
RAPID COMMUNICATIONS

PHYSICAL REVIEW B 85, 180401(R) (2012)

Quantum depinning of the magnetic vortex core in micron-size permalloy disks
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The vortex state, characterized by an in-plane closed flux domain structure and an out-of-plane magnetization
at its center (the vortex core), is one of the magnetic equilibria of thin soft ferromagnetic micron-size dots. In the
past two decades many groups have been working on the dynamics of the magnetic moment in nanomagnetic
materials at low temperatures, giving rise to the observation of quantum relaxations and quantum hysteresis
cycles. We report experimental evidence of quantum dynamics of the vortex core of micron-size permalloy
(Fe19Ni81) disks induced by the application of an in-plane magnetic field. It is attributed to the quantum tunneling
of the vortex core through pinning barriers, which are associated with structural defects in the dots, toward its
equilibrium position.
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In the absence of applied magnetic field, micron-size disks
of soft ferromagnetic materials exhibit the vortex state as
the magnetic equilibrium of the system.1–3 Several techno-
logical and biomedical applications of this state have been
explored, such as nonvolatile memory devices,4 biomolecular
carriers,5 and targeted cancer-cell destruction.6 The vortex
state is characterized by a curling magnetization and an
out-of-plane magnetic core, whose size is comparable to the
material’s exchange length (∼6 nm). A striking feature is
the vortex core entirely governing the low frequency spin
dynamics: The excitation spectrum of these micron-size disks
is characterized by the gyrotropic mode, corresponding to
the spiral-like precessional motion of the vortex core as a
whole.7,8

The vortex core is a suitable candidate to observe macro-
scopic quantum phenomena. Because of the strong exchange
interaction it behaves as an independent entity and, the
vortex core being a nanoscopic object, it is feasible that
it exhibits quantum tunneling between classically stable
configurations. The measurement of time relaxations of the
magnetic moment is a simple way to observe this phenomenon.
At finite temperature these relaxations may occur via thermal
activation, whereas in the limit T → 0 these relaxations
continue independently of the temperature due to underbarrier
quantum tunneling. Macroscopic quantum tunneling9 (MQT)
determines that the relaxation rate decreases as exp(−Seff),
with Seff the total action (including dissipation) evaluated at the
magnetic thermon for a given temperature. This behavior has
been widely observed in a large number of systems,10 which
include single domain particles,11,12 magnetic clusters,13 mag-
netic domain walls,14 flux lines in type-II superconductors15

and, very recently, normal-superconducting interfaces in type-I
superconductors.16 All these experimental evidences suggest
that magnetic tunneling is a common phenomenon character-
izing the low-temperature dynamics of magnetic materials in
the mesoscopic scale.

The application of an in-plane magnetic field yields the
displacement of the vortex core perpendicularly to the field
direction2 [see Fig. 1(b)]. It has been previously reported
that the dynamics of the vortex core can be affected by
the presence of structural defects in the sample.17,18 In

the present Rapid Communication we explore the magnetic
irreversibility and the dynamics of vortex cores in micron-size
permalloy dot arrays at low temperatures by means of the
application of an in-plane magnetic field. We report experi-
mental evidence of the quantum depinning of magnetic vortex
cores.

All measurements were performed in a commercial super-
conducting quantum intereference device (SQUID) magne-
tometer capable of measuring at temperatures down to 2 K
and to applying magnetic fields up to 5 T. The system is
equipped with a continuous low temperature control (CLTC)
and an enhanced thermometry control (ETC) and it showed
a thermal stability of better than 0.01 K at all times in
any isothermal measurement. We have studied an array of
permalloy disks with diameter 2R = 1.5 μm and thickness
L = 95 nm. Its surface density is 0.15 dots/μm2. Figure 1(a)
shows an antiferromagnetic (AFM) image of this array, the
perspective being at 45◦. The array of permalloy disks was
fabricated on a silicon wafer using optical lithography, and
lift-off techniques: A single layer resist spin coating and highly
directional electron-beam evaporation under UHV conditions
were used to obtain circular dots with sharp edges. Identical
properties of magnetic material, such as grain size, distribution,
orientation, and film thickness, may be obtained over the whole
array. The magnetic film was deposited on a water-cooled
substrate from a permalloy (Fe19Ni81) target. The growth
ratio was 1.5 Å/s. The 95 nm Py film showed a switching
field of about 4 Oe and appeared to be fairly isotropic (in
plane). Finally, the sample was prepared by stacking four
5 × 5 mm2 of these arrays with parallel sides, and all magnetic
measurements were performed using an in-plane configuration
for the applied magnetic field. The sample was studied in the
temperature range of 2–300 K and under applied magnetic
fields up to 2 kOe.

