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Probing interfacial pair breaking in tunnel junctions based on the first and the second harmonics
of the Josephson current
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It will be shown that a pronounced interfacial pair breaking can be identified in Josephson tunnel junctions
provided the first j1c and the second j2c harmonics of the supercurrent, as well as the depairing current in the
bulk jdp, are known. Namely, within the Ginzburg-Landau theory a strong interfacial pair breaking results in the
relation j2cjdp � j 2

1c, while in standard junctions, with negligibly small pair breaking, the relation of opposite
character takes place.
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I. INTRODUCTION

A remarkable property of superconducting weak links is
that the local conditions in a small transition region control
the whole process of charge transport. For the same reason,
interface-induced suppression of the superconducting conden-
sate density can have a considerable influence on the Josephson
effect. A strong surface pair breaking has been theoretically
established for various unconventional superconductors as
well as for magnetic interlayers under certain conditions.1–9

Therefore, probing the condensate density near the interface
would provide valuable information for studying and con-
trolling fundamental characteristics of the superconducting
junctions. It is still an ongoing problem for the junctions
though the order parameter profiles near superconductor-
vacuum surfaces have been recently determined using a scan-
ning tunneling microscopy method with a superconducting
tip.10

In superconducting tunnel junctions the first harmonic j1 =
j1c sin χ usually strongly dominates the Josephson current
j = j1c sin χ + j2c sin 2χ + · · · , while the second harmonic
j2 = j2c sin 2χ represents a small correction to the first one,
|j2c| � |j1c|, mostly due to a small junction transparency.
Qualitatively different phase dependencies of the two har-
monics allow one to study and distinguish between them
experimentally. It is therefore of interest to find out which
characteristic properties of the superconducting junctions can
be identified with the data provided by the two harmonics. Thus
the first harmonic, as opposed to the second one, is known to
be noticeably suppressed both at 0-π transitions as well as in
the junctions involving unconventional superconductors with
special interface-to-crystal orientations.11–18 However, except
for these special cases, the relation |j2c| � |j1c| always takes
place and does not qualitatively discriminate between various
superconducting tunnel junctions.

This paper suggests a test, which will be derived within
the Ginzburg-Landau (GL) theory and will allow identifi-
cation of a pronounced interfacial pair breaking in tunnel
junctions, provided the first and the second harmonics, as
well as the depairing current in the bulk jdp, are known. The
relation j2cjdp � j 2

1c will be shown to take place in tunnel
junctions with a strong interfacial pair breaking, while in
standard tunnel junctions, with negligibly small pair breaking,
it will be j2cjdp = 0.27j 2

1c < j 2
1c. The specific temperature

dependencies of the two harmonics near Tc will also be
determined. The self-consistency is shown to alter existing
estimates of both harmonics considerably. Initially, the theory
is based on the interface free energy, containing only the terms
that are quadratic or bilinear in the superconducting order
parameters. Later on, the study will be extended to include the
next order, quartic and biquadratic, corrections. They will be
shown to result in the material-dependent coefficients, which
are independent of temperature near Tc and should, generally,
be kept on a par with numerical terms of the order of unity in
the expressions for the order parameters.

II. BASIC EQUATIONS

Consider tunnel junctions with the spatially constant width,
which is much less than the Josephson penetration length,
and with a plane interlayer at x = 0 of zero length within
the GL approach. Assume the usual form of the GL free
energy, which applies, for example, to s-wave and dx2−y2 -wave
junctions: F = Fb1 + Fb2 + Fint. HereFb1(2) are the bulk free
energies of two superconducting leads and Fint is the interface
free energy. For a junction with two identical superconductors,
the bulk free energies have identical coefficients

Fb1(2) =
∫

V1(2)

(K|∇�1(2)|2 + a|�1(2)|2 + (b/2)|�1(2)|4)dV1(2).

