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Kondo effect and spin-active scattering in ferromagnet-superconductor junctions
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We study the interplay of superconducting and ferromagnetic correlations on charge transport in different
geometries with a focus on both a quantum point contact as well as a quantum dot in the even and the odd
state with and without spin-active scattering at the interface. In order to obtain a complete picture of the charge
transport we calculate the full counting statistics in all cases and compare the results with experimental data. We
show that spin-active scattering is an essential ingredient in the description of quantum point contacts. This holds
also for quantum dots in an even charge state, whereas it is strongly suppressed in a typical Kondo situation. We
explain this feature by the strong asymmetry of the hybridizations with the quantum dot and show how Kondo
peak splitting in a magnetic field can be used for spin filtering. For the quantum dot in the even state, spin-active
scattering allows for an explanation of the experimentally observed mini-gap feature.
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I. INTRODUCTION

The quickly evolving field of spintronics has pointed to
an increasing need for a complete understanding of contacts
between superconductors (SCs) and spin-polarized materials
such as ferromagnets (FMs). Compared to hybrids between a
normal metal and a SC, one observes not only the interplay
of the two densities of states (DOS) but also effects of the
different spin ordering in the contacted materials. Examples of
interesting transport effects include probing the spin polariza-
tion by use of Andreev reflection,1–5 the π junction behavior in
Josephson junctions with FM interlayers,6–9 ferromagnetically
induced triplet superconductivity,10–14 and the interplay of
these triplet pairs with magnons.15,16

Recent interest was triggered by the observation that spin-
active scattering plays an important role in SC FM interfaces17

and the experimental realization of a ferromagnet-quantum-
dot-superconductor (F-QD-S) junction18 which allows study
of the influence and interplay of ferromagnetic and supercon-
ducting correlations on transport19,20 in the Kondo regime.21

So far, theoretical considerations of SC FM hybrids,
on the one hand, have mainly concentrated on the I-V
characteristics22–25 and noise properties26,27 of quantum point
contacts. On the other hand, for quantum dot (QD) geometries,
only the spin-dependent DOS of the FM and not the additional
interface properties have been considered.28,29 We show how
to access the full counting statistics (FCS) for these structures,
including their interface properties to allow for a direct
calculation of all statistical moments of the current flow.30,31

This allows for a calculation of noise and higher-order
cumulants that can be experimentally observed.32,33

In this paper we investigate the FCS of SC FM quantum
point contacts (QPCs) in the presence of spin-active scattering
and F-QD-S junctions in odd and even charge states. In the
latter system we have to keep track of the exchange field
related peak splitting of the Kondo resonance.34–37 For a
QD in an even charge state we show how spin-flip Andreev
reflection in combination with the exchange field leads to a
new characteristic subgap phenomenon.

The paper is organized as follows: Section II deals with a
SC FM quantum point contact without a specific consideration
of the interface properties. We find in Sec. III that a consistent
interpretation of conductance spectra is possible only by
considering spin-active scattering at the interface. In Sec. IV
we derive an effective model for a F-QD-S device in the Kondo
limit and explain why spin-active scattering does not need to
be considered. The effective model allows us to demonstrate
how to use the device for spin filtering in Sec. V. To obtain a
complete picture of the transport properties of F-QD-S devices
we also consider the even state of the QD in Sec. VI and show
how spin-active scattering leads to a new subgap structure. We
also explain the evolution of the subgap structure in a magnetic
field.

II. FERROMAGNET-SUPERCONDUCTOR QUANTUM
POINT CONTACT

As a first test system we study a QPC between a SC and a
FM (SFQPC). So far, the FCS of this specific arrangement have
not been considered explicitly, but they very much resemble
the one for the normal-superconductor QPCs38–40 since the
only difference is the spin-dependent DOS. The Hamiltonian
of the system reads

H = Hf + HT + Hs, (1)

where Hf describes the FM lead using electron field operators
�kf σ in the Stoner model with an exchange energy hex as in
Ref. 41

Hf =
∑
k,σ

εk�
+
kf σ�kf σ − hex

∑
k

(�+
kf ↑�kf ↑ − �+

kf ↓�kf ↓).

(2)

For simplicity, we set h̄ = e = kB = 1. The FM has a
fermionic flat band DOS with asymmetry for the spin-↑ and
spin-↓ tunneling electrons ρf σ = ρf (1 + σP ), where P is the
polarization. The superconducting lead is described by the
typical BCS Hamiltonian42 in the language of electron field
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operators �ksσ with its characteristic energy gap �0

Hs =
∑
k,σ

εk�
+
ksσ�ksσ + �0

∑
k

(�+
ks↑�+

−ks↓ + �−ks↓�ks↑),

(3)

leading to the energy-dependent DOS ρs = ρ0s |ω|/√ω2−�2
0.

As in previous treatments of similar problems,43 we define
the voltage with respect to the chemical potential of the
superconducting lead μs = 0 so that V = −μf , where μf

is the chemical potential of the FM. The Fermi distribution
of the SC is abbreviated by ns , whereas nf + and nf − = 1 −
nf +(−ω) refer to the electron- and holelike Fermi distributions
in the FM, respectively.

The local tunneling Hamiltonian, which is responsible for
transfer of electrons between the leads, is given by44

HT =
∑

σ

γ [�+
sσ (x = 0)�f σ (x = 0) + H.c.], (4)

where γ is the amplitude of the tunneling coupling.
To study the FCS we calculate the cumulant generating

function (CGF) ln χ (λ) = ∑∞
n=1

(iλ)n

n! 〈qn〉 defined as the func-

tional generating the irreducible moments 〈qn〉 of the charge
(q) distribution by differentiation with respect to the counting
field λ. According to Refs. 45–47 the connection to the former
Hamiltonian is given by

χSF(λ) =
〈
TC exp

[
− i

∫
C
T λ(t)dt

]〉
, (5)

where T λ(t) denotes HT after the substitution �f σ (x = 0) →
�f σ (x = 0)e−iλ(t)/2. C is the Keldysh contour and TC denotes
time ordering on it. The counting field changes sign on
the branches of the contour to account for a virtual (or
passive) measurement of the charge being transferred48 and
λ(t) is nonzero only during the very long measuring time τ .
The different cumulants of the distribution can be obtained
via differentiation of the CGF at λ = 0. The method is by
now well established and has been applied to numerous
quantum impurity problems (see, e.g., Refs. 49–53). Since
the lead degrees of freedom appear quadratically in the total
Hamiltonian we can calculate the CGF exactly using the
Hamiltonian approach54

ln χSF(λ) = τ

∫
dω

2π

( ∑
σ

ln

{ ∏
α=±

{1 + Teασ Aα(ω,λ)} + TA2(2ns − 1){(2ns − 1)[(eiλ − 1)2nf −(1 − nf +)

