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Influence of Andreev reflection on current-voltage characteristics
of superconductor/ferromagnet/superconductor metallic weak links
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We develop a quantitative theory describing the behavior of current-voltage characteristics (CVCs) in
superconductor (S)/ferromagnet (F)/superconductor (SFS) weak links with transparent S/F interfaces. The
approach of Kümmel, Gunsenheimer, and Nikolsky [Phys. Rev. B 42, 3992 (1990)], developed for S/normal
metal (N)/S junctions with an N barrier and based on the solution of time-dependent Bogoliubov–de Gennes
equations combined with the time-relaxation model, is generalized to the SFS case. CVCs are calculated as a
function of the barrier material parameters: the exchange energy h, the barrier thickness d , and the mean free
path l. CVC peculiarities, such as a steep rise in the current and negative differential conductance at a low
voltage, as well as the h-dependent position of the peaks, are obtained for a weak exchange energy h lower than
or comparable to the superconducting energy gap � = �(T ). They are interpreted to be induced by multiple
Andreev reflections, modified in the presence of h in ferromagnets.
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I. INTRODUCTION

In recent years, the investigation of metallic weak links
has been the subject of many studies. In these structures,
consisting of two superconductors (Ss) connected by a normal
metal (N) or a ferromagnet (F), SNS or SFS, several static
and dynamic properties have been investigated. Among the
static ones, the Josephson effect and the proximity effect have
been studied experimentally and theoretically, in both SNS
and SFS structures.1–3 The origin of the supercurrent in SNS
junctions derives from the existence of Andreev bound states
in the N.4–10 The dynamic properties, which can be revealed
by studying the current-voltage characteristics (CVCs) of the
junctions, are also closely related to the Andreev scattering.11

The resistively shunted junction model, commonly used for
the description of CVCs, is too simple in comparison with the
microscopic theory of Kümmel, Gunsenheimer, and Nikolsky
(KGN),11 which provides several characteristic features of
CVCs in the SNS case, such as the “foot” at low voltages,
negative differential conductivity, and subharmonic gap struc-
tures, in concordance with experiments.12 A simplified version
of this theory, given by Gokhfeld,13 is used for comparison
with experiments on microbridges.14 A self-consistent method
based on the Keldysh formalism for investigation of nonsta-
tionary and nonequilibrium balistic charge transport through
clean SNS microbridges was developed by Gunsenheimer and
Zaikin.15

Mesoscopic structures containing S and ferromagnetic
elements present an additional point of interest, offering
the possibility of studying the competition between the
Andreev reflection (AR) and the spin polarization in F parts
of such SFS systems.16 Their static properties have been
studied in the case of weakly ferromagnetic alloy barriers,
starting with the key experiments done by Ryazanov et al.,17

Kontos et al.,18 Blum et al.,19 Sellier et al.,20 and others,
whereas experiments with thin, strongly ferromagnetic metal
barriers were performed by Robinson et al.21 and by Bannykh
et al.22

Both static and dynamic properties of SF hybrid structures
were investigated experimentally by Pfeiffer et al.,23 Born
et al.,24 Krasnov et al.,25 Weides et al.,26 and others. More ref-
erences for recent experimental and theoretical investigations
of both SFS weak links and SIFS (containing an insulator
layer; I) tunnel junctions are given by Vasenko et al.,27 who
present a theory of CVCs in diffusive SIFS junctions. As
for SFS mesoscopic structures, until recently, their dynamic
properties have been theoretically investigated only in the case
of magnetic point contacts.16,28 Another recent study deals
with the calculation of CVCs in diffusive SFS plane junctions,
using the quasiclassical theory of superconductivity.29

In the present article, we generalize the approach of KGN11

to calculate CVCs of dissipative current in SFS weak links. We
solve the time-dependent Bogoliubov–de Gennes equations30

(BdGEs) for Andreev reflected quasiparticles in the presence
of the exchange energy in a ferromagnetic barrier. In Fs,
we use the Stoner model, and in Ss, the BCS model of
superconductivity. CVCs are calculated as a function of the
value of the exchange energy in the barrier, barrier thickness,
temperature, and mean free path. The S/F interfaces are
assumed to be transparent, to achieve a high efficiency of
the AR.31

In Sec. II, we discuss the model describing the quasiparticle
dynamics resulting from the interplay between the energy
gain from the electric field and the multiple ARs at S/F
interfaces. Generalizing the KGN theory11 for the SFS case, the
time-averaged current density carried by quasiparticle wave
packets is calculated in Sec. III using our previous experience
in calculating the density of states (DOS) in a ferromagnetic
barrier.32 Results and discussion are presented in Sec. IV, and
the conclusions in Sec. V. Some details of the calculations are
presented in the Appendix.

