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Electronic topological transition in LaSn3 under pressure
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The electronic structure, Fermi surface, and elastic properties of the isostructural and isoelectronic LaSn3 and
YSn3 intermetallic compounds are studied under pressure within the framework of density functional theory
including spin-orbit coupling. The LaSn3 Fermi surface consists of two sheets, of which the second is very
complex. Under pressure a third sheet appears around compression V/V0 = 0.94, while a small topology change
in the second sheet is seen at compression V/V0 = 0.90. This may be in accordance with the anomalous behavior
in the superconducting transition temperature observed in LaSn3, which has been suggested to reflect a Fermi
surface topological transition, along with a nonmonotonic pressure dependence of the density of states at the
Fermi level. The same behavior is not observed in YSn3, the Fermi surface of which already includes three sheets
at ambient conditions, and the topology remains unchanged under pressure. The reason for the difference in
behavior between LaSn3 and YSn3 is the role of spin-orbit coupling and the hybridization of La 4f states with
the Sn p states in the vicinity of the Fermi level, which is well explained using the band structure calculation. The
elastic constants and related mechanical properties are calculated at ambient as well as at elevated pressures. The
elastic constants increase with pressure for both compounds and satisfy the conditions for mechanical stability
under pressure.
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I. INTRODUCTION

The RX3-type (R = rare earth elements, X = In, Sn, Tl, Pb)
intermetallic compounds, which crystallize in the simple cubic
Cu3Au structure, have been the subject of many experimental
and theoretical investigations because of their diverse prop-
erties. Many of these compounds are superconductors. LaSn3

and YSn3 are particularly significant as they are found to have
relatively high superconducting transition temperatures Tc. For
LaSn3, Tc = 6.5 K,1,2 and for YSn3 Tc = 7.0 K,3 whereas
LaPb3, LaTl3 and LaIn3 have lower Tc of 4.05, 1.51, and
0.71 K, respectively.1,2 Some of the RX3 compounds, such
as PrSn3 and NdSn3, are found to order antiferromagnetically
at TN = 8.6 and 4.5 K, respectively,4 and CeSn3 has been
categorized as a dense Kondo compound exhibiting valence
fluctuations.5 It is interesting to compare the properties of
LaSn3 and YSn3 to reveal to which extent the similar valence
electron configurations of Y and La influence the details of the
electronic structure.1,6–9 The LaX3 (X = Sn, In, Tl, Pb) series
and their alloys show an oscillatory dependence in their bulk
properties (superconducting transition temperature, magnetic
susceptibility, thermoelectric power factor) as a function of
average valence-electron number.9–13 At first, this behavior
was interpreted in a nearly free electron model as a reflection
of the Fermi surface crossing the Brillouin zone close to the
X point,9,14 a viewpoint later contested by Grobman.11 The
pressure dependence of the critical temperature of LaSn3 is
anomalous, as shown by Huang et al.,15 which these authors
expect to be driven by a Fermi surface topology change.

In the present study we calculate the Fermi surface of LaSn3

and indeed observe a change in topology under pressure, where
a third set of electron pockets appear and a minor part of the

complex second sheet transfers from a closed orbit to an open
orbit region. A similar transition is not predicted for YSn3,
despite the overall similarity of their electronic structures. A
number of studies are available on the band structures of LaSn3

and YSn3,16–19 while less efforts have been devoted to the
pressure dependence of the electronic structure, Fermi surface,
and elastic properties for these compounds. Hence we focus
our attention in this paper on analyzing the pressure induced
Fermi surface topology change in LaSn3, which might be
associated with the anomalous behavior of Tc under pressure,
and present a comparative study of LaSn3 and YSn3 under
pressure. The remainder of the paper is organized as follows:
Sec. II describes the method of calculation used in this study.
The results and discussions are presented in Sec. III, while
Sec. IV concludes the paper.