− 2(eiλ − 1)(e−iλ − 1)nf −nf + + (e−iλ − 1)2nf +(1 − nf −)] + 2ns(e
iλ − 1)(e−iλ − 1)(n1+ − 1 + n1−)}

+ TBC{(2ns − 1)2(eiλ − e−iλ)2[nf −eiλ + nf +e−iλ + β1(1 − σP )ns(1 − ns)(e
iλ − e−iλ)2]

+ ns(2ns − 1){4(ns − 1)(nf + − 1 + nf −)(eiλ − 1 − e−iλ)2 + σP {8[(eiλ − 1)2nf + − (e−iλ − 1)2nf −]

− (e−iλ − 1)3[e3iλ(2ns − 1)(1 + nf − − nf +) − (2ns − 1)(nf − − nf + − 1) + e2iλ(2ns(3 + nf + − nf −)

− 3 + 7nf +) − eiλ(3 + nf + + 2ns(nf + − 3 − nf −) + 7nf −)]} + 2σP

[ ∑
α=±

αAα(ω,λ)

]}
θ

( |ω| − �0

�0

)

+ ln{1 + TA[nf +(1 − nf −)(e2iλ − 1) + nf −(1 − nf +)(e−2iλ − 1)]}θ
(

�0 − |ω|
�0

))
, (6)

involving the abbreviation Aα(ω,λ) = [nf α(1 − ns)(eiαλ − 1) + ns(1 − nf α)(e−iαλ − 1)] and the effective transmission coeffi-
cients

Teσ (ω) = 4β1(1 + σP )

[1 + β1(1 + σP )]2 − β2
2 (1 − P )(1 + P )

,

TA2(ω) = 4β2
A(1 + P )(1 − P ){

[1 + β1(1 + P )]2 − β2
2 (1 − P )(1 + P )

}{
[1 + β1(1 − P )]2 − β2

2 (1 − P )(1 + P )
} = TBC

β1

and

TA(ω) = 4β2
2 (1 + P )(1 − P )

β4
2 (1 − P 2)2 + β2

2 (1 − P 2)
[
2 − β2

1 (1 + P )2 − β2
1 (1 − P )2

] + [
1 + β2

1 (1 + P )2
][

1 + β2
1 (1 − P )2

] . (7)

The SC DOS enters via the transparencies β1 =
βn|ω|/

√
|ω2 − �2

0| and β2 = βn�0/

√
|�2

0 − ω2| with βn =
π2ρf ρ0sγ

2/2 being the tunneling rate between the contacts.
The expression is valid at arbitrary temperatures taking the
temperature dependence of �0 into account. The difference

compared to normal-superconductor QPCs (NSQPCs) is the
appearance of the polarization P . Consequently, the result
for the CGF for NSQPCs obtained in Ref. 39 can easily be
recovered by choosing P = 0. The transmission coefficients
Teσ refer to single electron transfer, while TA2 and TBC describe
the additional contributions from Andreev reflection above
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FIG. 1. (Color online) Different transport processes in a SFQPC
with spin-active scattering. (a) shows the typical Andreev reflection
and (c) displays the typical single electron transmission between a SC
and a FM. In (b) we show the SAR process involving a spin flip at the
interface and giving rise to triplet correlations in the FM. Likewise
also spin-flip transmissions occur as indicated in (d).

the gap and branch crossing, respectively. The transmission
coefficient for Andreev reflection processes below the gap is
denoted by TA.

The CGF demonstrates that, also in the case of SFQPCs,
the elementary processes of charge transfer can be identified
as normal electron transfer between the electrodes above
the gap and Andreev reflection processes55 below the gap;
see Figs. 1(c) and 1(a). Andreev reflection here refers to the
charge transfer via an electron that is transmitted from the FM
to the SC and is retroreflected as a hole.

However, if we compare the results we obtain for the
differential conductance to the experimental results for Al/Co
contacts with good transparencies1 we need to introduce a
sizable broadening of the BCS DOS described by a Dynes
parameter �D that has to be of the order �D = 0.21�0 to obtain
quantitative agreement.56,57 Such a distortion is unexpected
since the Al/Cu contacts fabricated by the same experimental
procedure do not show any distorted BCS DOS.

This is not a problem of the Hamiltonian approach
but has also been encountered when fitting I-V spectra
to an extension58 of the Blonder-Tinkham-Klapwijk (BTK)
model.24,59 Instead of a Dynes parameter one could introduce
an effective temperature60 but a reliable explanation of the
spectra under debate4,61,62 may be obtained only by changing
the model of the interface region.22

III. FERROMAGNET-SUPERCONDUCTOR QUANTUM
POINT CONTACT WITH SPIN-ACTIVE SCATTERING

In the previous Section it is mentioned that a realistic
description of the interface region is necessary for a com-
plete understanding of SFQPCs. This can be achieved by
considering a more complex model that explicitly includes
a spin-dependent scattering potential22,63 at the interface. This
is of special importance when dealing with the experimentally
relevant case of strong spin polarization P ≈ 0.2–0.8. The
mechanism of spin-active scattering at the interface is the

interplay of the ferromagnetic exchange field in both the
bulk and the interface. In the simplest case, the two magnetic
moments deep in the bulk and at the interface would just be
parallel. However, manifold processes may lead to an interface
magnetic moment differing from the bulk, such as using a thin
magnetic layer, spin-orbit coupling, magnetic anisotropy, or
spin relaxation. So far, the study of the I-V characteristics
of point contact spectra have been performed using a qua-
siclassical Green’s function approach22,64 or a wave-function
matching technique.65 Moreover, noise properties have been
analyzed using a scattering states description.26,27

However, an investigation of the FCS of such setups is
missing. Still, it is needed for an unambiguous identification
of the charge transfer processes. In order to proceed as in
Sec. II we want to take a different approach compared to
the quasiclassical scattering theory by following,66–68 where
spin-active scattering is described by the introduction of an
additional spin-flip contribution to the Hamiltonian

HT 2 =
∑

σ

γ2[�+
sσ (x = 0)�f −σ (x = 0) + H.c.]. (8)

Adding HT 2 to the system’s Hamiltonian in Eq. (1), we need to
introduce a second contribution to Eq. (5) to access the CGF,

χSFa(λ) =
〈
TC exp

[
− i

∫
C
dt

(
T λ(t) + T

λ(t)
2

)]〉
, (9)

where T
λ(t)

2 denotes HT 2 with the additional substitution
�f σ (x = 0) → �f σ (x = 0)e−iλ(t)/2. This allows us to cal-
culate the CGF. The actual form of the full CGF is quite
complicated due to the presence of Andreev reflection and
branch crossing above the gap. We therefore only give a
simplified form in Appendix A, Eq. (A1), that allows for a
clearer identification of the relevant charge transport processes
above and below the gap.