II. MODEL AND FORMALISM

We consider a voltage-biased plane SFS junction with a
constant electric field in the F layer (which is in the negative
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FIG. 1. Scheme of the considered SFS junction.

z direction perpendicular to the S/F interfaces) and negligible
field penetration into the superconducting banks. The F layer
has a thickness d = 2a of the order of superconducting
zero-temperature coherence length ξ0, while the thickness
of the superconducting bank is D, assuming D � 2a, and
cross-section area LxLy (Fig. 1). Interfaces between layers
are fully transparent. Ss are described in the framework of the
standard BCS formalism, neglecting suppression of the pair
potential. Although this is a good approximation for thick
barriers only, we expect qualitatively the same results for
shorter barriers, since the basic physics is in the multiple AR,
which is still present.11 For F we use the Stoner model with
an exchange energy shift 2h between the spin sub-bands. We
work with a weak exchange energy in the F, of the order of the
superconducting order parameter, h ∼ �.

To treat the quasiparticle motion we use the time-dependent
BdGEs combined with the relaxation-time model for charge
transport under the influence of an electric field and inelastic
scattering. In this model, the quasiparticle is freely accelerated
by the electric field until time t with probability e−t/TS , where
TS is the average scattering time. The observable current
density (see Sec. III) is proportional to the sum of time averages
of all electron and hole momentum densities, where one has to
take into account the rate 1/tc at which the quasiparticles start
their motion,11 where

tc =
{

2a/vz, 2a/vz < TS,

TS, otherwise,
(2.1)

and the mean free path l for scattering of the electrons at
velocity vz is l = vzTS .

Electron-like and hole-like quasiparticles with energy E

and spin projection σ = ↑,↓ are described by the time-

dependent30,33 BdGEs, which are

ih̄
∂

∂t
uσ (r,t) =

[
1

2m

[
p + e

c
A
]2

− μ − ρσh

]
uσ (r,t)

+��(|z| − a)vσ (r,t),
(2.2)

ih̄
∂

∂t
vσ (r,t) = −

[
1

2m

[
p − e

c
A
]2

− μ − ρσh

]
vσ (r,t)

+��(|z| − a)uσ (r,t),

where ρσ = +1(−1) is related to the spin projection σ = ↑(↓),
and �(z) stands for the Heaviside step function. The vector
potential A(z,t) is related to the electric field by A =
−cFt , where the electric field due to the voltage V is F =
−ez(V/2a)�(a − |z|). The chemical potential is denoted by
μ; e = +|e|. Equal Fermi velocities in the F and S region are
assumed. The magnetic scattering is neglected, since one can
believe that in diluted magnetic alloys with a weak exchange
energy the magnetic inhomogeneity is weak enough to result
in a sufficiently small value of the magnetic scattering rate.29

We also assume that the two Ss are identical, and neglecting
self-consistency, we approximate the spatial variation of the
pair potential in the SFS junction by the step function
��(|z| − a), where � is the bulk superconducting gap.
The temperature dependence of � is given by �(T ) =
�(0) tanh(1.74

√
Tc/T − 1).34

Following KGN, we use an approximate solution of the
BdGE, Eq. (2.2), in the form of a four-component spinor
�(r,t) = [u↑(r,t),u↓(r,t),v↑(r,t),v↓(r,t)]T , valid under the
condition

h̄2k2
zf

2m
� |E ± eV |, (2.3)

where E is the energy eigenvalue for V = 0 and kzf =
(k2

f − k2
||)

1/2 is the z component of the Fermi wave vec-
tor. Since the parallel component of the wave vector,
k‖ = kxex + kyey , is conserved due to translational invari-
ance of the junction in directions perpendicular to the z

axis, we can write �(r,t) = ψ(z,t)eik‖r, where ψ(z,t) =
[u↑(z,t),u↓(z,t),v↑(z,t),v↓(z,t)]T .