Figure 2 shows the M(H ) curves in the range of posi-
tive applied magnetic fields, at different temperatures. For
the negative range, the cycles are antisymmetric. The first
magnetization curves have been omitted. Notice that these
hysteresis loops correspond to the single domain (SD) ↔
vortex transitions.1,3 As the temperature is lowered, the
nucleation field Hn decreases and the annihilation field Han
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FIG. 1. (Color online) (a) AFM image of the array of permalloy
disks studied. The angle of the perspective view is 45◦. (b) Spin field
of the vortex state in one of the permalloy disk considered in (a). The
vortex core is displaced transversely to the direction of the applied
field H .

increases (as reported in Ref. 19). For the range of temperatures
explored, the vortex linear regime in the descending branch
should extend from 300 Oe to at least −500 Oe. This
has been confirmed by studying the numerical derivative of
the dc hysteresis loop and measuring the corresponding ac
susceptibility for comparison, a method introduced in Ref. 20.
The inset of Fig. 2 shows the numerical derivative dM/dH of
these loops along the descending branch for positive applied
magnetic fields. Notice the plateau in these derivatives for the
field range 0–300 Oe, which is a characteristic feature of the
linear regime. The ac susceptibility measurements showed a
similar behavior to the one depicted in Ref. 20. On the other
hand, the descending and ascending branches do not overlap
at any temperature over the whole linear regime. Furthermore,
the remanent magnetization increases when T decreases.17

In conclusion, the vortex linear regime exhibits magnetic
irreversibility and it is temperature dependent. Consequently,
we proceed to explore the metastability of vortices by means
of (i) zero field cooled–field cooled (ZFC-FC) curves (MZFC

and MFC) at different magnetic fields, and (ii) isothermal
measurements of the magnetization along the descending
branch of the hysteresis cycle [Mdes(H )], from the SD state, at
different T . In both (i) and (ii) the values of T and H at which
the magnetization has been measured were the same.

FIG. 2. (Color online) M(H ) loops obtained at different temper-
atures (2, 50, and 300 K) for the range of positive applied magnetic
fields. The size of the points is bigger than the error bars. The
inset shows their numerical derivative dM/dH along the descending
branch.

(a)

(b)

FIG. 3. (Color online) (a) Temperature dependence of
MZFC(300 Oe) and MFC(300 Oe) in the range 2–150 K. (b) Plot of
Mdes(300 Oe), together with MZFC(300 Oe) and MFC(300 Oe), in the
range 2–30 K. See text for details.

The ZFC process consists of first performing minor cycles
around H = 0 Oe at T = 150 K (in order to get a zero mag-
netization state at H = 0 Oe). Second, the sample was cooled
down to T = 2 K without applied magnetic field, and, third, a
desired magnetic field H was applied. Then, the ZFC magne-
tization curve was measured from 2 to 150 K. Sweeping back
the temperature to 2 K we follow the FC curve. Figure 3(a)
shows the ZFC-FC curves obtained at H = 300 Oe.
The magnetization increases strongly from an initial value
at 2 K to a maximum in the vicinity of T ∼ 30 K. Then it
decreases smoothly and reaches a plateau. The dependence
of the FC curve on T is similar to that of the ZFC case
at high temperatures but with slightly higher values of M .
In the vicinity of T ∼ 20 K, the magnetization of the FC
rises strongly, reaching its maximum value at T = 2 K.
This temperature dependence of both MZFC(H ) and MFC(H )
is characteristic of the range of applied magnetic fields in
the linear vortex regime. Additionally, isothermal magnetic
measurements along the descending branch of the hysteresis
cycle [Mdes(H )] have been measured: First, we fixed the
temperature T and then we saturated the sample to the SD state
by applying H = 1 kOe. Second, we swept the magnetic field
to a desired value, following the descending branch Mdes, and
finally we measured the magnetization. In both protocols we
took measurements at the same values of T . Figure 3(b) shows
Mdes(300 Oe) obtained in the range 2–30 K, together with
MZFC(300 Oe) and MFC(300 Oe). The values of Mdes(300 Oe)
decrease strongly when T increases in the range 2–20 K and
above T ∼ 30 K tend smoothly to the FC curve (not shown).
The divergence between the MZFC, MFC, and Mdes curves in the
range T = 2–20 K indicates the existence of a strong magnetic
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irreversibility in this region, and therefore we will focus on this
range from now on.