II. METHOD OF CALCULATION

The calculations were performed using the full-potential
linear augmented plane wave (FP-LAPW) method as imple-
mented in the WIEN2K computer code,20 based on density
functional theory (DFT),21 which has been shown to yield
reliable results for the electronic and structural properties of
crystalline solids. Spin-orbit coupling (SOC) was included.
For the exchange-correlation functional, both the local density
approximation (LDA) as proposed by Ceperley and Alder22

and generalized gradient approximation (GGA) according to
the Perdew-Burke-Ernzerhof23 parametrization was used. In
order to achieve energy eigenvalue convergence, the wave
functions in the interstitial region were expanded using plane
waves with a cutoff of RMT Kmax = 9, where Kmax is the
plane wave cut-off, and RMT is the smallest of all atomic
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sphere radii. The charge density was Fourier expanded up
to Gmax = 18 (a.u.)−1. The maximum � value for the wave
function expansion inside the atomic spheres was confined to
�max = 10. Convergence tests were carried out using higher
Gmax and RMT Kmax values, giving no significant changes in
the calculated properties. The muffin-tin radii were chosen as
2.75 a.u. for both La and Y and 2.83 a.u. for Sn. A (32 ×
32 × 32) Monkhorst-pack24 k-point mesh was used resulting
in 396 k points in the irreducible part of the Brillouin zone. The
self-consistent calculations were considered to be converged
when the total energy of the system was stable within 10−6 Ry.
The Birch-Murnaghan equation of states25 was used to fit
the total energy as a function of unit cell volume to obtain
the equilibrium lattice constants and bulk moduli for the
investigated systems. For the Fermi surfaces of RSn3 a (64 ×
64 × 64) mesh was used to ensure accurate determination of
the Fermi level and smooth interpolation of the bands crossing
the Fermi level. The three-dimensional (3D) Fermi surface
plots were generated with the help of the Xcrysden molecular
structure visualization program.26

The elastic constants have been calculated within the total-
energy method, where the unit cell is subjected to a number
of small amplitude strains along several directions. The elastic
constants of solids provide links between the mechanical and
dynamical properties of the crystals. In particular, they provide
information on the stability and stiffness of materials. It is well
known that a cubic crystal has only three independent elastic
constants27–29 C11, C12, and C44. From these one may obtain
the Hill’s30 shear modulus GH (which is the arithmetic mean
of the Reuss31 and Voigt32 approximations), Young’s modulus
E, and the Poisson’s ratio σ by using standard relations.33

Furthermore, the Debye temperature may be obtained in terms
of the mean sound velocity vm:

�D = h

kB

(
3nρNA

4πM

)1/3

vm, (1)

where h, kB , and NA are Planck’s, Boltzmann’s constants, and
Avogadro’s number, respectively. ρ is the mass density, M is
the molecular weight, and n is the number of atoms in the unit
cell. The mean sound velocity is defined as

vm =
[

1

3

(
2

v3
t

+ 1

v3
l

)]−1/3

, (2)

where vl and vt are the longitudinal and transverse sound
velocities, which may be obtained from the shear modulus GH

and bulk modulus B as

vl =
√(

B + 4
3GH

)
ρ

(3)

and

vt =
√

GH

ρ
. (4)

III. RESULT AND DISCUSSION

A. Ground state properties

The RSn3 compounds crystallize in the Cu3Au type
structure with space group Pm3̄m (No. 221). The calculated

TABLE I. Calculated lattice constant a (in Å) and bulk modulus
B (in GPa) for LaSn3 and YSn3, as obtained with the GGA and LDA
approximations for exchange and correlation. The bulk modulus is
evaluated at the theoretical equilibrium volumes. Experimental values
are quoted for comparison.

Parameters LaSn3 YSn3

a GGA 4.81 4.73
LDA 4.70 4.61
Theorya 4.73 –
Expt. 4.774b, 4.769c 4.667d

B GGA 55.5 56.9
LDA 68.2 70.6
Theorya 78 –
Expt. 51.5e –

aReference 34.
bReference 1.
cReference 35.
dReference 3.
eFrom elastic constants obtained in Ref. 36.

equilibrium lattice parameters a and zero pressure bulk mod-
ulus B are listed in Table I. The results are in good agreement
with available experimental data and other calculations. It
often occurs that LDA underestimates and GGA overestimates
the equilibrium lattice constants, which is also found in the
present case, where the LDA value is ∼1% below and the
GGA value ∼1% above the experimental value. The somewhat
lower bulk modulus obtained with GGA reflects the larger
equilibrium volume in this approximation. In the remainder of
this study we report results on the basis of the LDA.

