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Quantum phase transitions in bilayer SU(N) antiferromagnets
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We present a detailed study of the destruction of SU(N ) magnetic order in square lattice bilayer antiferromagnets
using unbiased quantum Monte Carlo numerical simulations and field theoretic techniques. We study phase
transitions from an SU(N ) Néel state into two distinct quantum disordered “valence-bond” phases: a valence-bond
liquid (VBL) with no broken symmetries and a lattice-symmetry-breaking valence-bond solid (VBS) state. For
finite interlayer coupling, the cancellation of Berry phases between the layers has dramatic consequences on the
two phase transitions: the Néel-VBS transition is first order for all N � 5 accesible in our model, whereas the
Néel-VBL transition is continuous for N = 2 and first order for N � 4; for N = 3 the Néel-VBL transition show
no signs of first-order behavior.
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The study of quantum phase transitions is an exciting field
at the forefront of theoretical condensed-matter physics.1 The
nature of a particular quantum phase transition is governed by
properties that affect long-distance physics, such as broken
symmetries, topological order, and the presence of Berry
phases, and is generally insensitive to microscopic details.
Quantum magnets provide the richest examples of quantum
phase transitions because they possess internal symmetries
in addition to the usual lattice and time-reversal symmetries
and because they often have nontrivial Berry phases in their
long wavelength descriptions.2 The most popular internal
symmetry group in condensed matter is the SU(N ) group.
Initial interest was focused on SU(2), and the case of N > 2
was introduced purely as a theoretical tool to access the
analytically solvable N → ∞ limit.3,4 However, in the ensuing
years it has come to be recognized that SU(N ) systems
with N > 2 but finite are interesting in their own right,
since they serve to model a number of physical systems
ranging from spin-orbit coupled solid-state materials5 to
ultracold atoms in optical lattice potentials.6 While the ground
states of SU(N ) spin models in one-dimensional chains
are relatively well understood,7,8 two-dimensional phases9–11

and their associated phase transitions are only poorly
understood.

In this work we address the destruction of the SU(N )
symmetry-breaking Néel order in the two-dimensional bilayer
system shown in Fig. 1(a). In the bilayer geometry the Berry
phases cancel between the two layers in the continuum limit,
allowing access to the phase transitions of interest without
the additional complication of quantum interference effects.
We have studied the properties of the phase transitions from
Néel order to two different types of paramagnetic states,
the valence-bond liquid (VBL) and the valence-bond solid
(VBS) [see Figs. 1(b) and 1(c)]. The Néel-VBL transition for
N = 2 has been studied extensively12–15 and is well known
to be continuous in the O(3) universality class. Here we
address the fate of this transition when N > 2. We find that
a simple Landau mean-field theory predicts a discontinuous
Néel-VBL transition for N > 2 and a continuous transition
for N = 2. Using unbiased quantum Monte Carlo simulations,
we confirm the expectations of the Landau theory, except for
N = 3, where we find no evidence for a first-order transition.

We show that if this transition is continuous, its universality
class should be identified with a critical point in the compact
CP2 model.16,17 The Néel-VBS transition in the single-layer
model has been predicted18 and numerically found to be
continuous and in the universality class of the noncompact
CPN−1 model for all N .19–21 We show that remarkably
the Néel-VBS transition, characterized by the same broken
symmetries, becomes first order in the bilayer geometry for all
N studied here (our model gives us access to N � 5), a striking
consequence of the cancellation of Berry phases between
layers.

Bilayer model. Our SU(N ) symmetric model is defined with
a local Hilbert space of N states on each site of the bilayer
square lattice illustrated in Fig. 1(a). We label these states
as |α〉 with 1 � α � N . We adopt the representation used
previously in both analytic3,4,22 and numerical21,23,24 works
on bipartite lattices, where the sublattice-A states transform
under rotations with the fundamental representation of SU(N )
[generated by the N2 − 1 matrices T a], and the B sublattice
states transform with the conjugate of this representation. We
consider two different SU(N ) invariant interaction: between
sites i and j on the same sublattice �ij ≡ ∑

a T a
i T a

j and
between sites on opposite sublattices Pij ≡ ∑

a T a
i T ∗a

j . Using
these interactions, we define a model SU(N ) symmetric bilayer
system as follows:

Hbil = −J1

N

∑
〈ij〉

Pij − J2

N

∑
〈〈ij〉〉

�ij − J⊥
N

∑
[ij ]

