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Majorana qubit decoherence by quasiparticle poisoning
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We consider the problem of quasiparticle poisoning in a nanowire-based realization of a Majorana qubit, where
a spin-orbit-coupled semiconducting wire is placed on top of a (bulk) superconductor. By making use of recent
experimental data exhibiting evidence of a low-temperature residual nonequilibrium quasiparticle population in
superconductors, we show by means of analytical and numerical calculations that the dephasing time due to the
tunneling of quasiparticles into the nanowire may be problematically short to allow for qubit manipulation.
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I. INTRODUCTION

Devising a physical system where to experimentally ob-
serve for the first time the presence of Majorana fermions
has become in the last years a serious and stirring challenge
in the condensed-matter physics community. Apart from the
importance per se of observing the signature a Majorana
fermion, the strong hope is to realize a Majorana-based qubit,
which would offer an intrinsically improved protection against
decoherence due to the peculiar delocalized structure of the
Majorana state itself. For example, in the setup we consider,1–4

a topological superconducting state (TSC) in a semiconducting
nanowire is created with a midgap mode d

†
end at energy

εend � 0, whose wave function is strongly localized at the two
ends of the nanowire. Such topological state can be induced
through the combined effect of s-wave pairing, spin-orbit
coupling, and magnetic field.2–4 The superconducting pairing
is inherited most typically via proximity effect from a bulk
superconductor placed below the wire (around the wire in
some proposals). Even without restricting ourselves to this
specific setup, superconductivity is a key ingredient needed in
essentially all the proposals to produce observable Majorana
excitations in condensed-matter systems. The considerations
we make in this paper are thus qualitatively valid and relevant
for a wide range of configurations, while the quantitative
results are specific to the proximized nanowire setup.

The zero-energy many-body excitation dend in the TSC can
be exploited to store information in an ideally dephasing-free
qubit. Defining the |0〉 state as the many-body state where the
dend is empty, and correspondingly, |1〉 ≡ d

†
end|0〉, the subspace

spanned by |0〉 and |1〉 is a degenerate ground-state subspace,
which offers intrinsic protection against dephasing. However,
coherent states of the type (|0〉 + eiφ|1〉) cannot be prepared,
because there is no physical coupling that could create such
superposition. Strictly speaking, then, a system where the
states |0〉 and |1〉 differ by fermion parity (occupation of a
single BCS-like mode) cannot be used as a qubit. To obtain a
proper quantum bit, one needs at least two of these zero-energy
states, that is, four Majorana fermions. In such case, there are
four degenerate states:

|00〉 ≡ |0〉end,1 ⊗ |0〉end,2, |10〉 ≡ d
†
end,1|00〉,

|01〉 ≡ d
†
end,2|00〉, |11〉 ≡ d

†
end,1d

†
end,2|00〉.

The states |00〉 and |11〉 (possible choice for the qubit) share
now the same fermion parity, and if we choose them as qubit

computational states, coherent superpositions are possible
thanks to the superconducting pairing that induces fluctuations
in the number of electrons, in jumps of two, due to the hopping
in and out of Cooper pairs.

If the superconductor can only exchange Cooper pairs and
not single, unpaired electrons with the wire, then the fermion
parity (i.e., the number of electrons modulo two) is conserved.
This is at the base of the protection these systems benefit.5,6

If instead single electrons could enter the nanowire, then
the system would be driven out of the topological subspace
{|00〉,|11〉}, populating |10〉, |01〉 or some higher-energy states.
In the case of a single TSC segment, with only one zero-energy
mode, the presence of unpaired electrons would instead cause
σx errors, causing transitions |0〉 → |1〉 and vice versa.

There have already been a couple of works7,8 pointing out
that Majorana-based qubits are prone to standard decoherence
mechanisms when one allows for single-electron tunneling
from a generic external (noisy) environment. The specific
phenomenon of the possible disturbing presence of unpaired
electrons in the superconductor, dubbed “quasiparticle poi-
soning,” constitutes a similar but more subtle problem, since
the tunneling electrons are coming from the superconductor
itself, which is an indispensable ingredient in these type of
proposals. The issue has already been taken into consideration
in the Majorana-fermion community9–11 but, to the best of
our knowledge, no explicit estimation has been made for
a specific setup. Rather, some estimates for quasiparticle
tunneling rate from the superconductor into the wire have
been borrowed from some recent experiments dealing with
equilibrium superconductivity.12 In such experiments, like
in several other investigations before,13–16 low-temperature
quasiparticle poisoning has been observed, and evidence
has been provided that the quasiparticle density does not
drop to zero at the smallest temperatures, as predicted by
theory, but rather saturates to a constant value. A clear
and widely accepted explanation for this phenomenon is
still lacking, but the observation of excess quasiparticles
has been repeatedly confirmed. For instance, a very recent
experimental investigation on quasiparticle kinetics inducing
energy relaxation in a transmon qubit has measured poisoning
times below microsecond.17

In an ideal superconductor at zero temperature, all electrons
are forming Cooper pairs and out of the condensate no
quasiparticles exist.18 At finite but small temperature, the
average density of quasiparticles in a superconductor at
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equilibrium follows the activation behavior (kB = 1)

neq
qp = 2νn

S

√
2πT �S exp(−�S/T ), (1)

valid at T < �S, with νn
S the normal-state, single-spin density

of states at the Fermi level, T the temperature, and �S the
energy gap of the superconductor. The corresponding average
quasiparticle recombination time (lifetime) is evaluated as19