B. Elastic constants and mechanical properties

The calculated elastic constants (C11, C12, and C44) at
ambient pressure for LaSn3 and YSn3 are presented in Table II,

TABLE II. Elastic constants and derived quantites for LaSn3

and YSn3, as calculated with LDA at equilibrium volume. A is the
anisotropy factor, A = 2C44/(C11 − C12), and Cp = C12 − C44 is the
Cauchy pressure. Experimental values are given in parentheses where
available.

Parameters LaSn3 YSn3

C11 (GPa) 97.3 (70.5a) 82.3
C12 (GPa) 53.6 (42.0a) 64.6
C44 (GPa) 44.2 (33.5a) 34.2
A 2.02 3.85
GH (GPa) 33.3 20.0
E (GPa) 85.9 (64b) 54.9 (98b)
σ 0.29 0.37
GH /B 0.49 0.28
Cp (GPa) 9.4 30.3
vl (km/s) 3.77 3.59
vt (km/s) 2.05 1.63
�D (K) 230 (205c) 188.4 (210d)

aFrom phonon measurements, Ref. 36.
bReference 37.
cReference 2.
dReference 3.
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together with quantities related to the elastic constants. The
calculations were performed at the equilibrium lattice constant
as calculated with the LDA. The elastic constants extracted
from the experimental phonon dispersion curves36 are listed
for comparison. The theoretical values lie systematically
20%–30% above the experimental values, which partly is due
to the too low equilibrium volume obtained in the LDA. The
fact that the experiments are done at room temperature, while
the calculations pertain to zero temperature, also contribute to
this discrepancy. To the best of our knowledge, no experimental
determinations of the elastic constants of YSn3 have been
reported. Neither have any theoretical determinations been
reported. From the calculated values of the elastic constants,
it can be seen that they satisfy the mechanical stability
criteria38 for a cubic crystal, that is, C11 > C12, C44 > 0,
and C11 + 2C12 > 0, consistent with the elastic stability of
these materials. Pugh39 has proposed a simple relationship
in which the ductile/brittle properties of materials could be
related empirically to their elastic constants by the ratio GH /B.
If GH/B < 0.57, the materials behave in a ductile manner,
and brittle otherwise. From the values of GH/B reported
in Table II it emerges that both compounds are of ductile
character, and that YSn3 is more ductile than LaSn3. Cauchy’s
pressure (Cp = C12 − C44) is another index to determine the
ductile/brittle nature of metallic compounds, where a positive
value of Cauchy’s pressure indicates ductile nature, while a

negative value indicates a brittle nature of the compounds. The
calculated positive values of the Cauchy’s pressure reported in
Table II corroborate the ductile nature of LaSn3 and YSn3.
The Young’s modulus E also reflects the ductility. The larger
the value of E, the stiffer is the material, and as the covalent
nature of the compounds increases E also increases. Another
important parameter describing the ductile nature of solids is
the Poisson’s ratio σ (see Table II), which is calculated using
the formula given in Ref. 33. For ductile metallic materials σ

is typically around 0.33.40 So the ductility of these compounds
is confirmed by the calculated values of σ reported in Table II.
The anisotropy A is defined as the ratio between C44 and
(C11 − C12)/2, which becomes unity for an isotropic system.
According to this definition, LaSn3 and YSn3 are elastically
anisotropic.

The elastic constants and bulk modulus increase
monotonously under compression, fulfilling the mechanical
stability criteria also at higher pressures. Having calculated
Young’s modulus E, the bulk modulus B, and the shear
modulus G, one may derive the Debye temperature using
Eq. (1). The calculated sound velocities (vl , vt , and vm) and
the Debye temperature (�D) are included in Table II. The
experimental Debye temperatures are almost the same for
LaSn3 and YSn3, while the present calculations find the Debye
temperature of YSn3 substantially lower than that of LaSn3,
a consequence of the smaller calculated values of the elastic

FIG. 1. (Color online) Electronic band structures of (a) LaSn3 and (b) YSn3. The solid (red) lines show the electronic levels calculated with
spin-orbit coupling included, while the dotted (blue) lines show the electronic levels as calculated without spin-orbit coupling. The energies are
given in eV relative to the Fermi level EF , which is marked with the horizontal dashed line. The major difference between the two compounds
around the Fermi level occurs in the vicinity of the X point (for SOC included). A second, less significant feature, is a very dispersive band
along � − R, which stays above EF for LaSn3, but dips below EF for YSn3. The inset illustrates this.