Even in the simplified form we observe a more complicated
structure of the CGF compared to Eq. (6) since we need to
introduce not only a spin-dependent DOS but also two contact
transparencies βn = ρf ρ0sγ

2π2/2, βf = ρf ρ0sγ
2
2 π2/2 that

refer to the normal and spin-flip transparency, respectively.
Consequently, the CGF shows single-electron transmission for
the different spins as well as spin-flip transmission processes
for energies above the gap; see Figs. 1(c) and 1(d). For energies
below the gap we identify two types of Andreev reflection:
spin-symmetric Andreev reflection (AR) and anomalous69 or
spin-flip Andreev reflection (SAR), the latter involving a spin-
flip process during the Andreev reflection; see Figs. 1(a) and
1(b). We therefore have obtained the FCS of all charge transfer
processes that have also been identified in the quasiclassical
Green’s function calculation.22 The only difference is the
description of spin-active scattering. Grein et al. use the
spin-mixing angle θs as the phenomenological parameter,
whereas we use a second tunneling transparency to account
for spin flips. Both descriptions are related since both give rise
to Andreev bound states characterized by TA(ε±) = 1 from
which one can calculate θs via ε± = ±� cos(θs/2).22

The SAR implies a spin-flip to convert a singlet Cooper
pair from the SC to a triplet pair in the FM, whereas AR just
transfers singlets to the FM. Spin-active scattering therefore
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gives rise to triplet correlations in the FM,70,71 which are
responsible for a long-range proximity effect also in FMs.

Apart from the quasiclassical Green’s function formalism22

and the approach presented here, a third theoretical treatment
has been frequently used for the analysis of SFQPCs: the
extended BTK model.1 In this model, the ratio of γ2 and γ is
fixed for every possible value of γ . This model has been very
successful for certain setups1 but fails for others.22,27,64 The
problems in fitting conductance spectra with the extended BTK
model have also been addressed before by explicit comparison
to experimental data.5

Here we show that our model (as the quasiclassical Green’s
function formalism) reproduces the experimental data from
Ref. 1 for a finite spin-flip amplitude. As the data can also
be fitted by the extended BTK model this shows that one can
reproduce its results.

We calculate the differential conductance from the current
given by the first derivative of the CGF with respect to the
counting field ISFa = −i/τ∂ ln χSFa(λ)/∂λ|λ=0. We compare
the differential conductance dISFa/dV to the experimental data
for Al/Co contacts.1 The result is shown in Fig. 2.

We obtain perfect agreement for a reasonable Dynes
parameter (meaning much smaller than the gap), which again
signifies the importance of spin-active scattering for strongly
polarized FMs as cobalt. The result incorporating spin-active
scattering may also be compared to the best possible fit without
spin-active scattering (see Fig. 2). We see that a consistent
explanation of the experimental data heavily relies on the
inclusion of a complete description of the interface region.
The possibility of SAR opens a new transport channel below

FIG. 2. (Color online) Experimental data for the differential
conductance as a function of V through an SFQPC taken from Ref. 1
(black solid curve). The data has been normalised with respect to the
normal state conductance GN . Additionally, the experimental data
has been scaled with the fit parameter � from the BTK model that
is identical to the fit parameter �0 from our model with spin-active
scattering. We plot the prediction by this model (black dots curve) for
T = 0.1�0, βn = 0.095, βf = 0.065, P = 0.38 and a broadening
of the BCS DOS described by �D = 0.09�0. One observes the
characteristic double peak structure at the superconducting gap. We
also compare this result to the best possible fit without spin-active
scattering using T = 0.13�̃0, βn = 0.13, βf = 0, P = 0.38, �D =
0.09�̃0 and �̃0 = 0.75� (dashed red curve). �̃0 is the fit parameter
for the gap in the model without spin-active scattering.

the gap that leads to an increased conductance for V < �0.
Indeed, the contribution by SAR is sizable since the ratio of
SAR versus AR is determined by the ratio of βf and βn being
of the order of 0.7. This is in accordance with other studies of
different point contacts.22,72

To account for the scaling of the experimental data we
express our fit parameter �0 in terms of the BTK fit parameter
�. Both fitting parameters are identical only when we use the
CGF including spin-active scattering. Also, the experiments
on Al/Co contacts use samples with several transmission
channels. The theoretical investigation in Ref. 1, however,
revealed that the samples may be effectively described by a
single-channel model using an effective transmission coeffi-
cient.

The FCS allows for the calculation of the noise
power given by the second derivative of the CGF SSFa =
−1/τ∂2 ln χSFa(λ)/∂λ2|λ=0. In the case of small interface
transparency we find the smooth transition from Andreev
reflection noise (corresponding to a Fano factor of 2) below
the gap to single electron noise above the gap (corresponding
to a Fano factor of 1), since these represent the only dominant
charge transfer processes in these regimes.73–76 This picture is
very similar to the one obtained for NSQPCs since the charge
transfer processes in both systems are the same.

IV. FERROMAGNET-QUANTUM
DOT-SUPERCONDUCTOR DEVICE IN

THE KONDO LIMIT

In this Section we study the generalization of our results
to QD geometries. Even in the simplest case this requires the
solution of the Anderson impurity model with ferromagnetic
leads. However, for the here analyzed F-QD-S experiment18

the situation is such that we are clearly in the Kondo regime
for an odd number of electrons on the QD.77 In this case,
we observe the many-body spin 1/2 Kondo resonance78 for
temperatures below the Kondo temperature TK . Depending on
the ratio TK/�, two scenarios may occur: For small TK/�

the Kondo resonance is weakly coupled to the SC due to
the absence of mobile electrons at the Fermi edge. For large
TK/� the Kondo resonance couples to the quasiparticles
in the SC. This picture is confirmed both theoretically and
experimentally: Theoretically, the dot spectral density for a
normal-QD-SC system has been analyzed in Ref. 20, showing
a crossover from a double peak around the Fermi energy to
a single Kondo resonance upon increasing onsite interaction
U . It was also found that the double peak is due to the SC
proximity effect. Experimentally, for two superconducting
drains and TK � �0, the Kondo effect is suppressed,79 whereas
for a SC hybrid junction and TK � �0 one observes a strong
suppression of the effective hybridization between the dot and
the superconducting drain.19 This picture allows for an ad
hoc but practicable approach to our more complicated setup,
which is supported by comparison to the experimental data.
Since we are clearly in the Kondo regime, we may assume
to be at the strong-coupling fixed point where a perfectly
transmitting channel opens up and the transport properties of
the Kondo effect can be described as the ones of a pure resonant
level system as far as the electronic transport is concerned.80

