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Suppression of superconductivity at a nematic critical point in underdoped cuprates
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A nematic quantum critical point is anticipated to exist in the superconducting dome of some high-
temperature superconductors. The nematic order competes with the superconducting order and hence reduces
the superconducting condensate at T = 0. Moreover, the critical fluctuations of nematic order can excite more
nodal quasiparticles out of the condensate. We address these two effects within an effective field theory and show
that superfluid density ρs(T ) and superconducting temperature Tc are both suppressed strongly by the critical
fluctuations. The strong suppression of superconductivity provides a possible way to determine the nematic
quantum critical point.
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I. INTRODUCTION

The strong electron correlation in high-temperature
superconductors (HTSC) is able to drive an electronic nematic
phase,1–4 which preserves translational symmetry but breaks
rotational symmetry. In the past decade, there have been a
number of experimental signatures pointing to the presence of
nematic ordering transition in some HTSCs.3–8 On the basis
of these experiments, a zero-temperature nematic quantum
critical point (QCP) is supposed to exist at certain doping
concentration xc in the superconducting (SC) dome.3,4,9–15

Generally, the nematic order has two impacts on the SC state.
First, it competes with the SC order.2–4 Second, the nematic
order parameter couples to the gapless nodal quasiparticles
(QPs), which are believed to be the most important fermionic
excitations in unconventional superconductors with dx2−y2

energy gap. The latter coupling is singular at the nematic QCP
xc, and has stimulated considerable theoretical efforts.9–15

A recent renormalization group analysis11 showed that it
leads to a novel fixed point at which the ratio between gap
velocity v� and Fermi velocity vF of nodal QPs flows to
zero, v�/vF → 0.

Although a zero-temperature nematic QCP is expected to
exist somewhere in the SC dome,3,9–15 shown schematically
in Fig. 1, its precise position, and even its very existence, has
not been unambiguously confirmed by experiments so far.
It is therefore always interesting to seek evidence which can
help convincingly confirm or disconfirm the existence of such
a point. In this paper, we study the superfluid density ρs(T )
and the SC temperature Tc at the supposed nematic QCP xc. If
ρs(T ) and Tc exhibit sharply distinct behaviors at xc, then the
nematic QCP may be detected by measuring these quantities.

HTSCs are known to be doped Mott insulators, so their
superfluid density is much smaller than that of conventional
metal superconductors. At T = 0, the superfluid density in
the underdoping region depends16,17 linearly on doping x as
ρs(0) = x/a2, where a is the lattice spacing. At finite T , a
certain amount of nodal QPs are thermally excited out of
the SC condensate. Lee and Wen argued that these normal
nodal QPs can efficiently deplete the superfluid density.18

Formally, the superfluid density contains two terms, ρs(T ) =
ρs(0) − ρn(T ), where ρn(T ) is the normal QPs density. Setting
ρs(Tc) = 0 allows for an estimate of the critical tempera-
ture Tc. Employing a phenomenological approach, Lee and

Wen18 obtained Tc ∝ ρs(0) ∝ v�

vF
x, reproducing the Uemura

plot.19

Once a nematic ordering transition occurs at xc, the
superfluid density and Tc will be substantially changed. As
v�/vF → 0 due to the critical nematic fluctuations, it seems
that Tc → 0, i.e., superconductivity would be completely sup-
pressed at xc. This argument is certainly oversimplified since
the above expression of Tc is obtained in the noninteracting
limit. However, this qualitative analysis does indicate the
importance of the critical nematic fluctuations, and indeed
motivates us to perform a quantitative computation of the
renormalized ρs(T ) and Tc after taking into account the
nematic fluctuations.

The nematic order affects ρs(T ) in two ways. On the one
hand, since the nematic order competes with the SC order, it
reduces ρs(0). This reduction can be examined by studying
the competitive interaction between nematic and SC order
parameters. On the other, the critical nematic fluctuations can
excite more nodal QPs out of the condensate, compared with
the case without nematic order. As a consequence, ρn(T ) is
enhanced and the superfluid density is further suppressed. We
shall access this effect by generalizing the phenomenological
approach proposed in Ref. 18. The velocity anisotropy plays
an essential role in these considerations. After explicit cal-
culations, we find that superfluid density ρs(T ) and Tc are
both significantly reduced due to critical nematic fluctuations,
indicating a strong suppression of superconductivity at nematic
QCP xc (see Fig. 1).