174531-3



SWETAREKHA RAM et al. PHYSICAL REVIEW B 85, 174531 (2012)

FIG. 2. Band structure of LaSn3 under compression (zoom-in on the vicinity of the Fermi level). The electron pocket at M and the hole
pocket at X increases under pressure.

constants of YSn3. The sound velocities increase with pressure
for LaSn3 and YSn3, reflecting the increase in the relevant
acoustic phonon frequencies with pressure.

C. Band structure and density of states under pressure

The band structures of LaSn3 and YSn3 are illustrated in
Fig. 1. The electronic levels are calculated along the high-
symmetry directions with and without spin-orbit coupling and
at the LDA equilibrium volumes. The band structure of LaSn3

with SOC compares well with earlier work.17,18 Overall, the
band structures of LaSn3 and YSn3 are very similar, as noted
by Ref. 19, which also discussed the effect of SOC. The major
difference between the two compounds in the vicinity of the
Fermi level EF occurs at the X point, where a band crosses
the EF for LaSn3, but stays below EF for YSn3. This gives
rise to a small hole pocket around the X point in LaSn3, which
does not appear for YSn3 (and which would not be if SOC
is not included). A second, less significant feature, is a very
dispersive band along � − R, which dips below EF for YSn3,

FIG. 3. (Color online) Density of states of (a) LaSn3 and (b) YSn3, as calculated at the experimental lattice constants. The total DOS as
well as La, Sn and La 4f partial contributions are shown in (a), the total DOS as well as Y and Sn partial contributions are shown in (b). The
unit is states per eV and per formula unit. A factor of 2 for spin is included.
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FIG. 4. (Color online) Density of states at the Fermi level N (EF )
for LaSn3 and YSn3 under compression. The jump in density of
states for LaSn3 around V/V0 = 0.94 is due to the appearance of the
third Fermi sheet. V0 denotes the respective experimental equilibrium
volumes of LaSn3 and YSn3.

but stays above EF for LaSn3. This is illustrated in the inset
of Fig. 1. This band contributes to the third Fermi surface of
YSn3, which in LaSn3 only appears under pressure.

The main interesting pressure effect on the electronic
structure of these compounds is the opposite movement of
the valence band and the conduction band. Along all high
symmetry directions the valence bands move down, while an
upward shift of the conduction bands under compression is
seen. This is illustrated for LaSn3 in Fig. 2, which shows
the band structure for V/V0 = 1.0 and V/V0 = 0.90, where
V0 denotes the experimental equilibrium volume. Owing to
this opposite movement of bands under pressure the number
of electron states in the pockets around the M points, as
well as the number of hole states around the X points
increase.

The narrow bands around 1.5–2 eV above the Fermi level
[see Fig. 1(a)] in LaSn3 are the La 4f bands. These unoccupied
La 4f bands overlap with the La 5d bands, with some influence
on the energy band structure in the vicinity of the Fermi energy.
This is illustrated with the density of states, which is shown
in Fig. 3, for both LaSn3 and YSn3. In both compounds, the
dominating character around the Fermi level is from Sn 5p,
with appreciable admixture of Y 4d or La 5d. But for LaSn3

the tail of the 4f (blue line) in Fig. 3(a) also crosses the
Fermi level. The behavior of the total density of states at the
Fermi level under compression is shown in Fig. 4. While the
total density of states at the Fermi energy N (EF ) decreases
smoothly for YSn3 under compression, it is more irregular
for LaSn3. In LaSn3, N (EF ) passes through a minimum at
V/V0 = 0.94 (pressure of 1 GPa according to LDA). This
behavior of LaSn3 is caused by the occurrence of the third
Fermi sheet under pressure, which is discussed in the next
subsection.