To calculate the current density we need to know the
solutions of the time-dependent BdGEs in the ferromagnetic
layer. Determination of unknown coefficients in these solu-
tions requires matching at the boundaries z = ±a the wave
functions in the F layer with the solutions of the BdGEs in
superconducting layers. This is presented in the Appendix
with the wave function in the F layer,

ψ±
F (z,t,Ek) =

⎛
⎜⎜⎜⎝

u±
k↑(z,t)

u±
k↓(z,t)

v±
k↑(z,t)

v±
k↓(z,t)

⎞
⎟⎟⎟⎠ =

+∞∑
n=−∞

⎡
⎢⎣
⎛
⎜⎝

1
0
0
0

⎞
⎟⎠ u±

n↑(z,t,k) +

⎛
⎜⎝

0
1
0
0

⎞
⎟⎠ u±

n↓(z,t,k) +

⎛
⎜⎝

0
0
1
0

⎞
⎟⎠ v±

n↑(z,t,k) +

⎛
⎜⎝

0
0
0
1

⎞
⎟⎠ v±

n↓(z,t,k)

⎤
⎥⎦ , (2.4)

where the superscript + (−) refers to positive (negative) z momentum.
Using the results from Appendix, we get the wave packets u±

nσ and v±
nσ related to the corresponding AR,11

u+
nσ (z,t,k) = Ne− i

h̄
E+

2nσ t eik+
2nσ zeiϕσ

+e
−[((4n+1)a+z−vzf t) δ

2h̄vzf
]2

A+
2n

(
Ek + eV

2
+ ρσh

)
, (2.5)

u−
nσ (z,t,k) = Ne− i

h̄
E−

2nσ t e−ik−
2nσ zeiϕσ

−e
−[((4n+1)a−z−vzf t) δ

2h̄vzf
]2

A−
2n

(
Ek − eV

2
+ ρσh

)
, (2.6)
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v+
nσ (z,t,k) = Ne− i

h̄
E+

(2n+1)σ t eik+
(2n+1)σ zeiφσ

+e
−[((4n+3)a−z−vzf t) δ

2h̄vzf
]2

A+
2n+1

(
Ek + eV

2
− ρσh

)
, (2.7)

v−
nσ (z,t,k) = Ne− i

h̄
E−

(2n+1)σ t e−ik−
(2n+1)σ zeiφσ

−e
−[((4n+3)a+z−vzf t) δ

2h̄vzf
]2

A−
2n+1

(
Ek − eV

2
− ρσh

)
, (2.8)

with

E±
2nσ = ±2neV ± eV

2
+ eV

z

2a
+ Ek + ρσh, (2.9)

E±
(2n+1)σ = ±(2n + 1)eV ± eV

2
− eV

z

2a
+ Ek − ρσh, (2.10)

k±
2nσ = kzf + (E±

2nσ + ρσh)
1

h̄vzf

, (2.11)

k±
(2n+1)σ = kzf − (E±

(2n+1)σ − ρσh
) 1

h̄vzf

. (2.12)

In the presence of exchange energy in the F, A±
2n(Ek ± eV

2 +
h), A±

2n(Ek ± eV
2 − h), A±

2n+1(Ek ± eV
2 + h), and A±

2n+1(Ek ±
eV
2 − h), as defined by Eqs. (A19), (A20), (A11), and (A12),

are the probability amplitudes that a quasiparticle at energy
Ek ± h starts to move as an electron against (+) or opposite to
(−) the field will reappear in the F region as an electron after
2n ARs and as a hole after 2n + 1 ARs, respectively.