The rest of the paper is organized as follows. In Sec. II, we
address the competitive interaction between SC and nematic
order parameters and calculate zero-T superfluid density. In
Sec. III, we calculate the density of normal QPs after taking
into account fermion velocity renormalization due to critical
nematic fluctuation. Based on these calculations, we predict
a strong suppression of superconductivity at nematic QCP.
In Sec. IV, we present a brief summary of our results, and
also discuss the possible experimental determination of the
nematic QCP.

II. COMPETING ORDERS AND ZERO-TEMPERATURE
SUPERFLUID DENSITY

We first consider the renormalized zero-T superfluid
density at nematic QCP. Based on phenomenological grounds,
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FIG. 1. (Color online) Schematic phase diagram of HTSC. The
suppression of Tc at nematic QCP xc is represented by the dashed
line.

we write a free energy of two competing orders as

F = Fψ + Fφ + Fψφ

= 1

2m
(∇ψ)2 − αψ2 + β

2
ψ4 + Fφ + γψ2φ2, (1)

where ψ and φ are the SC and nematic order parameters,
respectively. The strength of the competitive interaction
between ψ and φ is represented by a positive constant γ .
Such type of effective model has been adopted to describe
competing orders in various superconductors.20,21

In the absence of nematic order, the mean value of
ψ is |ψ | = √

α/β. To be consistent with experiments, the
parameters α and β must be properly chosen such that
4|ψ |2 = 4α/β = ρs(0) = x/a2. In the presence of nematic
order, |ψ | will be renormalized by the γψ2φ2 term. The
quantum fluctuation of nematic order φ is very strong and
actually singular at nematic QCP xc, so φ should be regarded
as a quantum mechanical field. However, we can consider ψ as
a classical field and ignore its quantum fluctuations, provided
xc is not close to the SC QCP x0.

The free energy of nematic order Fφ should be specified
now. Analogous to the free energy of SC order ψ , Fφ contains
a quadratic term φ2 and a quartic term φ4. However, the
additional coupling between nematic order and nodal QPs
introduces an extra term. The action describing this coupling
is given by9–11

S	 =
∫

d3k

(2π )3
[	†

1i(−iω + vF k1τ
z + v�k2τ

x)	1i

+	
†
2i(−iω + vF k2τ

z + v�k1τ
x)	2i], (2)

S	φ =
∫

d2x dτ [λ0φ(	†
1iτ

x	1i + 	
†
2iτ

x	2i)], (3)

where τ x,y,z are Pauli matrices and the flavor index i sums
up 1 to N . 	1 represents nodal QPs excited from (π

2 , π
2 ) and

(−π
2 ,−π

2 ) points, and 	2 the other two. The effective action

of φ has the form11

Sφ =
∫

d3q

(2π )3

[
1

2
[q2 + r + �(q)]φ2 + u

4
φ4

]
, (4)

which is obtained by integrating out N -flavor nodal QPs. Here,
r is the tuning parameter for the nematic ordering transition,
with r = 0 defining the nematic QCP xc. The polarization
function �(q) comes from nodal QPs, and, to the leading
order of 1/N expansion, is defined as

�(ε,q) = N

∫
dω d2k
(2π )3

Tr[τ xG0(ω,k)τ xG0(ω + ε,k + q)],

(5)

where

G0(ω,k) = 1

−iω + vF k1τ z + v�k2τ x
(6)

is the free propagator for nodal QPs 	1 (free propagator for
nodal QPs 	2 can be similarly written). The polarization
function �(ε,q) has already been calculated previously11,15

and is known to have the form22

�(ε,q) = N

16vF v�

[
ε2 + v2

F q2
1(

ε2 + v2
F q2

1 + v2
�q2

2

)1/2 + (q1 ↔ q2)

]
.