In Table III the density of states at the Fermi level is
compared to the experimental value as derived from the
Sommerfeld coefficient. From the difference, the average
electron-phonon coupling constant λep may be estimated,
assuming

γ expt

γ calc
= 1 + λep. (5)

For LaSn3 this reaches a value of λep = 0.86, while for YSn3 a
value of λep = 0.34 is found. Note that the latter is lower than
the value deduced by Dugdale19 because the inclusion of spin-
orbit coupling in the calculation increases N (EF ) by ∼20%.
The value obtained here for LaSn3 is in good agreement with
the value found by Ref. 13. The superconducting transition
temperature for LaSn3 may be estimated using the McMillan
formula:41

Tc = �D

1.45
exp

(
− 1.04(1 + λep)

λep − μ∗(1 + 0.62λep)

)
. (6)

TABLE III. Calculated density of states at the Fermi level (evaluated at the experimental equilibrium volumes), together with derived
Sommerfeld constants γ and electron-phonon coupling constants λep for LaSn3 and YSn3. Last column gives the superconducting transition
temperature. Experimental values are quoted for comparison.

DOS (states/eV) γ (mJ/mol K2) λep Tc (K)

LaSn3 Theorya 2.67 6.28 0.86 8.1
Theoryb 2.15 6.03 0.82 –
Expt. 2.6c, 2.8d 11.66d, 10.96e, 11.0f 0.8c 6.45g, 6.02h

YSn3 Theorya 2.41 5.67 0.34 0.11
Theoryi 1.92 4.53 0.63, 0.99 5.93
Expt. – 7.57j – 7.0j

aThis work, LDA.
bReference 34.
cReference 13.
dReference 42.
eReference 15.
fReference 36.
gReference 1.
hReference 9.
iReference 19.
jReference 3.
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FIG. 5. (Color online) Fermi surface of (a) and (b) LaSn3. (c),
(d), and (e) YSn3 (including spin-orbit coupling and evaluated at
the experimental equilibrium volumes). (a) and (c) are hole pockets
around � and (e) are electron pockets around the X points. The
complex second sheet of (b) is illustrated through two-dimensional
cuts in Fig. 6(a). In (a) the BZ critical points are marked.

Using a typical value of μ∗ = 0.12 (Ref. 19) and the Debye
temperature of LaSn3 of �D = 205 K, this leads to a calculated
value of Tc = 8.1 K, which is in excellent agreement with the
experimental value of Tc = 6.5 K, given the uncertainty of the
parameters of the McMillan formula.

D. Fermi surface under pressure

The Fermi surfaces of LaSn3 and YSn3 at the experimental
equilibrium volumes are shown in Fig. 5. The similarity of
the band structures lead to nearly identical topology of the
Fermi surfaces for the two compounds. The major difference
is that for LaSn3 two bands cross the Fermi level, whereas
for YSn3 three bands cross the Fermi level. The first Fermi
surface sheet [Figs. 5(a) and 5(c)] is a hole pocket centered
on the � point. The second sheet [Figs. 5(b) and 5(d)] is a
very complex surface, which we discuss in detail for LaSn3

below. In comparison between the two compounds, a small
hole pocket is seen around the X point in Fig. 5(b), which
is absent in Fig. 5(d), which reflects the difference in band

FIG. 6. (Color online) Second Fermi surface of LaSn3, two-
dimensional contours corresponding to kz = 0.8 and 1.0 in units of
π/a. (a) At the experimental equilibrium volume and (b) at a volume
of 90% of the experimental equilibrium volume. The shaded (red)
areas correspond to occupied states.

structure at X as discussed in the previous section. Finally,
the third surface of YSn3 is a small electron part close to the
X point. In Fig. 6 we illustrate for LaSn3 the complexity of
the second sheet by showing horizontal cuts through the three-
dimensional Fermi surface. It is to be noted that without taking
into account the SOC three bands would cross the Fermi level
even at ambient volume, and the corresponding Fermi surfaces
would be similar for LaSn3 and YSn3, and furthermore, for
YSn3 the Fermi surface would be topologically the same with
and without SOC.