(1)

Here K,b > 0, a = ατ = −α(Tc − T )/Tc.
Asymmetry can be generally maintained by different

conditions on the opposite sides of the interface, as in d-
wave junctions with different crystal-to-interface orientations,
and/or in junctions with asymmetric magnetic interfaces. Then
the interface free energy incorporates different contributions
from the two superconducting banks:

Fint =
∫

S

[
g11|�1|2 + (1/2)h11|�1|4 + g22|�2|2

+ (1/2)h22|�2|4 + h12|�1|2|�2|2 + (g12 + η1|�1|2
+ η2|�2|2)|�1 − �2|2 + f12

∣∣�2
1 − �2

2

∣∣2]
dS. (2)

In addition to the main terms, which are quadratic or bilinear
in the order-parameter moduli, the quartic and biquadratic
terms of the next order of smallness near Tc are kept in Eq. (2).

174529-11098-0121/2012/85(17)/174529(6) ©2012 American Physical Society

http://dx.doi.org/10.1103/PhysRevB.85.174529


YU. S. BARASH PHYSICAL REVIEW B 85, 174529 (2012)

In tunnel junctions with small transparencies D � 1 one gets
g12,η1,η2 ∝ D, h12,f12 ∝ D2.

For the order parameter f (x)eiχ(x) normalized to f = 1 in
the bulk without superflow, the first integral of the GL equation
in the presence of the supercurrent19 takes the form

(
df

dx̃

)2

+ f 2− 1

2
f 4+ 4j̃ 2

27f 2
= 2f 2

∞ − 3

2
f 4

∞. (3)

Here x̃ = x/ξ , ξ = √
K/|a| is the temperature-dependent su-

perconducting coherence length, j̃ is the spatially constant nor-
malized current density j̃ = j/jdp = −(3

√
3/2)(dχ/dx̃)f 2,

jdp = 8|e|K1/2|a|3/2/3
√

3h̄b is the depairing current in the
bulk, and f∞ is the asymptotic value of f in the depth of the
superconducting leads.

The boundary conditions (BC) originate from the variation
of Fint and from the bulk gradient terms integrated by parts.
One starts with the BC in standard linear approximation in
f1(−0) ≡ f10 or f2(+0) ≡ f20. Taking real and imaginary
parts of the BC for the complex quantity f (x)eiχ(x), one
finds the following linear BC and the expression for the
supercurrent

(dfi/dx̃)0 = (−1)i[(g̃ii + g̃12)fi0 − g̃12 cos χ fi0], (4)

j̃ = (3
√

3/2)g̃12f10f20 sin χ. (5)

Here i = 1,2, i = 3 − i. The phase difference of the order
parameters across the interface is χ = χ10 − χ20, and g̃12 =
g12ξ (T )/K , g̃11 = g11ξ (T )/K , and g̃22 = g22ξ (T )/K are the
effective dimensionless coefficients.

For tunnel junctions |g̃12| � 1. Since the order parameters
near pair-breaking interfaces vary on a scale � ξ (T ), one gets
from Eq. (4) g̃iifi0 � 1, on account of |g̃12|fi0 � 1. This
signifies, in particular, that for g̃ii � 1 a strong interfacial
pair breaking fi0 � g̃−1

ii � 1 occurs.

III. TEST FOR A PRONOUNCED INTERFACIAL
PAIR BREAKING

Consider the supercurrent within the second-order pertur-
bation theory in g̃12. Then, according to Eq. (5), quantities
f10 and f20 should contain the terms of the zeroth and the
first orders of smallness. One takes x = ±0 in Eq. (3) and
substitutes there (4) and (5). Since the depairing effects in
the bulk would contribute to Eq. (3) only beginning with the
second-order terms, within the given accuracy f∞ = 1. Then
one obtains the following equations for f10 and f20:

f 4
i0 − 2

(
1 + g̃2

ii

)
f 2

i0 + 1 = 4g̃12g̃iifi0(fi0 − fi0 cos χ ).
(6)

In the zeroth order in g̃12 the solutions are

f
(0)2

i0 = (1/2)
(√

2 + g̃2
ii − g̃ii

)2
, i = 1,2. (7)

Equation (7) involves two solutions of Eq. (6). At gii > 0 it de-
scribes a pair breaking f0 < 1, and then |df (0)/dx̃|0 < 1/

√
2.