τr = τ0√
π

(
Tc

2�S

) 5
2
√

Tc

T
e�S/T ∝ 1

nqp
, (2)

where Tc is the critical temperature of the superconductor
and τ0 a material dependent, characteristic electron-phonon
interaction time. Equations (1) and (2) predict a very low
quasiparticle density and correspondingly a very long quasi-
particle lifetime at temperatures T 	 Tc. As anticipated above,
experimental data show agreement to the exponential behavior
Eq. (2) only for not-too-low temperatures. For instance,
the work in Ref. 12 obtains a zero-temperature saturation
τr ∼ 2 ms in the quasiparticle lifetime for temperatures below
160 mK, and a corresponding saturating quasiparticle density
nqp ∼ 25–55 μm−3. These large quaisparticles lifetimes of the
order of ms have been sometimes used in the literature as an
estimate for the tunneling rate of quasiparticles into the TSC
nanowire, i.e., an estimate for the qubit lifetime, leading to the
conclusion that quasiparticle poisoning is not a serious issue.

Such experiments,12 however, analyze the quasiparticle
lifetime τr in an isolated superconducting system (two-
dimensional in the case of Ref. 12), and not in a hybrid structure
where two subsystems are put into contact, and a subsystem
can be poisoned by the other one.

Here, we would like to stress that the rate of tunneling
into the qubit subsystem (the nanowire), and thus the average
dephasing time of our Majorana qubit, is not given by the
quasiparticles lifetime as measured in an isolated superconduc-
tor. Indeed, for example, in the case of our SC/TSC junction,
quasiparticles in the superconducting reservoir can well tunnel
into the TSC wire and tunnel out again, many times before a
recombination event may take place after the typical time τr.
Since even a single detour of the quasiparticle into the qubit
part of the system could destroy the coherence of the qubit
itself, it is important to calculate or measure explicitly the
tunneling rate of quasiparticles 	qp into the nanowire. To this
end, we adopt a well-established formalism, already employed
in earlier calculations for 	qp, which were performed for
the case of Josephson qubits, adapting them to the present
case of a SC interfaced to a TSC nanowire. We demonstrate
that, depending on the parameters, the tunneling rate of
quasiparticles can vary in the range 0.1–100 MHz, imposing
therefore a much more serious constraint on the feasibility of
error-free qubit manipulation. This becomes particularly clear
in the last section of this paper, where we produce quantitative
estimates for the poisoning rate in typical configurations, and
we compare them with the time scales required for adiabatic
computations.

II. CALCULATIONS

The system we consider is constituted by a bulk s-wave
superconductor in tunnel-contact with a TSC nanowire. Gap

magnitudes �S and �T in the SC and in the TSC need not
be the same. Rather, the topological gap �T is always smaller
than �S, for two reasons: (i) the proximity-induced gap is in
general smaller than the parental gap �S, depending on the
transparency of the interface SC/TSC;20 (ii) the topological
p-wave gap �T is only a fraction of the induced s-wave
amplitude, and strongly depends on the values of magnetic
field, spin-orbit coupling,4 and even on the electron-electron
interaction.21

The bulk superconductor is described by a standard BCS
Hamiltonian HSC, whose eigen-excitations are bogolons βkσ

with energy ES(k) =
√
ξ 2
k + �2

S=
√

(h̄2k2/2m − μ)2 + �2
S:

HSC =
∑
kσ

ES(k)β†
kσ βkσ . (3)

As mentioned above, the nanowire can be driven into a
topological superconducting phase by means of the com-
bined effect of spin-orbit coupling, Zeeman interaction and
superconducting pairing.4 The topological phase is reached
by tuning the chemical potential within the gap opened by
the Zeeman interaction between the two chirality bands, and
singling out in this way a single pair of Fermi points. In
terms of this single effective degree of freedom, the original
s-wave superconducting interaction becomes of p type. The
low-energy effective Hamiltonian for such spinless p-wave
superconductor then reads4,22

HNW =
∑

k

[εkd
†
kdk + sgn(k)(�Td

†
kd

†
−k + �∗

Td−kdk)], (4)

where the dk’s describe the lower-band electrons originating
from the combined effect of spin-orbit and Zeeman interaction,
with dispersion εk . After diagonalization, the low-energy
Hamiltonian of the nanowire is also written in terms of
bogolons ηk ,

HNW → HTSC =
∑

k

ET(k)η†
kηk, (5)

with dispersion ET(k) =
√
ε2
k + �2

T. Finally, the two subsys-
tems are coupled by tunneling, described by the Hamiltonian
HT,

HT =
∑
k,p,σ

(
t

(0)
kp c

†
k,σ ap,σ + t

(0)∗
kp a†

p,σ ck,σ

)
(6)

=
∑
k,p,σ

(tkpσ d
†
kap,σ + t∗kpσ a†

p,σ dk). (7)

