN )�2 exp(−2iθs)|2 , (7)

with the transmissivity at the interface σN given by
σN = 4 cos2 θ/(4 cos2 θ + Z2) (Ref. 53) and � = �/(eV +√

(eV )2 − �2). Z is a dimensionless constant that controls
σN , and � is the superconducting gap in this system. The
resulting tunneling conductance never shows a ZBCP,40 as
shown in Fig. 4. This difference comes from the absence of
the structural transition.

Next, we consider STI with �̂n, where the resulting SABS
has a quasi-one-dimensional energy dispersion. In the x

direction, SABS has a flat dispersion, as mentioned before
[Fig. 2(c)]. The present flat dispersion of the SABS makes a
ZBCP in G/GN for arbitrary lower transmissivity, as shown
in Fig. 3(c). When a valley cone is realized as the SABS
[Fig. 2(d)], G/GN at eV = 0 is enhanced [Fig. 3(d)].

Finally, we compare our results with the experimentally
observed tunneling spectroscopy in CuxBi2Se3. The tunneling
conductance in the Au/Ag/Cu0.3Bi2Se3 junction has been
observed in Ref. 31. From the lattice constants of Au and
Ag (a ∼ 4 Å),55 the Fermi momentum of the normal metal
is estimated as kF ∼ π/a ∼ 1 Å−1, which corresponds to
μN/μ ∼ 100 in our model. While in the actual system a barrier
layer suppressing transmissivity could be formed between
normal metal and STI, it can be taken into account as an
effective increase of μN/μ. Therefore, the experimental result
in Ref. 31 should be compared with ours for μN/μ > 100.
From Fig. 3, we find that the experimentally observed ZBCP
is consistent with �̂f and �̂n, both of which support ZBCPs
originating from Majorana fermions on the normal metal/STI
interface.

In conclusion, we have developed a theory of the tunneling
spectroscopy of STI. We have clarified the structural transition
of the energy dispersion of the SABS, i.e., cone-caldera
and ridge-valley transitions, which stems from the remaining
metallic surface states of the parent topological insulator.
In the vicinity of the structural transition of SABSs, even
in the full-gap superconducting case, the line shapes of
tunneling conductance show robust ZBCPs. On the other
hand, a typical three-dimensional topological superconductor
with a pair potential realized in the BW phase in superfluid
3He never shows a ZBCP. Our obtained results serve as a
guide to explore topological superconductors with Majorana
fermions.56–58
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