Pij , (1)

where 〈ij 〉 denotes nearest neighbors in the square lattice
layers, 〈〈ij 〉〉 denotes next nearest neighbors in the square
lattice layers, and [ij ] denotes interlayer bonds, as illustrated
in Fig. 1(a). The J1 term by itself gives the familiar single-layer
SU(N ) antiferromagnet, which is Néel ordered for N � 4
and VBS ordered for N � 5. Adding a J2 term to the J1

model favors the Néel state, causing the Néel-VBS transition
to move to arbitrary large N as J2 is increased.21 Finally,
when the J⊥ term is made large enough, it always favors the
formation of a VBL by forcing the formation of local singlets
[see Fig. 1(b)]. The model bilayer antiferromagnet, Eq. (1),
reduces to the familiar SU(2) bilayer model for N = 2 and
J2 = 0.
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FIG. 1. (Color online) (a) Bilayer geometry: The white (black)
sites are the A(B) sublattice on which spins transform as the fun-
damental (conjugate) representation of SU(N ). J1 connects nearest
neighbors in the plane, J2 connects next nearest neighbors in the
plane, and J⊥ connects sites on different layers. Panels (b) and
(c) show cartoon product wave functions of local singlets for the
VBL and VBS states. In reality, the ground state is a strongly
interacting superposition of all valence-bond coverings. The ground
state nevertheless (b) preserves all symmetries for the VBL, but
(c) breaks lattice symmetry (as shown) for the VBS. In this Rapid
Communication, we provide a detailed study of the Néel-VBL and
Néel-VBS quantum phase transitions.

Since Hbil satisfies Marshall’s sign criteria, it can be
simulated using unbiased quantum Monte Carlo methods on
large lattices of linear dimension L with 2 × L × L sites and
at finite-temperature T using the stochastic series expansion
method with loop updates .25–27 Néel order is detected by the
existence of a nonzero spin stiffness ρs = T 〈W 2〉 in the limit of
L → ∞, where W is the spatial winding number of the world
lines.27 Likewise, long-range order in the correlation func-
tion N2CV (r,τ ) = 〈P0,0+x(0)Pr,r+x(τ )〉 − 〈P0,0+x(0)〉2 signals
spontaneous translational symmetry breaking, that is, the onset
of VBS order. All the VBS ordering studied in our bilayer
system is of the columnar type [at momentum (π,0)] and is in
phase between the layers [see Fig. 1(c)]. We define O2

VBS in
the usual way as the long-distance limit of the VBS correlation
function. Finally, an absence of both long-range Néel and VBS
orders indicates the formation of a VBL state. Using these tests
for the three phases, Néel, VBS, and VBL, we have computed
the T = 0 phase diagram in the g⊥ − g2 plane (g⊥ ≡ J⊥/J1,
g2 ≡ J2/J1) for each N � 10. For N � 4, the model Eq. (1)
has only two phases: Néel and VBL [Fig. 1(b)]. For N � 5,
the model admits in addition a VBS phase [Fig. 1(c)]. Phase
diagrams for the bilayer model, Eq. (1), for SU(2), SU(4),
SU(6), and SU(8) symmetry are shown in Fig. 2. These
four cases contain all the types of phase diagrams we have
encountered in our study with N � 10. We now turn to the
main focus of our paper, a detailed analysis of the nature of
the Néel-VBL and Néel-VBS phase transitions that appear in
these phase diagrams for each N .

Néel-VBL. First, we analyze the transition between the Néel
state and the featureless fully symmetric valence bond liquid [a
cartoon of the VBL state is illustrated in Fig. 1(b)]. The Néel-
VBL transition in the bilayer model for N = 2 and J2 = 0
has been studied extensively.12–15 In the special case of N = 2
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Néel

Néel
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FIG. 2. (Color online) Phase diagram of the model Hbil defined
in Eq. (1) for SU(2), SU(4), SU(6) and SU(8) symmetry in the plane
of g2 ≡ J2/J1 and g⊥ ≡ J⊥/J1. The unfilled symbols are locations
of first order phase transitions, Néel-VBL (diamonds), Néel-VBS
(circles) and VBS-VBL (squares). The solid black circles mark
continuous transitions. For SU(2), the line of Néel-VBL critical points
shown are in the universality class of the O(3) non-linear σ−model.
For SU(6) and SU(8) the Néel-VBS transitions shown are in the
universality class of the non-compact CPN−1 models (with N = 6,8
respectively). Solid lines and shaded regions are guides to the eye.