The operators ap,σ annihilate an electron in the state |p,σ 〉 in
the SC reservoir, while the ck,σ ’s are bare-electron operators in
the nanowire. Switching to the diagonal basis of Zeeman and
Rashba in the nanowire leads to the final expression (7) written
in terms of the effective spinless lower-band electron operators
dk introduced above. Here, the tunneling amplitudes tkpσ differ
from the bare-electron tunneling amplitudes t

(0)
kp , since they

describe the hopping into the effective spinless modes dk ,
and incorporate the spin-dependent factors that describe the
mixing of degrees of freedom due to spin-orbit and Zeeman
interaction.
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III. ESTIMATION WITHOUT ENVIRONMENTAL
P(E) THEORY

We first start with the case where the only relevant degrees
of freedom are those related to the electronic quasiparticle tun-
neling through the SC/TSC junction. In a more refined theory,
the event of a quasiparticle tunneling through the junction is
influenced by the charge dynamics in the environment around
the junction itself. This approach, the so-called “environmental
P (E) theory,”23 will be considered separately below.

In order to estimate the rate 	qp of tunnel events from
the superconductor to the nanowire, we start with a Fermi’s
golden rule approach, along the lines of Refs. 24–27, and
evaluate 	qp by averaging the matrix elements of the tunnel
Hamiltonian over initial and final configurations with the
appropriate thermal occupation factors:

	qp = 2π

h̄

∑
i,f

|〈f |HT|i〉|2δ(Ef − Ei)f (Ei)[1 − f (Ef )].

(8)

The initial and final states |i〉 and |f 〉 are eigenstates of
H0 = HSC + HTSC. The TSC state in the nanowire is induced
by proximity effect, microscopically described by the same
Hamiltonian HT that we are considering now. There is,
however, no inconsistency, since the first-order contribution
Eq. (8) does not take into account the Cooper-pair hopping,
which is assumed to be already implicitly included in HTSC.

We are interested in calculating matrix elements of the type

〈f |HT|i〉 = 〈nk = 1,np = 0|HT|nk = 0,np = 1〉, (9)

where we have indicated by |nk = 0,np = 1〉 the product state
with the TSC in its ground state (zero quasiparticles) and
with one excess quasiparticle in the state |p〉 in the bulk
superconductor. Correspondingly, |nk = 1,np = 0〉 describes
the state where the bulk SC is in its ground state, and one
quasiparticle |k〉 is now present in the nanowire. The matrix
elements of the above equation can be evaluated by using
the Bogoliubov transformation which diagonalizes the BCS
Hamiltonian,

a†
p,σ = upβ†

p,σ + σvpβ−p,σ̄ ,
(10)

ap,σ = upβp,σ + σvpβ
†
−p,σ̄ .

Here, u and v are the usual particle-like and hole-like
coherence factors and σ̄ = −σ . An analogous transformation
can be applied to the dk operators in the nanowire, with
corresponding u/v coefficients.38 The explicit expression for
the coherence factors is (we now denote them by uS,T and vS,T

in order to make clear to which subsystem they refer to)

u2
S(E), v2

S(E) = 1

2

⎛
⎝1 ±

√
E2 − �2

S

E

⎞
⎠ , (11)

and similarly for uT(E) and vT(E). After this step the Hamil-
tonian HT formally describes tunneling of quasiparticles βp,σ

and ηk across the junction. The insertion of the Bogoliubov
transformation into the Fermi’s golden rule produces the

formula

	qp = 2π

h̄

∑
k,p,σ

|tkpσ |2[u(Ep)u(Ek) − v(Ep)v(Ek)]2

× f neq(Ep)[1 − f (Ek)]δ(Ek − Ep)

� 2π |t |2
h̄

∑
k,p

C(Ek,Ep)f neq(Ep)δ(Ek − Ep). (12)

Note that we have added a superscript to the Fermi oc-
cupancy factor in the bulk superconductor, to emphasize
that its quasiparticles follow a nonequilibrium distribution,
corresponding to the observed excess quasiparticle density.
Nevertheless, f neq(E) is still assumed to exhibit a sharp
jump at E = �S. Further considerations about f neq are
developed in the following sections. Assuming a weak energy
and momentum dependencies of the tunneling amplitude for
energies close to the Fermi energy, we have extracted tk,p

out of the summation and replaced it with an average squared
tunneling amplitude |t |2. Further, we have made use of the low-
temperature assumption to discard the term f neq(Ep)f (Ek),
since, as we will recall later in the paper, �T is typically
only a fraction of �S, and T 	 (�S − �T). Finally, the
function C(E,E′) ≡ [uS(E)uT(E′) − vS(E)vT(E′)]2 has been
introduced for brevity.

Converting the sum into integral and using the δ-function
constrain gives us

	qp � π |t |2
h̄

∫ ∞

�S

dE

[
1 − �S�T

E2

]
2νS(E)2νT(E)f neq(E)

� gT

h

∫ ∞

�S

dE
(E2 − �S�T)√(

E2 − �2
S

)(
E2 − �2

T

)f neq(E). (13)

The superconducting density of states ν(E) in the two
subsystems is related to the normal-state density of states
νn(E) through the expression (j = S,T)

νj (E)

νn
j (E)

= E√
E2 − �2

j

. (14)

The dimensionless tunneling conductance gT is defined as
h/(e2RT) = RQ/RT, with RQ the quantum of resistance and RT

the normal-state resistance of the tunnel junction, determined
by the formula

h̄

RT
= 4πe2

∑
k,p

|tk,p|2δ(ξk)δ(ξp) � 4πe2|t |2νn
S(0)νn

T(0).