Additionally, we want to assume to have TK/� small. Our
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approach therefore will be limited to the constellation of
parameters TK < � < U . In this situation we will encounter
a weak coupling of the SC to the Kondo resonance and we
may use an effective description of the Kondo resonance
as a resonant level weakly coupled to the SC on top of
a (small) background conductance81 in order to describe
the experiment. The background conductance describes in a
first approximation the DOS outside the Kondo peak, e.g.,
the Hubbard subbands at ±U/2. An effective model for
the normal-QD-SC case was analyzed in Refs. 19 and 39
where the resulting transmission coefficients for the Kondo
resonance are just the product of the transmission coefficient
for the tunneling case with the DOS of a resonant level.
This simple model has been verified both theoretically and
experimentally: We compared the conductance features of our
approach to the theoretical calculation in Ref. 20 and observed
good agreement in the considered range of parameters. In Ref.
39 the results of this ansatz were compared to the experimental
data from Ref. 19. Such procedure may also be applied to the
FM-case as one can see from the calculation for the resonant
level.28

Addtionally, we have to take into account that the Kondo
resonance splits into a doublet in a magnetic field according
to the Zeeman energy and is also strongly affected by the
exchange field of the FM. Using Haldane’s scaling method for
a flat band structure with spin-dependent tunneling rates and
including a finite Stoner splitting of the leads an analytical
formula for the energy splitting of the spin-↑ and spin-↓ bands
is found34,35 to be82

δsplit = gμBB + �s + P�K

π
ln

( |�d |
|U + �d |

)
, (10)

where �K is the hybridization of the ferromagnetic drain with
the Kondo dot and �d is the position of the energy level of the
QD. gμBB is the Zeeman splitting with Bohr’s magneton μB

and the gyromagnetic ratio g. �s is a Stoner splitting–induced
shift.83 Equation (10) is supported by a refined analysis based
on numerical renormalization group calculations.34,35 The two
spin bands refer to two Kondo singlets which can be described
by an effective DOS with a Lorentzian shape given by

ρKσ (ω) = �2
K

(ω − eV + σδsplit)2 + �2
K

. (11)

This form assumes that we have two spin split Kondo singlets
that both lead to perfectly transmitting channels and are
associated with the separate spin species. In the case of a
FM lead spin symmetry is broken so the Kondo screening
clouds associated to the two Kondo singlets differ and thus
so do the couplings of the SC to the Kondo peaks. In a first
approximation they are given by the tunnel couplings in the
SFQPC. The transmission coefficients for the case of a F-QD-S
device thus can be deduced from the transmission coefficients
for the SFQPC and the relevant effective DOS,

TeKσ (ω) = Teσ (ω)ρKσ (ω),

TAK (ω) = TA(ω)ρKσ (ω)ρK−σ (−ω).

Additionally, we have to include the background conductance,
which may be done using the standard Levitov-Lesovik

formula84

ln χg(λ,τ ) = 2τ

∫
dω

2π
ln{1 + Tg[(eiλ − 1)nf +(1 − ns)

+ (e−iλ − 1)ns(1 − nf +)]},
with an energy-independent transmission coefficient Tg for
electron transfer. The CGF for the F-QD-S junction is given
by

ln χF−QD−S = ln χres + ln χg, (12)

where χres can be derived from χSF by replacing Teσ by TeKσ

and TA by TAK . In principle, one would also have to take
into account branch crossing and Andreev reflection above the
gap. However, we checked that in the limit of βn 
 1, which
represents the typical experimental case of small hybridization
of the SC with the Kondo resonance, the corresponding
transmission coefficients TA2 and TBC may safely be neglected
since their contribution is marginal.

We compare our results to the experimental data obtained
in Ref. 18. In the experimental setup a ferromagnetic drain is
formed by a Ni/Co/Pd trilayer and a Ti/Al bilayer is used as
a superconducting drain. A QD forms in an InAs nanowire
segment contacted by the FM and the SC. In agreement with
previous experiments85,86 the QD is perfectly controllable by a
backgate voltage. The choice of InAs is essential as its g-factor
in a wire geometry is comparable to the (rather big) bulk
value.85,87

Within this experiment, the observed splitting of the Kondo
resonance according to Eq. (10) has been verified. To test
our model for the transport characteristics, we choose a
charge state that exhibits a clear signature of ferromagnetic
correlations, i.e., the Kondo resonance has a finite and roughly
constant splitting at B = 0T . In this case δsplit is constant.
We calculate the differential conductance and show the
comparison of theory and experiment in Fig. 3.

We observe acceptable agreement in the voltage range
considered here. In particular, we see that our model correctly
describes the asymmetry of the two Kondo conductance peaks
that may be traced back to the different DOS for the two spin

FIG. 3. (Color online) Theoretical differential differential con-
ductance (dashed curve) through the F-QD-S junction for T = 0.13�,
βn = 0.036, �K = 0.29�, P = 0.46, δsplit = 0.16�, Tg = 0.035, and
�0 = 0.23�. One observes the characteristic double peak structure,19

however, now with the asymmetry related to the Kondo peak splitting.
We compare our prediction to the experimental data (solid curve)
taken from Ref. 18 at the background voltage VBG = 1.28 V and
� = 0.14 meV. The red arrow indicates the bare SC gap observable
in the experimental data.
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species. Concerning the fitting parameters of our model, we
find that we observe no quasiparticle-lifetime broadening of
the SC DOS and the value for the polarization is typical for
cobalt-based junctions.1 The width of the Kondo resonance
has a typical size also found in other experimental setups and
theoretical treatments.19 From the fit we find �K � �, and,
thus, TK � �, so we access the interesting Kondo regime
where the Kondo effect and superconductivity are concurring
phenomena. We should also add that the value δsplit allows
us to calculate the g-factor for the considered charge state
considered since the critical magnetic Bc field is related to
the exchange field splitting via gμBBc = 2δsplit. Bc has been
measured in the experiment to be 64 mT. The corresponding
g-factor would be 12, which is in perfect accordance with
previous experimental studies of InAs nanowires.85 The small
value �0 = 0.23� signifies that the Kondo resonance couples
to quasiparticle states within the superconducting gap, which
can be ascribed to the granularity of the metallic contacts88

and/or a nonzero DOS in the nanowire sections adjacent to
the QD.89 The most important source of deviations from our
model is that we neglected a possible energy dependence of
the background DOS and the superconducting correlations on
the quantum dot. Indeed, due to the latter assumption in our
model, we see no bare superconducting gap at V = −� (see
red arrow in Fig. 3).