At gii < 0 an enhanced superconductivity at the boundary
f0 > 1 occurs.20–24 Then the quantity |df (0)/dx̃|0 >

√
2g2

ii

can take large values, and a strong enhancement would induce

a characteristic scale substantially less than ξ (T ) of the leads
(see Appendix for details).

The first-order corrections f0i ≈ f
(0)
0i + f

(1)
0i , which follow

from Eqs. (6) and (7), are

f
(1)
i0 = −g̃12

(
f

(0)
i0 − f

(0)
i0

cos χ
)/√

2 + g̃2
ii . (8)

Substituting the order parameters f0i in Eq. (5), one finds
the first and the second harmonics of the supercurrent j̃ =
j̃c1 sin χ + j̃c2 sin 2χ in the Josephson tunnel junctions:

j̃c1 = 3
√

3g̃12

4

(√
2 + g̃2

11 − g̃11
)(√

2 + g̃2
22 − g̃22

)

×
[

1 − g̃12√
2 + g̃2

11

− g̃12√
2 + g̃2

22

]
, (9)

j̃c2 = 3
√

3

8
g̃2

12

2∑
i=1

1√
2 + g̃2

ii

(√
2 + g̃2

ii
− g̃ii

)2
. (10)

The second harmonic (10) is induced by the proximity
across the interface. At gii < 0, the quantity |gii | is here
assumed not to be too large to retain |j̃c| � 1 and |gii | �√

Kα. Otherwise, Eqs. (9) and (10) are applicable at any values
of g̃ii .25 Further, the small second and third terms in the square
brackets in Eq. (9) will be neglected.

One finds from Eqs. (9) and (10) the following relationship
between the amplitudes j̃c2 and j̃c1:

j̃c2 = j̃ 2
c1

6
√

3

∑
i=1,2

1√
2 + g̃2

ii

(√
2 + g̃2

ii + g̃ii

)2
. (11)

Under the conditions |g̃ii | � 1 (i = 1,2), one can disre-
gard the interfacial proximity effects. Then in the original
units jc1 ∝ |τ |, jc2 ∝ √|τ |, while the relative magnitudes of
the two harmonics are described by the equalities

jc2jdp = 0.27j 2
c1, jc2 = 0.7g̃12jc1. (12)

Consider now asymmetric junctions with a pronounced
interfacial pair breaking on one side of the interface, when
|g̃11| � 1 and g̃2

22 � 1, g̃22 > 0. In d-wave junctions this
can take place for interface-to-crystal orientations, which are
close to (100) and (110) orientations on the opposite banks
of a smooth interface. Then Eqs. (9) and (10) are reduced
to j̃c1 ≈ 3

√
3g̃12/(2

√
2g̃22), j̃c2 ≈ 3

√
3g̃2

12/(4g̃22) while
jc1 ∝ |τ |3/2, jc2 ∝ |τ | in the original units. The relationships
between the harmonics are

jc2jdp = 0.385g̃22j
2
c1, jc2 = 0.7g̃12jc1. (13)

In symmetric junctions with g̃11 = g̃22 > 0 and g̃2
ii � 1

one gets from Eqs. (9) and (10) j̃c1 = 3
√

3g̃12/4g̃2
22, j̃c2 =

3
√

3g̃2
12/4g̃3

22. Hence, jc1 ∝ τ 2, jc2 ∝ τ 2, and

jc2jdp = 0.77 g̃22 j 2
c1, jc2 = (g̃12/g̃22) jc1. (14)

In symmetric junctions the quantity j̃c2/j̃c1 ∝ g̃−1
22 diminishes

with increasing pair breaking.26

It also follows from Eqs. (9)–(11) that jc2jdp = 0.136 j 2
c1

for |g̃11| � 1 and g̃2
22 � 1, g̃22 < 0. In symmetric junctions

with g̃2
ii � 1, g̃ii < 0 one gets jc2jdp = 0.19 j 2

c1/|g̃22|3. Under
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the conditions g̃11 < 0, g̃22 > 0, g̃2
ii � 1 (i = 1,2) the relation

is jc2jdp = 0.385 g̃22j
2
c1.