(15)

We would like to connect at this point the final expression
for 	qp to the nonequilibrium density of quasiparticles,
and use the experimentally measured values as an input
for the calculation. Using the assumption that f neq(E) is
exponentially peaked at E = �S, we can approximate all the
well-behaved factors in the integrand of Eq. (13) by their
value at E = �S. Then, recalling the connection between
the nonequilibrium quasiparticle density in the superconductor
and the nonequilibrium Fermi distribution (from now on we
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will simply write n
neq
qp = nneq),

nneq = 2
∫

dEνS(E)f neq(E), (16)

we can extract a factor nneq from the integral Eq. (13), and relate
	qp directly to the observed excess quasiparticle density:15,24,25

h	qp � gT
nneq

2νn
S

√
�S − �T

�S + �T
. (17)

The square root factor is of order unity for typical values
of �T. Plugging in at this point the experimental values for
nneq ∼ 10 μm−3 (see Ref. 15), normal-state density of states
νn

S ∼ 106 (μm3 K)−1, and typical values for gT in phase-qubit
experiments (RT ∼ 102 � ↔ gT ∼ 102 in Refs. 28 and 29),
we obtain an estimation for 	qp of the order of ∼10 MHz.

If instead one has higher tunnel resistances (gT ∼ 1 in
Ref. 30 and gT ∼ 10 in Refs. 31 and 32), then the rate can
be largely suppressed. Simply increasing the tunnel resistance
however does not constitute a valid strategy in our situation,
because also the tunneling of Cooper pairs would be reduced
in that case, lowering the topological gap in the nanowire. For
a more detailed discussion of this point, we refer the reader to
the final section of the paper.

IV. ESTIMATION WITH ENVIRONMENTAL
P(E) THEORY

We now take into account the fact that the tunneling
probability for a quasiparticle is influenced by the coupling
with the surrounding environment, by making use of the
environmental P (E) theory.23 This amounts to starting with
the modified tunneling Hamiltonian

H̃T =
∑
k,p,σ

(tkpσ d
†
kap,σ )e−iϕ + H.c., (18)

where the charge displacement operators e±iϕ act on the elec-
trical circuit degrees of freedom (environment), and describe
the transfer of a ±e charge through the SC/TSC junction
in a tunneling event. Here, ϕ is the conjugate coordinate
to the charge q, with commutation relation [q,ϕ] = ie, and
gives a charge displacement operator according to the relation
e+iϕqe−iϕ = q − e. Rewriting HT in term of Bogoliubov
operators, we obtain several terms, among which the ones
describing the transfer of a quasiparticle have the form33

(uSuTe−iϕ − vSvTeiϕ)η†
kβp,σ . (19)

The evaluation of the modified tunnel rate∑
i,f

|〈f |H̃T|i〉|2δ(Ef − Ei)f
neq(Ei)[1 − f (Ef )] (20)

now involves also averages over environment degrees of
freedom, and it requires the calculation of the equilibrium
correlation function

〈eiϕ(t)e−iϕ(0)〉 = e〈[ϕ(t)−ϕ(0)]ϕ(0)〉 ≡ eJ (t), (21)

which in the case of Bogoliubov-quasiparticle tunneling must
be properly corrected, as explained by Martinis et al.,33 and
becomes

eJ̃ (t) = [(u2 + v2)e〈ϕ(t)ϕ(0)〉 − 2uve−〈ϕ(t)ϕ(0)〉]e−〈ϕ(0)ϕ(0)〉. (22)

FIG. 1. (Color online) Schematic circuit representation of the
superconductor/topological-nanowire system. The interface that sep-
arates the two subystems acts as a tunnel junction, with tunnel
resistance RT and capacitance C. The internal impedance ZS and
ZNW of the superconductor and the nanowire are combined in the
text in a single global environmental impedance Z(ω). An external
voltage bias between the two sides of the junction can be present.

Here, for sake of brevity, we wrote u = uSuT and v = vSvT.
The fluctuation-dissipation theorem provides us with a relation
between the correlation function J (t) and the dissipation in the
environment, indirectly described by its impedance:23

J (t) = 〈[ϕ(t) − ϕ(0)]ϕ(0)〉
= 2

∫ ∞

−∞

dω

ω

�eZt(ω)

RQ
(e−iωt − 1), (23)

where Zt(ω) is the total environmental impedance, RQ = h/e2

is the quantum of resistance for single-electron charge transfer,
and we have assumed T = 0 (while it is still necessary
to use a finite value of T in the tunnel rate calculations).
This description in terms of circuitry elements, where the
tunnel junction is characterize by its capacitance C and tunnel
resistance RT, and the environment properties are encoded in
its impedance, is summarized in Fig. 1. Due to the presence
of the δ function in the summations of Eqs. (8) and (20), what
we finally need is the Fourier transform of J (t) [and J̃ (t),
respectively], usually named P (E):∫ ∞

−∞

dt

2πh̄
eJ (t)eiEt/h̄ ≡ P (E). (24)

In terms of such function, the tunneling rate in the case of
electron-environment coupling is expressed as

	qp = 4π |t |2
h̄

∫ ∞

�S

dE

∫ ∞

�T

dE′νS(E)νT(E′)f neq(E)

× [1 − f (E′)]P (E − E′), (25)

where now P (E − E′) may be interpreted as the probability
of a tunnel event that involves an energy exchange (E − E′)
between quasiparticle and environmental degrees of freedom
(to be precise, the energy E − E′ is the energy transferred
from the tunneling particle to the environment).