According to Eqs. (2.5)–(2.12) the E±
2nσ , E±

(2n+1)σ , k±
2nσ ,

and k±
(2n+1)σ are the instantaneous local energies and momenta

of quasiparticle wave packets.11,30 ϕσ
± and φσ

± are irrelevant
phase factors. The normalization factor N is determined by
the probability PN of finding a quasiparticle in the F layer
where the electric field exists.11

III. CURRENT DENSITY

Using the gauge-invariant momentum operator P =
[−ih̄∇ + eA/c], and the relaxation-time approximation, one
obtains the averaged current density in the F barrier,

〈 j〉 = − e

4m

∑̂
k

{f0(Ek + h)(〈u+∗
k↑ Pu+

k↑〉 + 〈u−∗
k↑ Pu−

k↑〉) + f0(Ek − h)(〈u+∗
k↓ Pu+

k↓〉 + 〈u−∗
k↓ Pu−

k↓〉)

+ (1 − f0(Ek + h))(〈v+
k↑Pv+∗

k↑ 〉 + 〈v−
k↑Pv−∗

k↑ 〉) + (1 − f0(Ek − h))(〈v+
k↓Pv+∗

k↓ 〉 + 〈v−
k↓Pv−∗

k↓ 〉)}, (3.1)

where f0 is the Fermi distribution function. The caret over the summation sign means the sum over the complete set of positive-
and negative-energy eigenstates Ek . The spatial and time integration in the averaged momentum densities,

〈u±∗
kσ Pu±

kσ 〉 = 1

2a

1

tc

∫ +a

−a

dz

∫ τ

0
dte−t/TS u±∗

kσ (z,t)Pu±
kσ (z,t), (3.2)

〈v±
kσ Pv±∗

kσ 〉 = 1

2a

1

tc

∫ +a

−a

dz

∫ τ

0
dte−t/TS v±

kσ (z,t)Pv±∗
kσ (z,t), (3.3)

are calculated in the same way as in Sec. III of Ref. 11, where τ is the time after which the quasiparticle has been accelerated to
the edge of the pair potential well and left the F layer into one of the superconducting banks. It can be shown11 that τ enters only
in two added irrelevant functions that can be dropped out of the momentum densities, Eqs. (3.2) and (3.3). In this way it can be
seen that the current density 〈 j〉, whose x and y components are 0, may be split into two terms:

〈 j〉 = 〈 jN 〉 + 〈 jAR〉. (3.4)

The term

〈 jN 〉 = −ez

V

RNLxLy

, (3.5)

where RN is the normal resistance, corresponds to the ohmic current density, while the term 〈 jAR〉 is the current density due to AR,

〈 jAR〉 = −ez

e

2m

h̄

�N

∑
k

∞∑
n=1

PN (Ek)e− 2na
l

{
[(f0(Ek + h)ke↑ − (1 − f0(Ek + h))kh↓)

+ (f0(Ek − h)ke↑ − (1 − f0(Ek − h))kh↓)]

[∣∣∣∣A+
n

(
Ek + 1

2
eV + h

)∣∣∣∣
2

−
∣∣∣∣A−

n

(
Ek − 1

2
eV + h

)∣∣∣∣
2]
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+ [(f0(Ek − h)ke↓ − (1 − f0(Ek − h))kh↑) + (f0(Ek + h)ke↓ − (1 − f0(Ek + h))kh↑)]

[∣∣∣∣A+
n

(
Ek + 1

2
eV − h

)∣∣∣∣
2

−
∣∣∣∣A−

n

(
Ek − 1

2
eV − h

)∣∣∣∣
2]}

, (3.6)

where

keσ = kzf + Ek + ρσh

h̄vzf

, (3.7)

khσ = kzf − Ek − ρσh

h̄vzf

, (3.8)

and �N = 2aLxLy is the volume of ferromagnetic layer. The
terms proportional to the momentum changes in the electric
field are omitted in Eq. (3.6) because they can be neglected for
the same reason as in Ref. 11. The sum