(7)

Note there is no direct interaction between ψ and nodal QPs
	. Indeed, 	 are excited on top of a SC order ψ . Moreover,
they have sharp peak and long lifetime in the SC dome in the
absence of competing orders,17 so their coupling to ψ must be
quite weak.

Starting from Eqs. (1) and (4), we can compute the
correction to zero-T superfluid density due to the competition
between SC and nematic orders. To this end, we need to
minimize the effective potential of SC order V [ψ]. The bare
potential for ψ is simply V0[ψ] = −αψ2 + β

2 ψ4. It receives an
additional term V1[ψ] due to the SC-nematic competition. This
additional term will be calculated using the methods presented
in Refs. 21 and 23. The corresponding partition function is

Z[ψ(r)] =
∫

Dφ(r,τ ) exp

(
−Fψ

T
− Sφ − Sψφ

)
, (8)

where Fψ = ∫
d2r Fψ . The saddle-point equation for ψ

reads as

δ ln Z[ψ(r)]

δψ(r)
= 0, (9)

which gives rise to[
−α + βψ2(r) − 1

m
∇2 + γf [ψ]

]
ψ(r) = 0. (10)

Here, f [ψ] is the expectation value of φ2. At the one-loop
level, it has the form

f [ψ] ≡ 〈φ2〉 =
∫

d3q

(2π )3

1

q2 + �(q) + γψ2
, (11)

where �(q) and γψ2 represent the contributions due to
nodal QPs and SC order, respectively. Although the q2 term
appearing in the denominator of f [ψ] is much smaller than
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�(q) at low energy, it can not be simply neglected since
f [ψ] would be divergent without such a term. It is now
straightforward to get

δV1[ψ]

δψ
= 2γψf [ψ], (12)

which then leads to a renormalized potential

V [ψ] = −αψ2 + β

2
ψ4 + V1[ψ]. (13)

To calculate the renormalized zero-T superfluid density ρs
R(0),

one needs to minimize the effective potential V [ψ] by taking

δV [ψ]

δψ
= 0. (14)

The renormalized |ψ |2 and therefore ρs
R(0) can be obtained

from the solution of the following equation:

−αψ + βψ3 + γψf [ψ] = 0. (15)

In order to see the role of nodal QPs, we first ignore the
fermion contribution in f [ψ] by assuming �(q) = 0. In this
case, the integration over q in f [ψ] can be exactly performed,
yielding

f [ψ] = 1

4π
(� − √

γψ). (16)

The renormalized potential becomes

V [ψ] = V0[ψ] + γ�

2π
ψ2 − γ

√
γ

6π
ψ3. (17)

The cubic term induced by nematic order turns the SC
transition to first order,21,23 with the critical point being
αc = γ�

4π
− γ 3

64π2β
. However, since the gapless nodal QPs are

present even at the lowest energy, the polarization function
�(q) should be included in the effective action Sφ . After
including the polarization �(q) into f [ψ], integration over
q can not be carried out analytically, and a numerical method
will be used. After numerically solving Eq. (15), we found a
critical value γc for the competitive interaction between SC
and nematic orders. The SC transition remains continuous if
γ < γc, and is driven to first order when γ > γc.

We now discuss the effects of the competing nematic
order on the zero-T superfluid density. When γ is zero or
very small, the nematic order does not change |ψ |2, which
is expected and trivial. As γ increases continuously, |ψ |2
and ρs

R(0) both decrease rapidly. To estimate this effect more
quantitatively, we assume an ultraviolet cutoff � = 10 eV,
and choose α = 2.5 × 10−3 eV. Moreover, we consider a
representative bare velocity ratio v�/vF ≈ 0.075, which
is an appropriate value for YBa2Cu3O6+δ .24 We further
choose ρs(0)/m = 4α/mβ = 10−2 eV, which corresponds to
Tc ≈ 20 K. It is now useful to introduce a parameter given by
γ0 = β/ξ 2

0 α with ξ 2
0 = 1/2mα, and define a dimensionless

coupling constant γ /γ0. Figure 2(a) shows that ρs
R(0) is

strongly suppressed by the nematic order and is completely
destroyed when γ is large enough. It is also obvious that
the bare velocity ratio plays a vital role: a larger anisotropy
causes a smaller drop of ρs(0). This property provides further
evidence that nodal QPs can not be simply ignored.
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FIG. 2. (Color online) (a) ρs
R(0)/ρs(0) for four different values of

bare ratio v�/vF ; (b) T ′
c /Tc. The open circles, etc., are guides to eyes.