Comparing (12)–(14), as well as the results for g̃ii < 0,
one can conclude that the quantity |jc2|jdp/j

2
c1 always exceeds

unity, when a pronounced interfacial pair breaking g̃2
ii � 1,

g̃ii > 0 takes place on at least one side of the interface. At
0.4g̃22 � 1, the strong inequality |jc2|jdp � j 2

c1 emerges as a
sure sign of the strong interfacial pair breaking. By contrast,
jc2jdp/j

2
c1 is substantially less than unity for the negligibly

weak pair breaking or for the enhanced superconductivity, on
both sides of the interface.

Though the specific temperature dependencies, determined
above for both harmonics at different strengths of the pair
breaking, could be identified near Tc, there are no striking
differences between them. At the same time, the power-law
temperature dependencies of the harmonics jci = jci,0|τ |νi

actually drop out of Eqs. (12)–(14), together with the depen-
dencies of the effective coupling constants g̃il = g̃il,0|τ |−1/2 =
(gilξ0/K)|τ |−1/2 (i,l = 1,2) and of the depairing current
jdp = jdp,0|τ |3/2. Hence, (12)–(14) are applicable to the “low-
temperature” amplitudes of the GL theory, and then the
relation |jc2,0|jdp,0 � j 2

c1,0 will be valid, if at least one of g̃ii,0

satisfies the condition g̃ii,0 � 1. The latter condition is more
restrictive than g̃ii � 1. Since the quantities g̃ii incorporate
contributions from a relatively wide angular interval of
quasiparticle momentum directions, they can be quite large
in anisotropically paired superconductors near Tc, but as a
rule, decrease substantially when the temperature goes down.2

However, this is generally not the case for pair-breaking effects
induced by magnetic boundaries.8,9 If g̃ii,0 � 1 while g̃ii � 1,
a crossover from |jc2|jdp � j 2

c1 close to Tc to |jc2|jdp � j 2
c1

will show up with decreasing temperature, as described by
Eq. (11).

Assume now g̃ii,0 � 1. The GL “low-temperature” values
of the quantities usually exceed their actual values at T = 0 by
about 2–3 times. This concerns, in particular, the depairing cur-
rent: jdp,0/jdp(T = 0) ≈ 2.6.27–30 For the standard Josephson
current,31 one obtains jc1 = jc1,0|τ | = 2π3Tc|τ |/7ζ (3)|e|RN

near Tc and jc1(T = 0) = π�0/2|e|RN . Hence jc1,0/jc1(T =
0) = 2.66. Despite the value it would have for analyzing the
experimental results,10 there still is no microscopic theory
for the effects of strong interfacial pair breaking in a wide
temperature range. If, qualitatively, no dramatic changes of
behavior take place and g̃ii,0 � 1, the relation |jc2|jdp � j 2

c1
could remain valid with decreasing temperature below the
GL domain of applicability unless anomalous temperature
dependencies, if present, come into play, e.g., due to Andreev
bound states with low energies εB � �0. The tempera-
ture dependence of (|jc2|jdp/j

2
c1) in the whole temperature

range is of interest for further theoretical and experimental
studies.

IV. MICROSCOPIC FORMULA FOR g̃12

Microscopic expressions for g̃12 and for g̃ii (i = 1,2) can
be obtained by comparing the Josephson currents of the
GL theory with the corresponding microscopic results near
Tc. Consider here standard symmetric SIS tunnel junctions
with the negligibly small pair breaking |g̃ii | � 1. Then the
GL expression for the first harmonic should coincide with

the microscopic Ambegaokar-Baratoff formula31 near Tc:
jc1 = 4|e||a|g12/(h̄b) = π |�|2/(4|e|TcRN ) . Here RN is the
junction resistance in the normal state. Since K = h̄2/4m,
|a| = α|τ | and, in the absence of the pair breaking, the BCS
gap function near Tc is |�|2 = 8π2Tc(Tc − T )/[7ζ (3)], one
obtains

g̃12 = 2π3Tcmbξ (T )/[7ζ (3)e2h̄αRN ]. (15)