Going back now to the modified correlation function J̃ (t),
few comments are in order. The first term of the right-hand side
of Eq. (22) equals (u2 + v2)eJ (t), and the same steps described
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above lead to contribution (u2 + v2)P (E) ≡ C+(E)P (E). The
correlator 〈ϕ(t)ϕ(0)〉 is not well defined, due to an infrared
divergence, for impedances whose real part does not vanish
at ω = 0, see Eq. (23). This does not constitute a problem
for the physical quantity J (t), since there the diverging static
correlation ϕ2 is subtracted off. The same does not happen with
the second term, which instead involves the factor e−〈ϕ(t)ϕ(0)〉,
not compensated by e−〈ϕ(0)ϕ(0)〉. Since 〈ϕ(t)ϕ(0)〉 is positively
diverging, however, this second term in Eq. (22) vanishes. In
Ref. 33, this issue is not present, since they consider a model
where �eZt(0) = 0, and the divergence is absent.

A. Single-mode environment

One can get the simplest model for the environment by
studying the coupling of the tunnel junction to one single
environmental mode, which could come from a resonance in
the lead impedance Z(ω) of from bound states in the barrier.
Such coupling can be implemented by putting an inductor
with inductance L into the external circuit. Seen from the
junction, the impedance Z(ω) = iωL is in parallel with the
capacitance C of the junction itself, and the total impedance
reads23

Zt(ω) = 1

iωC + Z−1(ω)
= 1

C

iω[
ω2

R − (ω − iε)2
] , (26)

with environmental resonance frequency ωR = 1/
√

LC. The
infinitesimal imaginary part ε is necessary in order to obtain
the correct result for the real part of the impedance. By taking
the limit ε → 0, one gets23,28

�e[Zt(ω)] = π

2C
[δ(ω + ωR) + δ(ω − ωR)]. (27)

This expression is essentially saying that the resonator can
both absorb or emit photons (mode quanta) at frequency ωR.
In our case, if we identify the environmental mode with
the only available low-energy excitation in the nanowire-
superconductor system, i.e., the Majorana mode, we ob-
tain a resonance energy h̄ωR � 0 (or energy much smaller
than all other energy scales). This situation is sketched
in Fig. 2.

Before inserting this form of the total impedance in the
formula Eq. (24) for P (E), let us define the parameter23

ζ ≡ π

ωR

1

RQC
= EC

h̄ωR
(28)

that compares the single-electron charging energy with the
environmental mode excitation energy. This parameter deter-
mines the size of charge fluctuations:23

〈Q2〉 = e2

4ζ
coth

(
h̄ωR

2T

)
. (29)

Using the definition of ζ , the expression for P (E) in the single-
mode limit becomes

P (E) =
∫ ∞

−∞

dt

2πh̄
eiEt/h̄ exp[ζ (e−iωr t − 1)]. (30)

In typical superconducting charge-qubit experiments, one
has28 that EC 	 h̄ωR, that is, ζ 	 1, and then the external
exponential in Eq. (30) can be expanded around zero. In our

FIG. 2. Equivalent circuit for the SC/TSC system in the case
of a single-mode environment. The environment is modeled with a
single inductance L with impedance Z(ω) = iωL, corresponding to
a total impedance �e[Zt(ω)] ∼ [δ(ω + ωR) + δ(ω − ωR)] (plotted in
the inset).

case instead, since ωR ∼ 0, such simplification is not possible,
and we rather expand the internal exponential for t 	 h̄/ωR.
The result is

J (t) � ζ
( − iωRt − ω2

Rt2
) = −EC

h̄
(it + ωRt2), (31)

P (E) �
exp

[− (E−EC)2

4ECh̄ωR

]
√

4πECh̄ωR
−−−→
ωR→0

δ(E − EC). (32)

That is, in first approximation, the energy exchange between
quasiparticles and environment occurs with unit probability
and is peaked at the charging energy EC = e2/(2C). In
the opposite limit ζ 	 1 valid for typical superconducting
qubits,15,28 one would get instead that the energy exchange is
peaked at the resonator energy ωR, and that the probability
∼ζ for such exchange is very small (the most probable event
being the tunneling of a quasiparticle without energy flow to
the environment).

Plugging now into Eq. (25) the form of P (E) just obtained,
we get

h	qp = gT

∫ ∞

�S

dE
[E(E + EC) − �S�T]√[

(E + EC)2 − �2
T

][
E2 − �2

S

]f neq(E).