III. VELOCITY RENORMALIZATION AND SUPPRESSION
OF SUPERCONDUCTIVITY

We then turn to calculate the density of normal nodal QPs,
ρn(T ). We first briefly outline the phenomenological approach
of Lee and Wen18 and then generalize it to the case with
critical nematic fluctuation. In the scenario of Lee and Wen, a
crucial problem is how to assess the roles played by nodal and
antinodal QPs in the destruction of SC condensate. As revealed
clearly by extensive experiments,25 a pseudogap phase exists
above Tc. The pseudogap turns out to have the same d-wave
symmetry as the SC gap,25 which implies the antinodal QPs
remain gapped as temperature increases across Tc. It was
argued18 that the SC state is primarily destroyed by the thermal
proliferation of the low-lying, gapless nodal QPs, and the
antinodal QPs are only spectators. Lee and Wen further assume
that the nodal QPs do not carry superflow,18 so the fermion
spectrum is shifted by the vector potential to E(k,A) =
E(k) + e

c
vk · A, where the QPs energy is linearized as E(k) =√

v2
F k2

1 + v2
�k2

2 near nodes (π
2 , π

2 ) and vk is the normal-state
velocity. The electric current is jμ = e

cm
ρs

μνAν , where the
superfluid tensor ρs

μν can be written as ρs
μν(T ) = ρs(0)δμν −

ρn
μν(T ). The zero-T superfluid density is ρs(0) = x/a2, and

the normal QPs density is derived from the free energy18

F (A,T ) = −T
∑
k,σ

ln(1 + e−E(k,A)/T ) (18)

by the formula 1
m

ρn
μν(T ) = −2

∑
k

dE
dAμ

dE
dAν

∂nF

∂E
. In the nonin-

teracting case, the fermion velocities are constants, so one gets

1

m
ρs(T ) = x

ma2
− 2 ln 2

π

vF

v�

T , (19)

which exhibits a linear temperature dependence, in agreement
with experiments.26 At T = 0, ρs(T ) takes its maximum
value ρs(0). As T is increasing from zero, ρs(T ) decreases
rapidly due to thermally excited nodal QPs and eventually
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vanishes as T → Tc. By taking ρs(Tc) = 0, it is easy to obtain

Tc ∝ ρs(0) ∝ v�

vF

x

ma2
. (20)

This linear doping dependence of Tc is well consistent with
the Uemura plot. The same results were later reproduced by
means of the Green’s function method.27 The Fermi-liquid
(FL) corrections to these results were also investigated.27,28

An important fact is that both ρs(T ) and Tc contain the
velocity ratio v�/vF , so these two quantities are expected to be
significantly affected by the critical nematic fluctuation, which
can cause a nontrivial renormalization of the velocity ratio.

The above approach of computing Tc is applicable when
the nodal QPs are well defined. At the nematic QCP xc, the
critical fluctuation of nematic order couples strongly to gapless
nodal QPs and may lead to breakdown of FL behavior. As a
consequence, the nodal QPs might no longer be well-defined
QPs. In a strict sense, the validity of the simple d-wave BCS
theory18 and its FL-interaction generalizations27,28 are both
doubtful. In order to proceed, here we assume that the basic
approach of Ref. 18 is still valid after the free energy of QPs
receives a singular correction due to nematic fluctuation.