The result reveals two basic facets of F-QD-S junctions.
The first observation is that the background DOS (given by
the transmission coefficient Tg) is very small. The second
intriguing feature is the absence of spin-active scattering.
In our model, we did not include a spin-active tunneling
term as in Eq. (8). Such a term would couple the tunnel
transmission for one spin species to the Kondo singlet for
the opposite spin, which would reduce the asymmetry in the
peaks. Additionally, SAR processes would have to be taken
into account that couple only to one Kondo singlet and would,
therefore, lead to a pronounced subgap feature. A subgap
feature of this type will be discussed in Sec. VI, where we show
its relevance for a QD in the even state. Both characteristics are
not observed and the value for the polarization (P = 0.46) that
reflects the asymmetry of the peaks is in perfect accordance
with previous experimental studies of point contacts. The
absence of spin-active scattering even in the presence of a
strongly polarized FM is related to the strong asymmetry of the
couplings between the dot and the FM or the SC, respectively.
The Kondo effect is mainly due to hybridized FM bulk states
so specifics of the interface or the SC are hardly seen. This
also explains why the theory in Ref. 35 applies also for the
case of a F-QD-S junction even though it has been derived for
a QD coupled to two ferromagnetic leads.

The CGF in Eq. (12) also includes the possibility of Andreev
reflection. Due to the low tunneling coupling of the SC to
the QD it is strongly suppressed. However, in Ref. 39 it was
found that the presence of Andreev reflection for a normal-
QD-SC junction can be decided by a noise measurement.
In the case of a F-QD-S junction, the Fano factor does not
change considerably since Andreev reflections are suppressed
not only by the small tunneling coupling but also by the
Kondo peak splitting. Therefore, higher-order cumulants are
necessary to decide the presence of Andreev reflections in these
devices.

It is remarkable that the asymmetry and splitting deduced
from the model can be explained with a reasonable choice
of the g-factor of InAs and the polarization of cobalt.
Additionally, the asymmetry of the Kondo conductance peaks
can be traced back to the different spin species, which we want
to exploit in the next section.

V. SPIN MEASUREMENT

In this Section we show that the F-QD-S device can be
used for spin measurement. We take advantage of the above
observation that Andreev reflection can be neglected as far as
conductance is concerned and obtain the FCS for the separate
spins as

ln χF−QD−Sσ = ln χresσ + ln χbσ . (13)

The ln χresσ is obtained from χres by setting TeK−σ = 0 and
TAK = 0. Likewise, ln χbσ is obtained from ln χb by setting
ln χbσ = 1/2 ln χb since the background is assumed to be spin
symmetric. We now may calculate the conductance Gσ for the
two spin species as usual from the respective FCS. This allows
us to derive the quality factor for spin filtering in our device
along the lines of Ref. 90

q =
∣∣∣∣G↑ − G↓
G↑ + G↓

∣∣∣∣. (14)

The result is given in Fig. 4 using the parameters T =
0.13�, βn = 0.036, �K = 0.29�, P = 0.46, δsplit = 0.16�,
Tg = 0.035, and �0 = 0.23� as determined from the experi-
mental data above. The quality factor reaches about 70% for
voltages around 0.3�, where the conductance for the majority
spin (spin-↑) is dominant. For V/� ≈ −0.15 the minority spin
component (spin-↓) is dominant. For V/� ≈ −0.3 both spin
directions have roughly the same transmission probability (q
goes to zero) and for even lower voltages the spin-↑ component
again takes over, which causes another dip in the q plot in
Fig. 4. A possible quality factor of 70% is much better than with
a simple ferromagnetic tunneling contact as there one could
only reach a quality factor equal to the polarization P , meaning

FIG. 4. (Color online) Calculation of the quality factor in Eq. (14)
for spin filtering with the same experimental parameters as used in
the fit in Fig. 3. We have neglected Andreev reflections since we
have shown that they do not considerably change the conductance
properties. The quality factor reaches about 70%, taking into account
the effect of finite temperature in the experiment. The blue line
indicates the quality factor q = P of a simple tunneling junction
to a FM with equal polarization P = 0.46.

174512-6



KONDO EFFECT AND SPIN-ACTIVE SCATTERING IN . . . PHYSICAL REVIEW B 85, 174512 (2012)

≈46%. We should emphasize that in comparison to the QD
spin valve considered in Ref. 91 our geometry is simpler since
we do not have to work with three leads. Moreover, we do not
have to rely on interaction effects in quantum wires92,93 or the
antiresonance in double QDs.90

The behavior shown in Fig. 4 can be explained by the
interplay of the two Kondo resonance peaks that correspond to
the separate spin components of the current. For V/� ≈ 0.3
electronic transport proceeds mainly through the Kondo singlet
for spin-↑, which explains the large spin polarization. For
negative bias the spin-↓ component becomes dominant. The
quality factor, however, does not reach the same height as for
spin-↑ due to the different density of states for the two spin
species in the ferromagnet. For large bias, electronic transport
proceeds mainly through the spin-symmetric background so
the quality factor of spin-filtering goes to zero. Therefore,
the capability for spin measurement is a combined effect of
the asymmetric density of states in the ferromagnet and the
splitting of the Kondo resonances by the exchange field δsplit.

Depending on the voltage bias a specific spin direction may
be tuned to contribute to charge transfer due to the splitting
of the Kondo peak. Additionally, the Kondo peak defines an
almost perfect interface as it aligns the interface spin with
the bulk FM. This makes the F-QD-S setup an ideal spin
filter. This is of special importance in the case of Cooper pair
splitters94–96 where the final proof of entanglement heavily
relies on an effective spin measurement.28,29,97,98

VI. FERROMAGNET-QUANTUM
DOT-SUPERCONDUCTOR DEVICE

IN THE EVEN STATE

Finally, we want to investigate the even state of the QD.
We did not need to incorporate spin-active scattering in the
Kondo regime but with an even population of the QD the
Kondo resonance dissapears. The absence of the collective
state at the Fermi level of the FM allows for the possibility
of interface effects. Indeed, we find a pronounced mini-gap
feature for an even charge state18 which may be explained by a
scenario based on spin-active scattering as in the case of a QPC
considered in Sec. III (see Fig. 5). We consider an effective
model for an interacting QD in an even charge state. Since
the level spacing of the dot (�E ≈ 0.4 meV) is significantly
larger than the mini-gap energy, we focus on a single orbital
level in the discussion. The Hamiltonian for a simple resonant
level coupled to a FM and a SC with spin-active scattering but

FIG. 5. (Color online) The two magnetic moments of the bulk FM
�Sf and the interface �SI may be misaligned. This leads to spin-active
scattering also in QD junctions.

still without the Coulomb interaction and the exchange field
already has many parts given by

H = Hf + Hs + Hd + HT Rs + HT Rf + HT R2. (15)

Hf and Hs again describe the FM and the SC; see Eqs. (2) and
(3). The QD, however, has to be taken into account explicitly
now and is given by a resonant level at energy δσ ,

Hd =
∑

σ

δσ d̃+
σ d̃σ , (16)

where the d̃σ operator is the annihilator of the electron state
on the dot and δσ = δ + σ�ε/2 is σ dependent because of the
exchange field �ε induced by the bulk FM. Equation (16) is a
good starting point since no collective state of the lead and the
QD develops in the even charge state, which is characterized
by δ = 0. We, first, solve the resonant level case and then show
how to implement the exchange field and Coulomb interaction
in our effective model.