(33)

This is essentially identical to the previous result Eq. (13),
with the simple substitution Ep → (Ep + EC), and leads to
the low-temperature result

h	qp ≈ gT
nneq

2νn
S

√
�S − �T + EC

�S + �T + EC
. (34)

Compared to Eq. (17), the presence of EC produces a negligible
modification to the quantitative estimate for 	qp in the case of
typical values for C (∼1 pF) and EC ∼ 0.1 μeV 	 �S,�T.
Thus, even in this case, the typical tunneling rate turns out to
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FIG. 3. Same as in Fig. 2, but with a different environmental
impedance. Here, the environment is modeled by Z = R, and the
resulting Lorentzian total impedance is shown in the inset, where
ωC = 1/(RC) = gEC/πh̄.

be 	qp ∼ 100 kHz–10 MHz, depending on the transparency of
the tunnel barrier.

B. Ohmic environment

We consider now the more realistic case of an Ohmic
environment, with external impedance Z(ω) = R and total
impedance

�e[Zt(ω)]

RQ
= 1

RQ
�e

(
1

iωC + 1/R

)
= 1

g

1

[1 + (ω/ωC)2]
,

where we have introduced the dimensionless environmental
conductance g ≡ RQ/R and the frequency

ωC ≡ 1

RC
= g

π

EC

h̄
, (35)

which represents an effective cutoff for the total impedance,
due to the junction capacitance: at energies small compared to
h̄ωC the real part of the total impedance is essentially given by
R, while for higher energies Zt(ω) decreases. Such behavior is
shown in Fig. 3. The P (E) corresponding to this case cannot be
calculated analytically, but the low-energy and the high-energy
asymptotic behaviors can be obtained as23

P (E) =

⎧⎪⎨
⎪⎩

e−2γ /g

	(2/g)
1
E

(
π
g

E
EC

)2/g
for E 	 EC,

2g

π2
E2

C
E3 for E � EC.

(36)

Here, γ is the Euler constant and 	 the gamma-function. The
behavior of P (E) for intermediate energies has to be eval-
uated numerically. Since we are mostly interested in energy
exchanges between the superconductor and the topological
nanowire of the order of δ� ≡ (�S − �T) ∼ O(�S) ∼ meV,
and since most typically EC 	 �S, we are not justified to
use the small-energy expansion of P (E), and we must rather
determine P (E) numerically. By taking the derivative of
Eq. (23) and performing a Fourier transform, one finds that

0.0 0.5 1.0 1.5 2.0 2.5

E/EC

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

P
(E

)

g = 0, 02
g = 0, 2
g = 1
g = 2
g = 20

FIG. 4. (Color online) Behavior of the probability function P (E)
as a function of the energy exchange measured in units of EC.
For large environment resistances (small g) the junction releases
a typical energy amount of the order of the charging energy. For
small resistances (large g), the energy that is exchanged shrinks to
zero, and one recovers a situation with independent quasiparticles and
junction degrees of freedom. The curves have been obtained through
numerical integration.

P (E) obeys to the integral equation

EP (E) = 2

RQ

∫ E

0
dE′�e

[
Zt

(
E − E′

h̄

)]
P (E′), (37)

which can be solved for example by iteration. A collection of
solutions for different values of the parameter g is shown in
Fig. 4. Qualitatively different behaviors are observed in the
highly resistive and low-resistive limits. Inserting the obtained
solution P (E) into Eq. (25), we can get the desired estimation
for 	qp in this case. However, due to the finite energy exchange
allowed by P (E), the singularities of the two density of
states distributions can overlap in the integral, and caution
must be exercised. In particular, one cannot always make the
simplification adopted to attain Eq. (17), which allowed us to
single out a factor nneq.

In the case EC 	 δ�, the same approximation can still be
safely employed, since the probability distribution P (E) is
appreciably different from zero only in a support ∼[0 : EC],
for all values of g [see Fig. (4)], and the two singularities in the
densities of states νS and νT, located at �S and �T, respectively,
overlap only through the high-energy tail of P (E), without
significant contributions to the integral for 	qp. We then get∫

�S

∫
�T

dEdE′νS(E)f neq(E)νT(E′)P̃ (E,E′)

≈
∫

�S

dEνS(E)f neq(E)
∫

�T

dE′νT(E′)P̃ (�S,E
′)

∝ nneq
∫

�T

dE′νT(E′)P̃ (�S,E
′), (38)

where we used the notation P̃ (E,E′) = C(E,E′)P (E − E′).
The resulting 	qp(g,�S,�T) is shown as a function of g for
some specific choices of �S and �T in Fig. 5. We choose to
plot the dimensionless quantity 	̄qp ≡ h	qp/(gT�S), meaning
that the quasiparticle tunnel rate is measured in units of �S/h,
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FIG. 5. (Color online) Dimensionless quasiparticle tunneling rate
as a function of environmental dimensionless conductance g. The red
curve refers to the case �S = 10EC, �T = 5EC, and no observable
dependence on g is noticed at this scale. The cyan curve has been
obtained for �S = 100EC, �T = 50EC, and the corresponding values
of 	qp are slightly lower in this case.

and has been divided by gT. A superconducting gap of 2 K
corresponds to a frequency of 40 GHz, and for gT = 102 the
values shown in the figure indicate then 	qp � 10 MHz.