the order parameter describing the SU(2) symmetry breaking
can be written as an O(3) vector. The absence of Berry phases
in the bilayer geometry then allows for the description of the
critical point in terms of the well-known O(3) nonlinear σ

model.2 This simple mapping has no known generalization
for N > 2. For general N , the simplest description of the
Néel-VBL phase transition is found by writing a Landau theory
for the order parameter of the SU(N ) antiferromagnet. Such a
description contains both the Néel and VBL phases, since the
VBL is featureless and can be thought of simply as a phase in
which the SU(N ) order parameter is quantum disordered. The
appropriate order parameter is an N × N traceless Hermitian
matrix, Qαβ , which transforms as Q → UQU † under SU(N )
rotation. In our model, Eq. (1), such a matrix can be constructed
microscopically from a local operator defined as, Q̂αβ(i) ≡
|α〉i〈β|i − 1/N on the A sublattice and Q̂αβ(i) ≡ |β〉i〈α|i −
1/N on the B sublattice. We can now coarse grain this local
operator to obtain the order parameter, Q, and write down
a Landau theory action, which being SU(N ) invariant must
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FIG. 3. (Color online) Néel-VBL: The spin stiffness ρs close to
the Néel-VBL transition for SU(2), SU(4), and SU(6). The SU(2)
transition is continuous and in the O(3) universality class. The
quantity ρs for SU(4) and SU(6) show signs of steplike behavior.
Close to the step we find double-peaked histograms (see Fig. 4)
characteristic of a first-order transition. The Néel-VBL transition
shows such first-order behavior for all N � 4. The parameters used
are g2 = 0.8 for SU(2), g2 = 0.4 for SU(4), and g2 = 0.6 for SU(6).
The legend shows the value of L; we have set J1β = L everywhere.

consist of traces of powers of Q.

SL = αLTr(Q2) + βLTr(Q3) + γLTr(Q4). (2)

Once the order parameter acquires an expectation value,
we can do an SU(N ) rotation to obtain a diagonal form
for Qαβ = m(δα1δβ1 − δαβ/N), which is the analog of a
“collinear” magnet and the quantity m is the condensate. If we
now substitute the diagonal form for Q in SL we can see that
generally cubic terms in m are present in the action for N > 2.
In the mean-field approach for N > 2 such terms will render
the phase transition first order, very much like the first-order
nematic-isotropic transition in liquid crystals.28 When N = 2,
it is easy to see that Tr(Q3) evaluates to zero and does not
give rise to a cubic m term, making a continuous transition
possible. Indeed by identifying nx = (Q12 + Q21)/2, ny =
(Q12 − Q21)/2i, nz = Q11, and including gradient terms in
the action, we arrive at the well-known O(3) σ model for the
	n = (nx,ny,nz) order parameter.

Consistent with the above Landau theory we confirm from
our numerical simulations (see Figs. 3, 4, and 5) that the
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FIG. 4. Néel-VBL: Hysteresis and double-peaked histograms at a
first-order Néel-VBL transition in the SU(6) bilayer. In the main frame
we show a sample Monte-Carlo history of the binned squared spatial
winding number, W 2, which shows clear evidence for metastability.
The inset shows a histogram for the same quantity, with clear
double-peaked structure. This behavior is found only very close to the
transition and for sufficiently large volumes, providing unambiguous
evidence for a first-order transition. Here it is shown for L = 32,
g2 = 0.6, and g⊥ = 1.36.
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FIG. 5. (Color online) Néel-VBL: Crossings of the fluctuations
of the spatial winding number at the Néel-VBL transition for SU(2)
and SU(3). In both cases up to sizes of L = 128 we see good evidence
for a nice crossing, indicating a continuous transition. No evidence
for first-order behavior was found in these two cases.

Néel-VBL phase transition is continuous for N = 2 [and in the
O(3) universality class] and first order for N � 4. The first-
order transitions get progressively weaker as N is lowered.
Indeed for N = 3 we find no evidence for a discontinuous
transition up to L � 12817 (see Fig. 5). If the SU(3) Néel-VBL
transition is continuous, what is the continuum field theoretic
description? Does the field theory admit a critical fixed point?
The continuum description of the Néel-VBL phase transition
in our SU(N ) bilayer Hamiltonian is a CPN−1 field theory with
a compact U(1) gauge field. In order to make this connection,
we introduce N complex numbers zα with the constraint∑

α |zα|2 = 122 and use them to rewrite Qαβ = z∗
αzβ − δαβ/N .