In order to confirm that the FC curve is the magnetic equi-
libria of the system, we performed two sets of measurements
of the isothermal time evolution of the magnetization M(T ,t)
when sweeping the temperature in increments of 1 K per
30 min, (a) from 15 to 2 K and (b) from 2 to 15 K (see Ref. 21).
The initial magnetic state for each set was prepared by means
of the above ZFC process to the desired temperature, followed
by the application of a magnetic field H = 300 Oe. In (a) it
is only observed magnetic relaxation of the sample at 15 and
14 K, which quickly reaches a stable value corresponding to the
FC one. From this point on, sweeping the temperature down
to 2 K only leads to a variation of the magnetization of the
sample following the values of the FC curve. Here (b) shows
that, in the whole range of temperatures, the magnetization
relaxes. The initial value of each relaxation follows the time
evolution of the previous one. Moreover, the amount of relaxed
magnetization is approximately the same for T = 2–9 K and
it decreases progressively for 10–15 K with magnetization
values tending to the FC ones.

We explored the metastability of the system more deeply
by performing relaxation measurements in the vortex linear
regime. The amount of magnetization available for relaxation
is M0 − Meq, where M0 is the initial magnetization value and
Meq corresponds to the equilibrium magnetization. Because
of this [see Fig. 3(b)], we will focus our study on the
relaxation measurements of vortices from the metastable states
of the descending branch. Figure 4(a) shows the normalized
irreversible magnetization [left-hand term of Eq. (1)] versus

(a)

(b)

FIG. 4. (Color online) (a) Normalized irreversible magnetization
vs ln t curves measured at T = 2 K for H = 0 and 300 Oe.
(b) Temperature dependence of the magnetic viscosity S(T ) at H = 0
and 300 Oe. See text for details.

ln t curves measured for two different applied fields (H = 0
and 300 Oe) at the same temperature (T = 2 K). Only below
T ∼ 15 K does the magnetization of the sample fit very well to
a logarithmic time dependence. In this range of temperatures,
the magnetic viscosity S(T ) of the sample can be calculated
by means of the theoretical formula10

M(t) − Meq

M0 − Meq
= 1 − S(T ) ln t. (1)

Figure 4(b) shows the viscosity, as a function of T , for two
different magnetic fields. In both curves we observe a plateau
at low temperatures and, what is more important, it does not
extrapolate to zero in the limit T → 0. In the vicinity of T ∼
7 K, the viscosity increases up to the temperature ∼11 K,
from which it decreases. Relaxation measurements from the
ZFC curve with different applied magnetic fields were also
performed, obtaining similar results for the viscosity.

A logarithmic time dependence of the magnetization in
relaxation measurements indicates the existence of a broad
distribution of energy barriers U in our system. Classically,
these energy barriers can be overcome by thermal activation,
whose probability is proportional to the Arrhenius factor
exp(−U/T ). The so-called blocking temperature TB sets
apart both reversible (T > TB) and irreversible (T < TB)
regimes when the sample is externally perturbed. Despite
the slight differences between MZFC and MFC and between
Mdes and MFC at high temperatures, the strong divergence
of magnetization observed in these curves suggests that the
blocking temperature should be below T ∼ 20 K.

Conventionally, the blocking temperature for weakly inter-
acting systems can be estimated as the temperature at which
the magnetic viscosity reaches its maximum.10 From our data
TB ∼ 11 K, which is in good agreement with the gradual loss of
logarithmic time dependence of our relaxation measurements
at T � 15 K. Notice that thermal activation of energy barriers
dies out in the limit T → 0. Therefore, our observation that
magnetic viscosity S(T ) tends to a finite value different from
zero as T → 0 indicates that relaxations are nonthermal in
this regime, i.e., transitions from metastable states are due to
underbarrier quantum tunneling. This interpretation is upheld
by the M vs T ln(t/τ0) graphic representation.12 The time τ0

is the so-called characteristic time attempt of the system and
we have estimated its value to be22 τ0 ∼ 10−11 s, so that all
magnetic relaxation curves only scale for temperatures above
Tc ∼ 9 K (see Fig. 5). This loss of scaling corresponds to
the quantum regime case and is independent of the energy
barrier distribution. The increase of the viscosity between Tc

and TB corresponds to the thermal overcoming of the pinning
energy barrier (thermal regime). Above TB , the decrease of
the viscosity when increasing the temperature corresponds
to the fact that there is a lower number of magnetic vortex
cores in metastable states that should relax to the equilibrium
magnetization, that is, magnetic irreversibility decreases with
temperature.

The onset of irreversibility appears to sweep the external
magnetic field for both the ZFC curve and the descending
branch. The effect of this field is to move the vortex core
along the disk surface and the observed irreversibility should
come from this movement. Recent experimental data report the
existence of some sort of structural defect in the disks,18 which
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FIG. 5. (Color online) Magnetization vs T ln t curve measured
at H = 300 Oe. Above T ∼ 9 K, we verify the scaling M =
M[T ln(t/τ0)], which corresponds to the case of thermal relaxation.
Below T ∼ 9 K we find a breakdown of this scaling, which
corresponds to the quantum regime case.

could be a feasible origin of the energy barriers responsible for
the magnetic dynamics of the system. In the light of this, we
consider these defects are capable of pinning the vortex core.
Therefore, the relaxation of the sample could be understood as
simply the dynamics of the vortex core when escaping from
the pinning centers toward the equilibrium.