In the more interesting case EC � δ� (realized for example
for �S � 100 μeV and C � 1 fF), the environment can couple
energy regions where the singularities in the density of
states of the two subsystems occur. Now the approximations
adopted above are not justified anymore, especially for small
values of g, and one needs in principle to solve the full
two-dimensional integral in Eq. (25). The problem then is,
without the decoupling of the integrals we cannot extract
anymore a factor nneq. We then need an explicit estimate for
the unknown term f

neq
S . This can be done by assuming that

the quasiparticles, while still being in thermal equilibrium at
temperature T , are out of electro-chemical equilibrium, and
the excess quasiparticle density nneq can be accounted for by
an effective chemical potential shift μ̃:

nneq =
∫

�S

dEνS(E)
1

[e(E−μ̃)/T + 1]
. (39)

To lowest order in temperature, we can connect μ̃ directly to
nneq as15

μ̃ � T ln

(
nneq

neq

)
. (40)

Inserting the calculated μ̃ in the formula for 	qp and
performing the double integration, one can get numerical
estimations for any value of the parameters �S/EC and
�T/EC. In Fig. 6, we report (cyan curve) the results for the
“worst” case (�S − �T) = EC. One can see that in the limit
g → 0, the quasiparticle poisoning rate is strongly enhanced,
due to the perfect coupling of the two singularities in the
density of states. However, this regime is difficult to attain, and
the strong increase in 	qp is localized at g � 0, which requires
unrealistic environmental resistances R � RQ. In conclusion
then, this issue should not represent a problem.

0 2 4 6 8 10
g

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

Γ̄
qp

×10−6

FIG. 6. (Color online) Same as in Fig. 5, but with different
parameter values. The cyan curve corresponds to �S = 2EC, �T =
EC and the red curve refers to the case �S = EC, �T = 0.5EC. In the
first case, (�S − �T) equals EC and leads to an unbounded increase in
	qp for g → 0. In the second case (and, in general, for EC > δ�), one
observes 	qp(g → 0) → 0 because the energy exchange EC provided
by the environment is too large to be absorbed by δ�.

In the regime (�S − �T) < EC (red curve), the environ-
ment provides for g � 2 (see Fig. 4) a typical energy larger
than the “energy distance” between the two subsystems, and
since νT(E < �T) = 0, smaller values for 	qp are obtained for
decreasing g. In the limit g → 0, we have P (E) ∝ δ(E − EC)
and the result of integration is suppressed to zero. Note that for
g → ∞ the two curves of Fig. 6 approach each other, because
in that limit P (E) is peaked in E = 0 and the exact position
of �T with respect to �S becomes irrelevant.

V. QUANTITATIVE CONSIDERATIONS

The final estimations strongly depend on the value of the
tunneling resistance RT which enters the expression for the
poisoning rate. As anticipated above, such values are different
for different experiments, ranging from ∼10 to ∼104 �. By
looking at the expression for the quasiparticle tunnel rate,
Eqs. (17) and (34), one could conclude that large tunnel
resistances (low gT) are desirable so that 	qp is reduced. But
as we already commented, by the same token also Cooper-pair
tunneling would be suppressed, and hence the proximity-
induced gap would get reduced. Analytical calculations20 have
shown that the pairing potential amplitude �pr induced in the
proximized system, in terms of the parental pairing amplitude
�S and of the microscopic tunneling rate 	0, is given by

�pr = 	0

	0 + �S
�S. (41)

The tunneling rate for bare electrons is evaluated as

	0 = π |t |2νn
S(0), (42)

so that, using the definition Eq. (15) for RT, one can relate 	0

and RT as

	0 = RQ

8πRT

1

νn
T(0)

. (43)
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In the low transparency limit, 	0 	 �S, the proximity gap is
set by 	0, see Eq. (41), and is therefore rather small. On top of
that, the topological gap is further reduced due to the Rashba
and Zeeman interaction:

�T = αkF√
V 2

Z + (αkF)2
�pr = 1√

1 + χ2
�pr, (44)

with χ ≡ VZ/(αkF) quantifying the ratio between Zeeman
splitting and typical spin-orbit interaction. Note that one al-
ways has �T � �pr � �S. Then, assuming the most favorable
situation αkF � VZ (not so easy to achieve experimentally
yet34) and thus �T � �pr, the requirement of a minimum
topological gap of 100 mK translates into the condition
	0 � �pr � 100 mK.

As a final step, we need to estimate the normal-state density
of states νn

T(0) in the topological wire. To do so, we use the fact
that the desired chemical potential has to lie in-between the gap
opened by the Zeeman interaction added to the Rashba helical
bands (at least, in the simplest, ideal one-channel model).
Using the dispersion relation

ε±(k) = h̄2k2/2m ±
√

V 2
Z + α2k2 − μ (45)

and requiring that the chemical potential lies in the middle
of the Zeeman gap, for instance halfway between ε−(0) and
ε+(0) (as shown with red points in Fig. 7), one gets the simple
condition μ = 0. The 1D density of states per unit volume at
this energy is

ν̄n
T(ε = 0) = 2

dε−(k)/dk

∣∣∣∣
ε=0

= 2(
h̄2k
m

− α2k√
V 2

Z +α2k2

)
k=k0

,

(46)