The free fermion propagator shown in Eq. (6) is renormal-
ized by nematic order to

G(ω,k) = 1

G−1
0 (ω,k) − �(ω,k)

, (21)

where the self-energy is

�(ω,k) =
∫

dε d2q
(2π )3

G0(ω + ε,k + q)
1

q2 + �(q)
. (22)

The pole in G(ω,k) determines the renormalized energy
Ẽ(ω,k) = E(ω,k) + δE(ω,k), where E(ω,k) is given by pole
of free propagator G0(ω,k) and δE(ω,k) represents the inter-
action correction to energy. To describe this renormalization
procedure, it is convenient to expand the self-energy formally
as

�(ω,k) = −iω�0 + �1vF k1τ
z + �2v�k2τ

x, (23)

which exhibits unusual logarithmic behaviors since �1,2(k)
contains such a term as ln(�/k). We combine this self-energy
with G−1

0 (k), and find that the bare velocities acquire strong
k dependence vF,� → vF,�(k). vF,�(k) are very complicated
functions of k, and thus can not be written analytically.
After straightforward numerical computation, we show the
k dependence of fermion velocities and their ratio in Fig. 3 for
the representative bare value v�/vF = 0.075. It is clear that
both vF (k) and v�(k) vanish as k → 0. Nevertheless, vF (k)
approaches zero much more slowly than v�(k) does. There-
fore, the velocity ratio vanishes at the lowest energy v�/vF →
0, which recovers the extreme velocity anisotropy.11 Such
velocity renormalization causes breakdown of FL behavior12,29

and can faithfully characterize the non-FL nature of QPs at xc.
Although the nodal QPs are strongly damped by the nematic

fluctuations and thus no longer well defined at xc, it is still
reasonable to assume that they do not carry superflow,18

which allows us to write Ẽ(k,A) = Ẽ(k) + e
c
vk · A, where

the normal velocity vk becomes strongly k dependent. Now
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FIG. 3. (Color online) Flow of vF , v�, and v�/vF with momen-
tum k for bare ratio v�/vF = 0.075. As k → 0, both velocities are
reduced down to zero. However, v� decreases much faster than vF ,
so velocity ratio v�/vF → 0.

the new free energy is

F̃ (A,T ) = −T
∑
k,σ

ln(1 + e−Ẽ(k,A)/T ), (24)

from which we obtain a renormalized superfluid density

ρs
R(T ) = ρs

R(0) − ρn
R(T ), (25)

ρn
R(T )

m
= 4

T

∫
d2k

(2π )2

v2
F (k)e

√
v2

F (k)k2
1+v2

�(k)k2
2/T(

1 + e
√

v2
F (k)k2

1+v2
�(k)k2

2/T
)2

. (26)

At nematic QCP, Tc is changed from its original value to
a renormalized value T ′

c . When T = T ′
c , the renormalized

superfluid density vanishes, ρs
R(T ′

c ) = 0, so that

ρs
R(0) = ρn

R(T ′
c ), (27)

which builds a relationship between T ′
c and Tc. The ratios

of ρs
R(T )/ρs(T ) and T ′

c /Tc can be numerically calculated
according to the above three equations. To include the influence
of interaction corrections, the velocities vF,� appearing in
ρs

R(0) are also replaced by vF,�(k). The numerical results
of T ′

c /Tc are shown in Fig. 2(b), and those of ρs
R(T )/ρs(T )

given in Fig. 4. The suppression of superconductivity is
prominent even when the competitive interaction between SC
and nematic orders is quite weak, and is further enhanced by
this interaction. As aforementioned, the SC phase transition at
T ′

c remains continuous as long as γ is small.
Clearly, the extent to which ρs(T ) and Tc are suppressed by

the nematic order depends on a number of parameters, such
as α, γ , and v�/vF . It is helpful to make a more quantitative
analysis. The magnitudes of α as well as � have already been
chosen. The bare velocity ratio is still fixed at v�/vF = 0.075.
Figure 2(b) shows that Tc is roughly suppressed by 25%
when γ = 0, and by 50% when γ /γ0 ≈ 1.5 × 10−3. The drop
of ρs(T ) can be analyzed in a similar way. An important
implication of Fig. 4 is that ρs(T ) is more strongly reduced at
higher temperatures. Experimentally, the suppression of Tc can
be tested by measuring resistivity and Meissner effect, and the
suppression of superfluid density may be probed by measuring
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FIG. 4. (Color online) Superfluid density at finite temperature
ρs

R(T ). (a) γ = 0; (b) γ /γ0 = 10−3.