This representation has a well-known U(1) gauge redundancy,
which can be made explicit with the introduction of a gauge
field aμ in the long wavelength effective action, the famous
CPN−1 model description,

S =
∫

d2xdτ

[
1

g
|(∂μ − iaμ)zα|2 + FαβFαβ

]
, (3)

where Fαβ = ∂αaβ − ∂βaα is the electromagnetic tensor. Fol-
lowing previous work on quantum antiferromagnets,29,30 it is
clear that in order for the above field theory to possess the
VBL state of the bilayer system when J⊥ 
 J1,J2, the gauge
field aμ must be compact. The Higgs phase with zα condensed
corresponds to a phase with SU(N ) symmetry breaking, and
we identify this phase with the Néel phase. On the other
hand, in the phase where zα is massive, the photon mode gets
confined because of the compactness of the gauge field and
Polyakov’s mechanism of monopole proliferation, resulting in
a simple fully gapped paramagnet, which we identify with the
VBL phase, Fig. 1(b). Thus the SU(N ) Néel-VBL transition
in our bilayer can be described in the continuum limit by
the Higgs “confined phase” transition in the compact CPN−1

theory. Recent work16 has found that a lattice discretization of
the compact CPN−1 field theory has a continuous transition for
N = 2,3 and a first-order transition for N � 4. Remarkably,
this is in full agreement with our findings here for the SU(N )
bilayer, strengthening the evidence for our identification of a
continuous transition between Néel and VBL for N = 3. A
detailed study of critical singularities of the SU(3) Néel-VBL
fixed point will be presented elsewhere.
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FIG. 6. (Color online) Néel-VBS: First-order nature of the Néel-
VBS transition in the two-dimensional square lattice bilayer. Both
O2

VBS and ρs show evidence for steplike behavior at the same g⊥.
Close to the jump we find the same kind of double-peaked behavior
in ρs that is illustrated in Fig. 4. Here we have shown sample data
for N = 8 and g2 = 0.8. Similar behavior is found for all N studied
here.

Néel-VBS. We now turn to the transition between the Néel
and translational symmetry breaking valence-bond solid state
[the VBS state is illustrated in Fig. 1(c)]. For a single layer
the Néel-VBS transition in the model defined by Eq. (1) was
found to be continuous21 as predicted by the “deconfined”
field theoretic arguments.18 While it is clear that the Néel and
VBS phases are individually stable to a small but finite g⊥, the
interlayer coupling is expected to be strongly relevant at the
fixed point of decoupled deconfined quantum critical points.
What is the fate of the Néel-VBS transition in the bilayer
geometry? From a theoretical point of view, in the bilayer
geometry the cancellation of Berry phases negates the quantum
interference effects that are crucial to the deconfined quantum

criticality scenario.18 In the absence of such effects one expects
the restoration of the conventional Landau paradigm, where
the direct transition between two symmetry-breaking states is
necessarily first order independent of the value of N . Indeed
as illustrated in Fig. 6 from our QMC simulations we find
that the Néel-VBS phase transition is always first order in
the bilayer geometry. In our model we only have access to
this transition for N � 5 and in these cases we always find
a first-order transition. This is a remarkable effect since the
phase transition in the single layer and in the bilayer is in both
cases between the same two phases, that is, characterized by
exactly the same sets of broken symmetries and in the same
spatial dimension. The difference in the long-distance physics
between the bilayer and single layer, much like the Haldane gap
in one dimension, is purely due to the presence (cancellation)
of the Berry phases in the single (bilayer) systems.

In conclusion we have presented a detailed analysis of
two sets of quantum phase transitions in bilayer SU(N ) spin
systens: First, we have studied the fate of the popular12–15

bilayer SU(N = 2) Néel-VBL transition for the case N > 2,
and second, we have studied the fate of the SU(N ) Néel-VBS
deconfined critical point18,21 for a single layer in the bilayer
geometry. We have found that the N = 2 continuous Néel-
VBL phase transition remains continuous for N = 3 (in the
universality class of the compact CP2 model16), becoming
first order for N � 4, and that the cancellation of Berry phases
in the bilayer geometry restores Landau’s paradigm for the
Néel-VBS transition, resulting in a first-order phase transition
between two phases with distinct broken symmetries.
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