Because of the interface effects the magnetization axis on
the ferromagnetic tunneling junction is rotated with respect to
that in the bulk as illustrated in Fig. 5. This is the essence of
the spin-active scattering effect,100 see e.g., Ref. 22. In order
to model that we include a spin-flip tunneling between the dot
and the ferromagnet, the tunneling part of the Hamiltonian is
given by

HT R =
∑

σ

γ̃s(d̃
+
σ �sσ + H.c.) +

∑
σ

γ̃f (d̃+
σ �f σ + H.c.)

+
∑

σ

γ̃f 2(d̃+
σ �f −σ + H.c.). (17)

For computational reasons it is inconvenient to work with
the spin-flip tunneling on the dot-FM interface. We choose to
rotate the dot fields via

dσ = γf d̃σ + γf 2d̃−σ√
γ 2

f + γ 2
f 2

, (18)

Rewriting Eq. (17) in the new basis we obtain

HT Rα =
∑

σ

γα(d+
σ �ασ + H.c.), α = s,f

HT R2 =
∑

σ

γs2(d+
σ �s−σ + H.c.),

where

γs = γsγf√
γ 2

f + γ 2
f 2

, γs2 = γsγf 2√
γ 2

f + γ 2
f 2

.

So the spin-flip tunneling is effectively shifted to the dot-SC
interface. Obviously, the above transformation does not change
the dot Hamiltonian (16).

First, we consider the QD without the exchange field (δσ =
0) and onsite Coulomb interaction. In order to access the CGF,
we need to introduce two counting fields for the separate leads.
This means that now we have three contributions compared to
Eq. (9)

χRSFa(λ) =
〈
TC exp

[
−i

∫
C

(
T

λ(t)
R + T

λ(t)
R2 + T

λ(t)
R3

)
dt

]〉
,

(19)
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where T
λ(t)
R and T

λ(t)
R2 represent HT Rs and HT R2 with the

substitution �sσ (x = 0) → �sσ (x = 0)e−iλs (t)/2 and T
λ(t)
R3 can

be obtained from HT Rf with the substitution �f σ (x = 0) →
�f σ (x = 0)e−iλf (t)/2. Using the Hamiltonian approach as
before we arrive at the CGF given in Appendix B, Eq. (B1).

The emerging formula is formally identical to the result
for the SFQPC with spin-active scattering in Eq. (A1) but with
energy-dependent transmission coefficients. Above the gap we
observe single electron transmission and spin-flip transmission
while below the gap we obtain AR and SAR. The spin-active
scattering leads to triplet correlations in the ferromagnet. This
kind of proximity phenomenon is mediated by the QD instead
of a tunneling contact as in Sec. III. The new feature in our
setup is that the triplet correlations feel the exchange field
of the bare ferromagnet which allows for a qualitatively new
mini-gap feature.

Let us now turn to the situation of an interacting QD
with a level splitting given by finite δσ . The inclusion of the
Coulomb interaction is done in the same way as in Ref. 99 for
a Josephson junction: for the Andreev reflection transmission
coefficients the second spin level has to account for the local
exchange field U . This procedure is formally equivalent to
a mean-field solution, including Coulomb interaction. The
later analysis of the experimental data shows �ε � �0, �0

being much larger than the tunnel rates of the dot to the
FM/SC lead. Using this assumption the result may be greatly
simplfied: for energies above the gap, spin-flip transmissions
(and, thus, HT R2) can be neglected since they involve both
spin species. Below the gap AR involves both spin species
and therefore can be neglected as well. The CGF for the
resulting effective model for a QD in the even state is given
by

ln χes(λ,τ ) = 2τ

∫
dω

2π

(
ln

{
1 +

∑
σ

Teseσ [nf +(1 − ns)(e
iλ − 1) + ns(1 − nf +)(e−iλ − 1)]

}
θ

( |ω| − �0

�0

)

+ 1

2
ln

{
1 +

∑
σ

TesAT σ [nf +(1 − nf −)(e2iλ − 1) + nf −(1 − nf +)(e−2iλ − 1)]

}
θ

(
�0 − |ω|

�0

))
, (20)

where the transmission coefficients are

Teseσ = 4�f σ�s11

(�f σ + �s11)2 + (ω − δσ )2
,

TesAT σ = 4�2
s23�f σ

(ω − δσ )2(ω − δσ + U )2 + (
�2

s23 + �2
f σ

)2 + �2
s23(ω − δσ )(ω − δσ + U ) + �2

f σ (ω − δσ )(ω − δσ + U )
,

We have used the abbreviations �f σ = �f (1 + σP ), �s11 =
�s |ω|/√|ω2 − �2

0|, and �s23 = 2
√

�s�s2�0/
√|�2

0 − ω2|
that involve �f = πρf γ 2

f /2, �s = πρsγ
2
s /2, and �s2 =

πρsγ
2
s2/2. We compare the results of our model described

above to the experimental data in Fig. 6. We see that spin-active
scattering in the presence of Coulomb interaction may lead
to a significant mini-gap feature with a width of ≈� and

FIG. 6. (Color online) The conductance for a single channel
contact with spin-active scattering is shown as a function of the
voltage. The theoretical prediction by our model is the blue curve
and the red curve refers to the experimental data taken from Ref. 18
at a background voltage VBG = 11.175 V . The theoretical fit has
been done using the parameters �f = 0.01�, �s = 0.005�, �s2 =
0.015�, P = 0.46, T = 0.1�, and U = 2�, and the gap �0 has
been chosen such that the peaks are at the correct position �0 = 0.9�.
Furthermore, we can infer δ↑ = 0.4�.

conductance peaks even higher than the ones associated to the
SC gap. The effective model correctly predicts the four-peak
structure referring to the SC DOS and the exchange field as
one observes in the experiment. It also explains the relation
of the mini-gap feature to the ferromagnetic exchange field:
SAR occurs via just a single spin level on the QD since
it is associated to triplet correlation functions in the bare
ferromagnet. In the presence of the ferromagnetic exchange
field the two spin levels of the QD split. The exchange field
therefore causes a splitting of the two SAR conductance peaks
which is directly observable via the new mini-gap feature.
This splitting is directly given by �ε. We do not get the
asymmetry inside the gap. This is due to the shortcomings
of our model. An obvious improvement would be a more
sophisticated (including correlation effects) calculation in the
interaction. Concerning the approximations we made to arrive
at Eq. (20), we should note that, indeed, the exchange field
�ε ≈ � � �f,s,s2 so Andreev reflection and single electron
spin-flip transmission may be neglected.