Equation (15) can be transformed further with the Gor’kov mi-
croscopic formulas for b/α32 and with the junction resistance
expressed via the averaged transparency R−1

N = e2kfD/4π2h̄.
Thus for dirty junctions one obtains g̃12 = 0.75Dξ (T )/,
while for pure junctions g̃12 = 3π2Dξ (T )/[14ζ (3)ξ0] =
1.76Dξ (T )/ξ0. Here  is the mean free path and ξ0 = h̄vf /πTc

is the zero-temperature coherence length. The quantitative
microscopic formulas obtained here for g̃12 agree with the
earlier estimates.26 In particular, in dirty superconductors the
ratio ξ (T )/l can easily reach 100 even at low temperatures.
Hence, for small and moderate transparencies the quantity
g̃12 = 0.75Dξ (T )/l can vary from vanishingly small values
in the tunneling limit considered in this paper to those
well exceeding 100 near Tc, when a substantial anharmonic
behavior of the Josephson current takes place.26

V. NEXT ORDER TERMS IN THE CURRENT

The initial expression (5) for the supercurrent can be
generalized to include the next order terms, which originate
from the phase-dependent biquadratic contributions to Eq. (2).
The resulting formula is obtained after replacing g̃12 →
g̃12 + η̃1(|a|/b)f 2

10 + η̃2(|a|/b)f 2
20 in Eq. (5) and adding j̃f12 =

j̃c2,f sin 2χ , where

j̃c2,f = (3
√

3/2)(|a|/b)f̃12f
2
10f

2
20. (16)

Here f̃12 = f12ξ (T )/K , η̃i = ηiξ (T )/K , i = 1,2. Substituting
the zeroth-order quantities (7) in Eq. (16), one obtains

j̃c2,f = (3
√

3/8)(|a|/b)f̃12
(√

2 + g̃2
11 − g̃11

)2

× (√
2 + g̃2

22 − g̃22
)2

. (17)

Both contributions to the second harmonic (10) and (17) are
of the second order in transparency ∝D2, but (17) also contains
an additional small parameter |τ | = (Tc − T )/Tc, since |a| =
α|τ |. This allows us to disregard (17) in studying the regular
problem assumed above. However, in a number of specific
cases the coupling constant g12 can vanish for symmetry
reasons.33–35 This concerns, in particular, the asymmetric
junction between identical dx2−y2 -wave superconductors with
exact (100) and (110) interface-to-crystal orientations on
opposite banks of a smooth plane interlayer.11–15,36–41 An
additional element of the point symmetry inherent in such a
specific system is the reflection in the xz plane perpendicular
to the interface. Free energy should be invariant under the
latter transformation, while the dxy-wave order parameter on
one side of the interface changes its sign and the dx2−y2 -wave
order parameter on another side keeps its value unchanged.
Then the expression containing |�1 − �2|2 in Eq. (2) is no
longer invariant and, therefore, the coefficients g̃12, η̃1, and η̃2

should vanish in the case in question. By contrast, the term
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containing |�2
1 − �2

2 |2 in Eq. (2) remains unchanged under
the sign reversal of one of the order parameters and, hence, the
coefficient f12 can maintain its regular value.

In reality, the first harmonic j̃c1 remains finite and, along
with j̃c2,f , still represents a substantial part of the supercurrent,
mainly due to interfacial imperfections such as faceting,
roughness, etc.11–15 Since |jc2,f | � jdp, the relation |jc1| �
|jc2,f | always results in the condition |jc2,f |jdp � j 2

c1, which
consequently loses its importance in the special case of
strongly suppressed g12.

VI. NEXT ORDER TERMS IN THE BC

Let the parameters g12 and gii (i = 1,2) be independent
of T near Tc. Since g̃12,g̃ii ∝ ξ (T ), then close to Tc one will
get |g̃12| � 1 and/or |g̃ii | � 1 due to large values of ξ (T ).
However, the coupling constants |g12| and |gii | can themselves
be very small and the temperature range with large |g̃12| and/or
|g̃ii | be too narrow. While the condition |g̃12| � 1, resulting in
the tunneling behavior, is assumed throughout this paper, the
range of variations of g̃ii , defined by the strength of interfacial
proximity effects, is quite wide. It contains, for instance, small
values of |gii |. For this reason numerical coefficients of the
order of unity, originating from Eq. (3), have been kept in
Eqs. (6)–(11) on an equal footing with g̃2

ii . However, the
additional terms of the next order of smallness, which come
from the BC, can be comparable with the terms referred to
above and should generally be taken into account.