The most striking change in the Fermi surface of LaSn3

under pressure is the appearance of the third surface, already
seen in YSn3 at ambient conditions. This appears at a
compression of V/V0 = 0.94, as shown in Fig. 7(c). A
second, less drastic change occurs in the second Fermi surface
of LaSn3, where a change in topology is observed. This is
most easily seen in the two-dimensional contours of Fig. 6(b),
where the hole pocket around the X point (the middle
point of the kz = π/a face) increases and merges with the
surrounding triangular hole regions. In contrast, for V = V0

[Fig. 6(a)], this pocket is detached from the larger hole region,
facilitating a small closed electron orbit. At the same time,
the electron concentration around the M point (the midpoints
of all edges of the BZ) increases under compression, which
eventually leads to the connection of all electron pockets
in the kz = π/a face. This happens around V/V0 = 0.90
[see Fig. 7(b)]. Altogether, under compression the electron
concentration at M and the hole concentration at X increase

174531-6



ELECTRONIC TOPOLOGICAL TRANSITION IN LaSn3 . . . PHYSICAL REVIEW B 85, 174531 (2012)

FIG. 7. (Color online) Fermi surface of LaSn3 at compression
V/V0 = 0.90. V0 denotes the experimental equilibrium volume.

simultaneously in LaSn3. In the case of YSn3 only the electron
concentration at the M point increases, while there is no hole
pocket at X even at ambient volume, and therefore the Fermi
surface topology of YSn3 remains unchanged under (modest)
compression.

The occurrence of a third Fermi surface sheet for LaSn3

under pressure leads to an increase of the density of states
at the Fermi level, as illustrated in Fig. 4. For comparison
the same quantity for YSn3 is also shown in the figure, and
it is seen to decrease monotonously under pressure. These
results for LaSn3 are in accordance with the zero-pressure

measurements of the superconducting transition temperature
in the (La,Th)Sn3 alloy system as investigated by Havinga
et al.9 These authors also speculated that their observed
oscillatory behavior of Tc versus alloy composition might
be due to a singular behavior of the electronic density of
states in the vicinity of the Fermi level of LaSn3. Huang
et al.15 observed an irregular behavior of Tc for LaSn3 under
pressure. These authors reported an initial slight increase in
Tc with a maximum at a pressure around 0.8 GPa, beyond
which Tc gradually decreases. Within the BCS framework of
superconductivity, the change in Tc observed could reflect a
change in the density of states at the Fermi level. At first,
this seems in accordance with the nonmonotonic variation
under compression of the density of states at the Fermi level
in LaSn3 found in the present calculations. However, we find
the opposite trend of an initially decreasing density of states at
the Fermi level, and an increase only starts for compressions
below 0.94V0. Several other factors of course also influence
the transition temperature. The pressure dependence of Tc

arising from pressure-induced abrupt changes in the Fermi
surface topology was theoretically analyzed by Makarov and
Baryakhtar.43

IV. CONCLUSION

An ab initio study of the intermetallic compounds LaSn3

and YSn3 was performed within the local density approx-
imation. The structural, electronic, elastic, and mechanical
properties as well as the Fermi surfaces were studied, including
pressure effects. These compounds are ductile in nature
and their Cu3Au crystal structure is stable even at high
pressure. The elastic constants and the bulk modulus increase
monotonically with pressure. The density of states near to the
Fermi level are mainly Sn p-like states in both compounds,
but a Fermi surface topology change is observed in LaSn3 at
a compression of around V/V0 ∼ 0.94, where a third Fermi
sheet occurs.

*kanchana@iith.ac.in
1R. J. Gambino, N. R. Stemple, and A. M. Toxen, J. Phys. Chem.
Solids 29, 295 (1968).

2E. Bucher, K. Andres, J. P. Maita, and G. W. Hull Jr., Helv. Phys.
Acta 41, 723 (1968).

3K. Kawashima, M. Maruyama, M. Fukuma, and J. Akimitsu, Phys.
Rev. B 82, 094517 (2010).

4G. K. Shenoy, B. D. Dunlap, G. M. Kalvius, A. M. Toxen, and R. J.
Gambino, J. Appl. Phys. 41, 1317 (1970).

5A. P. Murani, Phys. Rev. B 28, 2308 (1983).
6F. Borsa, R. G. Barnes, and R. A. Reese, Phys. Status Solidi 19, 359
(1967).

7L. B. Welsh, A. M. Toxen, and R. J. Gambino, Phys. Rev. B 4, 2921
(1971).

8L. B. Welsh, A. M. Toxen, and R. J. Gambino, Phys. Rev. B 6, 1677
(1972).

9E. E. Havinga, H. Damsma, and M. H. Van Maaren, J. Phys. Chem.
Solids 31, 2653 (1970).