The vortex core is described as a zero-dimensional object
whose dynamics is ruled by Thiele’s equation.7 The corre-
sponding Langrangian is given by L = Gyẋ − W (r), where
r = (x,y) are the coordinates of the vortex core in the XY

plane, G is the modulus of its gyrovector, and W (r) is the total
magnetic energy of the system. To incorporate the smallest
pinning barriers into the model we treat the vortex core
as a stack of pancake vortices, one in each atomic layer.
This pancake structure shows a finite rigidity in the vertical
dimension, which means that these layers interact elastically
among them. We consider that just a small vertical segment of
the vortex core takes part in the tunneling through the pinning
barrier, whose length is l � L. Finally, we model the vortex
core as being a flexible line that goes predominantly along the ẑ

direction, so that r = r(z,t) is a field depending on the vertical
coordinate of the vortex core z. The whole magnetic energy
(including the elastic and the pinning potential) is described
via23 W (r) = −μhx + 1

2κ(x2 + y2) − 1
4βx4 + λ

2 ( ∂r
∂z

)2, where
μ and h are the magnetic moment of the dot and the modulus
of external magnetic field (which is applied in the ŷ direction),
respectively, λ is the elastic coefficient of the pancake
structure, and κ and β are the parameters of the potential
energy. Within the framework of the Caldeira-Leggett theory,9

and from the above Lagrangian, the depinning exponent
becomes23

Seff(T ,ε) = 1

20
√

2

κG

h̄β

∫
dz̄

∮
dτ̄

[
1

2
u̇2 + 1

2
(u′)2 + V (u,ε)

+ η

2
√

2πG

∫
R

dτ̄1
[u(z̄,τ̄ ) − u(z̄,τ̄1)]2

(τ̄ − τ̄1)2

]
, (2)

where τ̄ ,z̄ are dimensionless imaginary time and space coor-
dinates, respectively, η is the dissipative constant, V (u,ε) =

−εu + u2 − u4

4 is the normalized energy potential, ε =
2
√

2β/κ3μh, and u is the thermon solution of the tunneling
process. Assuming a second-order transition for thermal to
quantum relaxation, the crossover temperature Tc can be
calculated from the depinning exponent by means of Ginzburg-
Landau’s theory for second-order phase transitions.24 In the
absence of an applied magnetic field (h = 0), Tc and the height
of the barrier U become23

kBTc 	
√

5
h̄κ

2πG
, U = κ2

4β
, (3)

where the modulus of the gyrovector is given by the formula
G = 2π (+1)lMs/γ , so that it is related to the tunneling
vertical segment.

A comparison of the theoretical model with the experimen-
tal results leads to the determination of the parameters (κ,β):
First of all, notice that l cannot be smaller than the material’s
exchange length because, otherwise, the deformation of the
vortex core line would be energetically unfavorable to the
system. The same happens if l is much bigger than this
exchange length. So it should be l ∼ lex = √

2A/μ0M2
s 	 6

nm, where A = 1.3 × 10−11 J/m is the exchange constant
and Ms = 7.5 × 105 A/m is the saturation magnetization
of permalloy. The value of the modulus of the gyrovec-
tor is G = 2π (+1)lMs/γ = 1.62 × 10−13N s/m [γ = 1.76 ×
1011 (T s)−1]. Experimentally, we have Tc ∼ 9 K for the H = 0
Oe case, too, from which we deduce the value κ ∼ 0.5J/m2.
On the other hand, for a measurable tunneling rate Seff should
be in the vicinity of 30. As Seff = cκG/2

√
2h̄β with c being a

numerical factor of order unity resulting from the integration,
we have the following estimate of the coefficient β, β ∼
κG/60

√
2h̄ = 9.8 × 1018 J/m4. Finally, from these values we

can estimate the width of the energy barrier, which is given by
the expression LB = √

2κ/β ∼ 0.3 nm. Furthermore, we can
also estimate the order of magnitude of the height of the barrier
(mean value), U ∼ 250 K, which is in good agreement with
the value given by the blocking temperature. These estimates
are feasible values because pinning happens at the atomic
level.

In conclusion, nonthermal dynamics of magnetic vor-
tices in micron-size permalloy disks is reported. It is at-
tributed to the quantum depinning of vortex cores through
the structural defects of the sample, in steps of about
0.3 nm.
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