ε = 0

ε0

VZ

−VZ

ε−(k) ε+(k)

k
kso−kso k0

FIG. 7. (Color online) Dispersion relation in a one-dimensional
wire in the presence of Rashba spin-orbit and Zeeman interaction. The
gap at k = 0 is entirely due to the Zeeman energy VZ. For αkF � VZ,
the position of the two minima ε = ε0 is approximately given by
±kso ≡ αm/h̄2. The topological regime requires having the chemical
potential lying inside the gap, as shown here; k0 denotes the point at
which the dispersion crosses the representative midgap level ε = 0.

where k0 satisfies ε−(k0) = 0, see Fig. 7. Insertion of the
expression for k0 in Eq. (46) leads to

ν̄n
T(ε = 0) =

√
2

α

√
1 +

√
1 + χ2√

1 + χ2
, (47)

with χ defined above. In the considered limit, αkF � VZ

and thus χ 	 1 the density of states per unit volume is
approximately given by

ν̄n
T(ε = 0) � 2

α
. (48)

The spin-orbit interaction strength α ranges from
0.00075 eV Å in GaAs quantum wells35 to 0.1 eV Å in InGaAs
quantum wells,36 or even more in heavier-element wires such
as InSb.34 We can therefore conclude that ν̄n

T(0) in the simple
one-channel case varies between 10 and 103 (μm K)−1. We
choose the average value of ∼102 (μm K)−1 and a typical wire
length of 1 μm.34 By imposing the constrain 	0 ∼ 100 mK
derived above, we obtain via Eq. (43) the final estimate for the
tunnel resistance

RT � 100 �. (49)

As calculated in the former sections this value corresponds to
a quasiparticle tunnel rate of 	qp ∼ 1–10 MHz, i.e., poisoning
times of the order of microsecond or less, which has to
be compared with the typical time required for adiabatic
qubit manipulation. The natural time scale that identifies the
adiabatic regime is provided by the inverse topological gap

τad = h̄

�T
, (50)

which for the aforementioned reasonable estimate of minimum
gap �T = 100 mK takes the value τad � 1 ns. The requirement
of adiabatic computation is then satisfied if operations are
performed on a time scale τcomp much longer than τad. In turn,
quasiparticle poisoning events must be rare events during the
time of computation:

τad 	 τcomp 	 τqp, (51)

where we have introduced for convenience the quasiparticle
poisoning time τqp ≡ 1/	qp. Assuming an order of magnitude
difference between successive time scales, the above condition
Eq. (51) sets the upper limit for 	qp to 10 MHz, which is
in the range of values we found in our calculations for an
average situation. This shows again that the phenomenon of
quasiparticle poisoning is not at all marginal, and its relevance
should be assessed case by case.

For example, for the only experimental results available
so far (see Ref. 34), the proximity effect is not very ef-
fective and the observed proximity gap is about one tenth
of the bulk superconducting gap (which is however large
in this case). On top of that, the spin-orbit energy is
much smaller than the Zeeman energy in the topological
phase, reducing the topological gap by an additional factor
(approximately a factor five at the onset of the topological
transition).

Note that τad is set by the value of �T, whereas τqp is
ultimately determined by �pr (via 	0 and RT) and does not
depend on the physical properties of the topological nanowire
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(except for the density of states contained in RT). Hence, the
parameter regime αkF 	 VZ is less favorable, not only due to
the fact alone that one gets smaller values of the topological
gap, but also because the adiabatic time scale is increased
while the poisoning time remains constant.

Working in the multichannel regime would even be less
favorable, since the density of states ν̄n

T in the wire would be
noticeably increased, and to maintain the same 	0 the tunnel
resistance RT should be further decreased. A larger value of α

would instead help in this direction, since it lowers ν̄n
T (beyond

increasing the topological gap).
Also in the opposite limit of a transparent interface,

	0 � �S, where the proximity gap is essentially given
by �S, decreasing the quasiparticle tunnel rate is difficult.
Equation (43) tells us again that for 	0 � �S ∼ 1 meV, in order
to suppress the factor RQ/RT one would need unrealistically
low values of the wire density.

A possible improvement could be provided by the finite
charging energy of the nanowire, which raises the energy of all
the states and lifts the huge degeneracy of quasiparticle states
close to �T. For a single pair of Majorana states, the charging
energy also introduces an undesired splitting between the filled
and unfilled zero-energy states. But one can then work with
two wires and four Majorana states, two of which remain
degenerate even in the presence of a charging energy.37

VI. CONCLUSIONS

In summary, we have calculated the tunnel rate (“poi-
soning”) of quasiparticles from a bulk superconducting
reservoir to a semiconducting nanowire, which becomes also
superconducting due to proximity effect. Under appropriate
conditions, the nanowire is in a topological superconducting
state, hosting a Majorana state at each of its ends, which could
be used for topological computation. Using quantitative results
from recent experiments on the density of excess quasiparticle
in superconductors, we have shown that the poisoning of the
wire could represent a serious problem, with Majorana-qubit
lifetimes that range from 10 ns to 0.1 ms, depending on many
physical parameters. Since some of these parameters cannot
simply be adjusted independently, finding a suitable configu-
ration which minimizes the poisoning phenomenon requires a
fine-tuning of the coupled nanowire-superconducting system
more delicate than one could have expected.
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