To clarify the point, let us represent the BC schematically
as (dfi/dx̃)0 ≈ Ãi,0 + (|a|/b)Ãi,1 (i = 1,2). Here Ãi,0 =
Ai,0ξ (T )/K is linear in the order parameters and coincides
with the right-hand side of Eq. (4). The correction Ãi,1 =
Ai,1ξ (T )/K appears in the BC both from the quartic and
biquadratic terms of the interface free energy (2) and from
the weak temperature dependence of the GL coefficients
in Ai,0. Therefore, in addition, it involves the temperature
derivatives of the coefficients. As (3) contains (df /dx̃)2, let
us consider (dfi/dx̃)2

0 ≈ Ã2
i,0 + 2(|a|/b)Ãi,0Ãi,1. Here it is

the crossed product, which is the next order correction to the
ith equation for the self-consistent order parameters. Since
the expression 2(|a|/b)Ãi0Ãi1 = 2|a|ξ 2(T )Ai0Ai1/(bK2) =
2Ai0Ai1/(bK) depends on temperature solely via the order
parameter amplitudes entering Ai,1(0), it results in tempera-
ture independent coefficients in the equations for the order
parameters.

The corresponding terms should, in general, be taken into
account for the quantitative description of the Josephson
current. However, as the main contribution to Eq. (3) from
(dfi/dx̃)2

0 is quadratic and the correction is linear in Ai0, for
sufficiently large |Ai0| the correction is negligibly small as
compared to A2

i0. For sufficiently small |Ai0| the correction
can now also be disregarded as compared to the coefficients of
the order of unity in Eq. (3).

In tunnel junctions, the basic correction of the given origin
is described by the crossed product 4giihii/(Kb). In particular,
in the zeroth approximation in the transparency the order
parameters are

f
(0)2

i0 = [
1 + g̃2

ii +
√(

1 + g̃2
ii

)2 − Li

]−1
, (18)

where Li = 1 − (4giihii)/(Kb) and gii, hii > 0. The quanti-
ties g̃2

ii = g2
ii/K|a| are implied here and below to involve g2

ii

in the expanded form g2
ii ≈ g2

ii,c + 2τgii,c(dgii/dτ )c, where
weak temperature dependence of gii near Tc is taken into
account in linear in τ approximation.

The linear in g̃12 first harmonic is obtained by substituting
(18) in Eq. (5). Calculating also the second harmonic, one
obtains the modified relation between the second and the first
harmonics:

j̃c2 = j̃ 2
c1

3
√

3

2∑
i=1

1√
2 + g̃2

ii

[
1 + g̃2

ii +
√(

1 + g̃2
ii

)2 − Li

]
.

(19)

In disregarding the term (4giihii)/(Kb), Eqs. (18) and
(19) are reduced to the previous ones, Eqs. (7) and (11).
Since the two parameters g̃ii = giiξ (T )/K and 4giihii/(Kb)
are independent of each other, the conditions |g̃ii | � 1 do
not generally exclude the special case 4|gii |hii/(Kb) � 1.
Then quadratic in hii corrections can also be noticeable.
However, for sufficiently small |gii | the opposite conditions
[4|gii |hii/(Kb)]1/2 � 1 occur and allow disregarding all the
corresponding terms.

For large g̃ii the term (4giihii)/(Kb) becomes negligibly
small in Eq. (19), when the temperature-dependent condition
ξ (T )g̃3

ii � 4hii/b, in keeping with g̃ii � 1, is valid. Also, for
one and the same gii , the right-hand side in Eq. (19) is always
larger than that in Eq. (11), if (giihii)/(Kb) > 0. Therefore,
the modified formulas do not alter the main statement of this
paper.