10E. E. Havinga, Phys. Lett. A 28, 350 (1968).

11W. D. Grobman, Phys. Rev. B 5, 2924 (1972).
12E. E. Havinga, Solid State Commun. 11, 1249 (1972).
13A. M. Toxen, R. J. Gambino, and L. B. Welsh, Phys. Rev. B 8, 90

(1973).
14A. M. Toxen, R. J. Gambino, and B. J. C. van der Hoever Jr.,

in Proccedings of the Twelfth International Low-Temperature
Conference, edited by E. Kauda (Academy of Japan, Kyoto, 1971),
p. 351.

15S. Huang, C. W. Chu, F. Y. Fradin, and L. B. Welsh, Solid State
Commun. 16, 409 (1975).

16A. Hasegawa, J. Phys. Soc. Jpn. 50, 3313 (1981).
17R. M. Boulet, J. P. Jan, and H. L. Skriver, J. Phys. F 12, 293 (1982).
18A. Hasegawa and H. Yamagami, J. Phys. Soc. Jpn. 60, 1654 (1991).
19S. B. Dugdale, Phys. Rev. B 83, 012502 (2011).
20P. Blaha, K. Schwarz, G. K. H. Madsen, D. Kvasnicka, and J.

Luitz, WIEN2K, An augmented plane wave + local orbitals
program for calculating crystal properties (Karlheinz Schwarz,
Techn. Universität Wien, Austria, 2001).

21P. Hohenberg and W. Kohn, Phys. Rev. 136, B864 (1964).

174531-7

http://dx.doi.org/10.1016/0022-3697(68)90074-7
http://dx.doi.org/10.1016/0022-3697(68)90074-7
http://dx.doi.org/10.1103/PhysRevB.82.094517
http://dx.doi.org/10.1103/PhysRevB.82.094517
http://dx.doi.org/10.1063/1.1658919
http://dx.doi.org/10.1103/PhysRevB.28.2308
http://dx.doi.org/10.1002/pssb.19670190137
http://dx.doi.org/10.1002/pssb.19670190137
http://dx.doi.org/10.1103/PhysRevB.4.2921
http://dx.doi.org/10.1103/PhysRevB.4.2921
http://dx.doi.org/10.1103/PhysRevB.6.1677
http://dx.doi.org/10.1103/PhysRevB.6.1677
http://dx.doi.org/10.1016/0022-3697(70)90261-1
http://dx.doi.org/10.1016/0022-3697(70)90261-1
http://dx.doi.org/10.1016/0375-9601(68)90330-7
http://dx.doi.org/10.1103/PhysRevB.5.2924
http://dx.doi.org/10.1016/0038-1098(72)90835-6
http://dx.doi.org/10.1103/PhysRevB.8.90
http://dx.doi.org/10.1103/PhysRevB.8.90
http://dx.doi.org/10.1016/0038-1098(75)90099-X
http://dx.doi.org/10.1016/0038-1098(75)90099-X
http://dx.doi.org/10.1143/JPSJ.50.3313
http://dx.doi.org/10.1088/0305-4608/12/2/008
http://dx.doi.org/10.1143/JPSJ.60.1654
http://dx.doi.org/10.1103/PhysRevB.83.012502
http://dx.doi.org/10.1103/PhysRev.136.B864


SWETAREKHA RAM et al. PHYSICAL REVIEW B 85, 174531 (2012)

22D. M. Ceperley and B. J. Alder, Phys. Rev. Lett. 45, 566
(1980).

23J. P. Perdew, K. Burke, and M. Ernzerhof, Phys. Rev. Lett. 77, 3865
(1996).

24H. J. Monkhorst and J. D. Pack, Phys. Rev. B 13, 5188 (1976).
25F. Birch, Phys. Rev. 71, 809 (1947).
26A. Kokalj, Comput. Mater. Sci. 28, 155 (2003).
27J. F. Nye, Physical Properties of Crystals: Their Representation by

Tensors and Matrices (Oxford University Press, Oxford, 1985).
28M. Mattesini, R. Ahuja, and B. Johansson, Phys. Rev. B 68, 184108

(2003).
29M. Mattesini, J. M. Soler, and F. Ynduráin, Phys. Rev. B 73, 094111
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