London penetration length λL, preferably using microwave
techniques26,30 based on the relationship ρs(T ) ∝ λ−2

L (T ).
The strong suppression effects rely on the divergence of

correlation length ξ of the nematic field φ at the QCP xc. As
one moves away from the point xc, the strong suppression
of superfluid density and Tc will be rapidly diminished. In
fact, once correlation length ξ becomes finite, the interaction
between nematic fluctuation and nodal QPs is no longer
singular. Consequently, the self-energy of nodal QPs, �(k),
does not display logarithmic behavior, which indicates that the
fermion velocities only receive unimportant renormalizations.
In this case, the density of normal QPs is not significantly
modified by the competing nematic order since the velocity
ratio does not depart far from its bare value. The influence
of nematic order on ρs(0) is also weakened. For x > xc, the
fluctuation of φ is rather weak and does not change ρs(0)
much if γ is not very large. For x0 < x < xc, the fluctuation
of φ is gapped and also leads to much smaller change of ρs(0)
compared with what happens at nematic QCP xc. Therefore,
the Tc curve generally follows the Uemura plot in the whole
underdoped region, but deviates from the linear behavior in the
close vicinity of xc. Since the suppression of superconductivity
is most pronounced at xc, it may help to find the position of
the predicted nematic QCP if such a point really exists.

IV. SUMMARY AND DISCUSSION

In summary, we have considered the effects of nematic
fluctuation on superfluid density and critical temperature Tc

in the vicinity of nematic QCP in the contexts of some

HTSCs. On one hand, the critical fluctuation of nematic order
parameter reduces zero-T superfluid density as a result of
ordering competition. On the other hand, it couples strongly
to the gapless nodal QPs and excites more normal QPs out of
the SC condensate by triggering an extreme fermion velocity
anisotropy. Both of these two effects combine to significantly
suppress superconductivity. Therefore, we have predicted a
dip-shape reduction of Tc at nematic QCP xc, which is
schematically shown in Fig. 1.

The dip shape of Tc reminds us of 1/8 anomaly,2–4,31–34

which refers to an anomalous suppression of superconductivity
at doping x = 0.125. A sudden drop of ρs(0) was also
observed35 in La2−xSrxCuO4 (LSCO) at x = 0.125. It appears
that ρs(T ) and Tc near the nematic QCP bear some similarity
to the basic features of these experiments. However, we refrain
from identifying the 1/8 doping as the anticipated nematic
QCP for several reasons: (i) 1/8 anomaly is usually attributed
to the formation of static stripe order.2,32 (ii) It is not clear why
nematic QCP exists precisely at x = 0.125, and not elsewhere.
(iii) Low-T dc thermal conductivity κ/T was predicted to
be enhanced at nematic QCP,13 whereas an early transport
measurement found a drop of κ/T in LSCO at x = 0.125.36

Recently, the critical nematic fluctuations are shown to
induce unusual behaviors in several quantities, such as QPs
spectral function,10 specific heat,12 nuclear relaxation rate,12

thermal conductivity,13 and QP interference.14 Normally, a
single observation alone is not able to uniquely fix the nematic
QCP. Should all or most of these predictions, including the
suppression of superconductivity, be observed, the nematic
QCP might be determined. However, the absence of a sharp
nematic QCP does not necessarily mean the absence of nematic
phase since the sharp QCP may be rounded by disorders and
become a crossover.10 In case this smearing occurs, many of the
anomalous critical behaviors are weakened, or even destroyed,
and the nematic phase most possibly shows its existence in the
ω � T regime.

In the calculations presented in this paper, we have assumed
that the SC order parameter ψ is a classical field and neglected
its quantum fluctuation. This assumption is expected to be a
good one if the nematic QCP xc is deep inside the SC dome,
namely, xc is not close to the SC critical point x0. When xc is
close to x0, the quantum fluctuation of SC order ψ may become
very important, and a fully quantum mechanical treatment will
be necessary.
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