Moreover, in the experiment the dependence of the subgap
feature on an external magnetic field has been investigated.
One observes that the subgap feature does almost not evolve
in the magnetic field as long as the superconducting gap is
not fully closed. If the gap closes, the mini-gap feature gets
strongly suppressed. We can analyze the evolution in magnetic
field as well, using the model derived above. We just need to
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FIG. 7. (Color online) The evolution of the subgap feature in a
magnetic field is shown: (a) experimental data for a typical sample
different from the one analyzed in Fig. 6 (different charge state). One
observes a subgap feature at the energy scale of the exchange field
indicated in yellow. The feature is suppressed above the critical field
of the SC (indicated by yellow arrows). (b) The conductance as a
function of magnetic field given by Eq. (20). We assume g = 8 and
for a vanishing superconducting gap we assume the conductance to be
constant for the voltage range considered here. The critical magnetic
field is taken to be Bc = 64 mT and �0 = 0.14 meV.

add the term σgμBB/2 to the positions of the split levels
in Eq. (20), where B refers to the external magnetic field.
We use a typical value85 of g = 8.101 The evolution of the
superconducting gap is assumed to be given by

�0(B) = �0

√
1 −

(
B

Bc

)2

,

and �0 is substituted in Eq. (20) with �0(B). For �0(B) = 0
the effective model given by Eq. (20) should no longer be
applicable but since we are interested only in the evolution
below the gap we assume the conductance for �0(B) = 0 to
be constant for the voltage range considered here. We find
that our model correctly predicts the qualitative behavior of
the mini-gap feature (see Fig. 7). The gap closes, whereas the
mini-gap stays in place as long as the gap is not vanishing.
This is related to the very large exchange field observed in
the experiment. δ↑ = 0.4� corresponds to a critical magnetic
field of the subgap feature of Bc,subgap = 0.19T, which is
much larger than the critical magnetic field of the SC.
Therefore, we conclude that our model delivers a qualitatively
correct description of the underlying physics. According to
our explanation, the splitting of the SAR peaks due to the
exchange field gives direct evidence for the triplet correlations
due to spin-active scattering since normal (spin-symmetric)
AR conductance peaks cannot split up in an applied magnetic
field. In this way the spin-active scattering can be identified in

simple transport experiments in a way similar to the explicit
investigation of Andreev bound states.72

VII. CONCLUSION

In conclusion, we have calculated the FCS for SFQPCs
with and without spin-active scattering at the interface. We
have demonstrated the necessity to take it into account for a
consistent explanation of the current-voltage characteristics.
Using these results, we derived an effective description of a
F-QD-S contact in the Kondo regime. In this case, the Kondo
effect imposes a strong asymmetry between the coupling of the
SC and the FM to the QD. Spin-active scattering at the interface
is strongly suppressed, making the device an ideal tool for spin
measurements in Cooper pair splitters. Spin-active scattering
may be “switched on” in an even charge state of the QD.
There, as in the case of SFQPCs, it induces triplet correlations
that lead to an observable mini-gap feature. Furthermore, our
model allows us to reproduce and interpret the evolution of the
mini-gap feature in an external magnetic field.
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APPENDIX A: EXPRESSION FOR THE CGF FOR THE
SFQPC WITH SPIN-ACTIVE SCATTERING

The CGF for a SC-FM-quantum point contact is quite
complicated in full detail and shall not be reported here. To
give a clear physical understanding of the processes involved
we use an approximation for the noninteracting self-energy
due to the superconducting lead that is also used, e.g., in
Ref. 102: We treat the noninteracting self-energy of the SC
to be real and purely off-diagonal for energies below the
superconducting gap and to be diagonal for energies above
�0. The one due to the normal lead is always diagonal. This
approximation is valid for V 
 �0 as well as for V � �0

so all relevant charge transfer processes are included. For
the plots and the comparison to experimental data we use, of
course, the full model, which gives a slightly different behavior
around V = �0. Using this approximation of the tunneling
self-energy, we arrive at

ln χSFa(λ) = 2τ

∫
dω

2π
[ln({1 + Teσ [nf +(1 − ns)(e

iλ − 1) + ns(1 − nf +)(e−iλ − 1)]}{1 + Te−σ [nf +(1 − ns)(e
iλ − 1)

+ ns(1 − nf +)(e−iλ − 1)]} − Td [nf +(1 − ns)(e
iλ − 1) + ns(1 − nf +)(e−iλ − 1)]2

− Ts[nf +(1 − ns)(e
iλ − 1) + ns(1 − nf +)(e−iλ − 1)])θ [(|ω| − �0)/�0]

+ 1/2 ln({1 + TA[nf +(1 − nf −)(e2iλ − 1) + nf −(1 − nf +)(e−2iλ − 1)]}2

− TA2[nf +(1 − nf −)(e2iλ − 1) + nf −(1 − nf +)(e−2iλ − 1)]

+ TAT [nf +(1 − nf −)(e2iλ − 1) + nf −(1 − nf +)(e−2iλ − 1)])θ [(�0 − |ω|)/�0]]. (A1)
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We define the transmission coefficients to be

Teσ = 4(β11σ + β12σ )

(1 + β11↑ + β12↑)(1 + β11↓ + β12↓) − β13↑β13↓
, Td = 16β13↑β13↓

[(1 + β11↑ + β12↑)(1 + β11↓ + β12↓) − β13↑β13↓]2
,

Ts = 4[(β11↑ − β11↓ + β12↑ − β12↓)2 + β13↑β13↓]

[(1 + β11↑ + β12↑)(1 + β11↓ + β12↓) − β13↑β13↓]2
, TA = 4[(β21↓ + β22↓)(β21↑ + β22↑) − β23↑β23↓]

W
,

TA2 = 4(β23↑ + β23↓)2(β21↑ + β22↑)(β21↓ + β22↓)

W 2
, TAT = 4(β23↑ + β23↓)2[1 + β23↑β23↓]2

W 2
,

where

W = 1 + (β21↑ + β22↑)(β21↓ + β22↓)[2 + (β21↑ + β22↑)(β21↓ + β22↓)]

− 2(β21↑ + β22↑)(β21↓ + β22↓)β23↑β23↓ + (1 + β23↑)2(1 + β23↓)2.