In conclusion, a test for identification of a pronounced
interfacial pair breaking in Josephson tunnel junctions has
been proposed and theoretically verified in this paper, based
on Eqs. (9)–(11) and (19) obtained within the self-consistent
theory of the Josephson current. The main statement is that
the condition jc2jdp � j 2

c1 indicates a strong interfacial pair
breaking at least on one side of the interface, if the first and the
second harmonics satisfy the conventional relation jc2 � |jc1|.

ACKNOWLEDGMENT

The support of RFBR Grant No. 11-02-00398 is acknowl-
edged.

APPENDIX: ORDER PARAMETER PROFILES NEAR
IMPENETRABLE BOUNDARIES

The GL theory allows a detailed description of the spatial
profiles of the order parameters near impenetrable boundaries.
Here the boundaries, which either suppress or enhance the
superconductivity in their vicinities, are considered jointly.

In the case in question the supercurrent vanishes and f∞ =
1. Then Eq. (3) reduces to

(
df (x̃)

dx̃

)2

= 1

2
[1 − f 2(x̃)]2. (A1)

The solution of Eq. (A1), which is relevant to the order
parameter near a pair-breaking surface at x = 0, satisfies the
condition f < 1 throughout the half space x > 0 and takes the
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form (see, e.g., Ref. 42)

fpb(x̃) = tanh

(
x̃ + x̃0√

2

)
. (A2)

The parameter x̃0 > 0 together with the associated order
parameter value on the surface should be determined from
the boundary conditions.

The expression for the order parameter in superconducting
half space with the pair-producing surface directly follows
from Eq. (A2), since for each f (x̃), which meets (A1), the
function 1/f (x̃) satisfies the same equation (A1). This results
in the solution

fpp(x̃) = coth

(
x̃ + x̃0√

2

)
, (A3)

for which the condition fpp > 1 holds throughout the half
space x > 0.

The order parameter f0, taken on the surface and described
by Eq. (7), can be alternatively determined by minimizing full
free energy (1) and (2) with the solutions (A2) or (A3). Explicit
integration in Eq. (1) with Eq. (A2) or (A3) results in the part
of the bulk free energy modified by the boundary. Retaining
only the quadratic in the order parameter term in the surface
free energy (2), one finds the full free energy per unit square
of an impenetrable surface

F =
√

K|a|3/2

√
2b

[
4

3
− 2f0 + 2

3
f 3

0 +
√

2g̃f 2
0

]
, (A4)

for both solutions. The extremum of Eq. (A4) does result in
Eq. (7) irrespective of the sign of g. The surface suppresses

the superconducting order parameter at g > 0, while at g < 0
the superconductivity is enhanced near the surface.

It follows from Eqs. (A2) and (A3)

dfpb(x̃)

dx̃
= 1√

2
sech2

(
x̃ + x̃0√

2

)
, (A5)

dfpp(x̃)

dx̃
= − 1√

2
csch2

(
x̃ + x̃0√

2

)
. (A6)

As seen from Eq. (A5), the order parameter (A2), which is
suppressed near the boundary, satisfies not only the condition
fpb(x̃) < 1 but also the relation

∣∣∣∣dfpb(x̃)

dx̃

∣∣∣∣ � 1√
2
. (A7)

For the order parameter (A3), which is enhanced near the
boundary, one gets fpp(x̃) > 1. According to Eqs. (A3) and
(A6), the smaller the parameter x0, the larger both the order
parameter fpp,0 and its derivative |dfpp/dx̃|0 taken on the
boundary. A large spatial derivative |dfpp/dx̃|0 corresponds
to a small characteristic scale induced in a superconductor in
the vicinity of the surface.

For g < 0 and |g̃| � 1 one gets from Eqs. (4) and
(7) f0 ≈ √

2|g̃| and |df /dx̃|0 ≈ √
2g̃2. Hence, the effective

characteristic scale near the surface is x0 ∼ ξ (T )/|g̃|. For
the use of the GL theory near the surface one assumes
x0 � ξ0. This results in the condition |g̃| � 1/

√
τ , i.e., |g| �√

Kα.
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