In these definitions we used the abbreviations

β11σ = βn(1 + σP )|ω|√
ω2 − �2

0

, β12σ = βf (1 + σP )|ω|√
ω2 − �2

0

, β13σ = 2(1 + σP )(βnβf )1/2|ω|√
ω2 − �2

0

,

β21σ = βn(1 + σP )�0√
�2

0 − ω2
, β22σ = βf (1 + σP )�0√

�2
0 − ω2

, β23σ = 2(1 + σP )(βnβf )1/2�0√
�2

0 − ω2
,

with βn = ρf ρ0sγ
2π2/2 and βf = ρf ρ0sγ

2
2 π2/2. We observe a more complicated structure of the CGF compared to Eq. (6).

Above the gap we observe single-electron transmission for the different spins described by Teσ . Additionally spin-flip transmission
of single electrons must contribute, giving rise to the transmission coefficients Td and Ts . In the numerator of Ts there are two
contributions since one additionally has to keep track of the asymmetric DOS for the different spins. Below the gap we find
two types of Andreev reflection: TA and TA2 describe the normal, spin-symmetric Andreev reflection (AR) and TAT describes
spin-flip Andreev reflection (SAR).

APPENDIX B: EXPRESSION FOR THE CGF FOR THE F-QD-S JUNCTION WITH SPIN-ACTIVE SCATTERING

We use the same approximation of the self-energy as in Appendix A to simplify the expression. In this approximation the
CGF for a F-QD-S junction may be expressed as

ln χRSFa(λ) = 2τ

∫
dω

2π

[(
ln{1 +

[ ∑
σ

TReσ

]
[nf +(1 − ns)(e

iλ − 1) + ns(1 − nf +)(eiλ − 1)]

+ TRd [nf +(1 − ns)(e
iλ − 1) + ns(1 − nf +)(eiλ − 1)]2

− TRs[nf +(1 − ns)(e
iλ − 1) + ns(1 − nf +)(eiλ − 1)]}

)
θ

( |ω| − �0

�0

)

+ 1

2
(ln{1 + 2TRA[(e2iλ − 1)nf +(1 − nf −) + (e2iλ − 1)nf −(1 − nf +)]

+ TRAd [(e2iλ − 1)nf +(1 − nf −) + (e2iλ − 1)nf −(1 − nf +)]2

+ (TRAT + TRA2)[(e2iλ − 1)nf +(1 − nf −) + (e2iλ − 1)nf −(1 − nf +)]})
]
θ

(
�0 − |ω|

�0

)
, (B1)

where we set λf − λs =: λ and we have the transmission coefficients

TReσ = 4�f σ (�s11 + �s12)
[
(�f −σ + �s11 + �s12)2 + (ω − δ)2 − �2

s13

]
det AR10

, TRd = 16�f ↑�f ↓
[
(�s11 + �s12)2 − �2

s13

]
det AR10

,

TRs = 16�f ↑�f ↓
det AR10

, det AR10 = [
(�f ↑ + �s11 + �s12)2 + ω2 − �2

s13

][
(�f ↓ + �s11 + �s12)2 + ω2 − �2

s13

]
+�2

s13

[
(�f ↑ − �f ↓)2 + 4ω2

]
, TRA = 4�f ↑�f ↓(�s21 + �s22)2

det AR20
,

TRAd = 16�2
f ↑�2

f ↓
[
(�s21 + �s22)2 − �2

s23

]2

(det AR20)2
, TRAT = 4�2

s23

[(
�2

f ↑ + �2
f ↓

)(
�2

s23 − (�s21 + �s22)2 + ω2
)2]

(det AR20)2
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TRA2 = {
4�2

s23�
2
f ↑�2

f ↓
[
�2

f ↑ + �2
f ↓ + 4

(
�2

s23 + ω2
)] − 2�f ↑�f ↓(�s21 + �s22)2

[
�2

f ↑ + �2
f ↓ + 4

(
�2

s23 + ω2
)]}/{(det AR20)2}

det AR20 = ω4 + [
(�s21 + �s22)2 + �f ↑�f ↓ − �2

s23

]2 + 2(�s21 + �s22)2ω2 + �2
f ↑ω2 + �f ↓ω2 + �2

s23[(�f ↑ + �f ↓)2 + 2ω2].

Again, we have used several abbreviations in these definitions,

�f σ = �F (1 + σP ), �s11 = �s |ω|√
ω2 − �2

0

, �s12 = �s2|ω|√
ω2 − �2

0

, �s13 = 2(�s�s2)
1
2 |ω|√

ω2 − �2
0

,

�s21 = �s�0√
�2

0 − ω2
, �s22 = �s2�0√

�2
0 − ω2

, �s23 = 2(�s�s2)
1
2 �0√

�2
0 − ω2

with �f = πρf γ 2
f /2, �s = πρsγ

2
s /2, and �s2 = πρsγ

2
s2/2.

The result may be interpreted as the result for the SF tunnel contact with spin-active scattering in Eq. (A1). Above the gap
TReσ describes single electron transfer without spin flip and TRd describes the consecutive transfer of two electrons with different
spin (again without spin flip). TRs refers to spin-flip transmission of single electrons. Below the gap TRA and TRA2 describe single
Andreev reflection and TRAd describes two consecutive Andreev reflections intiated by electrons with opposite spin. Spin-flip
Andreev reflection is given by TRAT .
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19M. Gräber, T. Nussbaumer, W. Belzig, and C. Schönenberger,
Nanotechnology 15, 479 (2004).

20J. C. Cuevas, A. Levy Yeyati, and A. Martı́n-Rodero, Phys. Rev. B
63, 094515 (2001).

21L. P. Kouwenhoven and L. Glazman, Phys. World 14(1), 33 (2001).
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49F. Haupt, T. Novotný, and W. Belzig, Phys. Rev. Lett. 103, 136601

(2009).
50D. F. Urban, R. Avriller, and A. Levy Yeyati, Phys. Rev. B 82,

121414 (2010).
51S. Maier and A. Komnik, Phys. Rev. B 82, 165116 (2010).
52T. L. Schmidt, A. Komnik, and A. O. Gogolin, Phys. Rev. Lett. 98,

056603 (2007).
53S. Lindebaum, D. Urban, and J. König, Phys. Rev. B 79, 245303

(2009).
54J. C. Cuevas, A. Martı́n-Rodero, and A. Levy Yeyati, Phys. Rev. B

54, 7366 (1996).
55A. F. Andreev, Zh. Eksp. Teor. Fiz. 46, 1823 (1964) [Sov. Phys.

JETP 19, 1228 (1964)].
56R. C. Dynes, V. Narayanamurti, and J. P. Garno, Phys. Rev. Lett.

41, 1509 (1978).
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Nano Lett. 8, 3932 (2008).

86T. S. Jespersen, M. Aagesen, C. Sørensen, P. E. Lindelof, and
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