∑
k , which is the sum

over positive energies Ek � 0 only, can be transformed into
an integral by introducing the DOS g(E),∑

k

≡ 1

2

∫
g(E)dE, (3.9)

where the factor 1/2 takes into account that only one z

momentum direction is to be considered, whereas g = (g↑ +
g↓)/2. To calculate the current density, Eq. (3.6), we need to
know g and PN . The DOS is found from13

gr (E) = LxLy

π

∑
r

kzf,r

∣∣∣ dE

dkzf

∣∣∣−1

kzf,r

, (3.10)

where kzf,r defines the value of kzf for which Er = E. The
energy spectrum E(kzf ) consists of the spatially quantized
bound states and the quasicontinuum scattering states. For
spatially quantized Andreev bound states we calculate the
spin-dependent DOS gr,σ from Eq. (3.10), with E = Eσ .
The energies Eσ < � are the solutions of the transcendental
equation (which can only be solved numerically)35

cos γσ = ±Eσ/�, (3.11)

where

γσ =
(

φ

2
± 2ah

h̄vzf

− 2aEσ

h̄vzf

)
. (3.12)

Here φ is the phase difference at the electrodes, vzf = vf cos ϕ

and ϕ is the angle of the direction of the quasiparticle

propagation with respect to the z axis perpendicular to the
barrier. Note that for s-wave symmetry in the S, with the
isotropic order parameter, the partial DOS (PDOS) for ϕ = 0
coincides with the integral DOS, obtained by averaging the
PDOS values for all ϕ over the Fermi surface.32 Thus in the
following we take ϕ = 0.

For quasiparticles from quasicontinuum states, the energy
spectrum is approximated by the continuous BCS spectrum of
a homogeneous S:

E(kzf ) =
(

h̄2

2m

(
k2
f − k2

zf

)+ �2

)1/2

. (3.13)

Then the density of quasicontinuum scattered states for E > �

is13

g(E) = LxLy

π2

2m

h̄2 kf D
E√

E2 − �2
. (3.14)

The probability PN (E) of finding quasiparticles with energy
E in the F layer is given by Eq. (2.19) of Ref. 11,

PN (E) = 2a

2a + 2λ
, (3.15)

with the penetration depth λ = h̄2

m

kzf√
�2−E2 for E < �, λ <

D − a and λ = D − a otherwise. For quasiparticles from the
scattering states, E > �, PN (E) = 2a/2D.

When calculating the current density 〈 jAR〉 by integrating
over the DOS, one has a finite integrand only in the range of
nonvanishing multiple Andreev scattering probabilities |A±

n |2.
Neglecting over-the-barrier reflections, these probabilities can
be approximated by a step-function product,11∣∣A±

n

(
(E ± h) ± 1

2eV
)∣∣2

≈ �(� ± (E ± h) + eV )�(� ∓ (E ± h) − neV ).

(3.16)

In this way Eq. (3.6) becomes

〈 jAR〉 = −ez

e

2m

h̄

�N

∞∑
n=1

e− 2na
l

{∫ E1

0
dEg(E)[(f0(Ek + h)ke↑ − (1 − f0(Ek + h))kh↓) + (f0(Ek − h)ke↑ − (1 − f0(Ek − h))kh↓)]

−
∫ E

′′
2

E
′
2

dEg(E)[(f0(Ek + h)ke↑ − (1 − f0(Ek + h))kh↓) + (f0(Ek − h)ke↑ − (1 − f0(Ek − h))kh↓)]

+
∫ E

′′
3

E
′
3

dEg(E)[(f0(Ek − h)ke↓ − (1 − f0(Ek − h))kh↑) + (f0(Ek + h)ke↓ − (1 − f0(Ek + h))kh↑)]

−
∫ E

′′
4

E
′
4

dEg(E)[(f0(Ek − h)ke↓ − (1 − f0(Ek − h))kh↑) + (f0(Ek + h)ke↓ − (1 − f0(Ek + h))kh↑)]

}
, (3.17)
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where

E1 =
{

0, � − neV − h � 0,

� − neV − h otherwise;
(3.18)

E
′
2 =

{
0, neV − � − h � 0,

neV − � − h otherwise;
(3.19)

E
′′
2 =

{
0, � + eV − h � 0,

� + eV − h otherwise;
(3.20)

E
′
3 =

{
0, −� − eV + h � 0,

−� − eV + h otherwise;
(3.21)

E
′′
3 =

{
0, � + h − neV � 0,

� + h − neV otherwise;
(3.22)

E
′
4 =

{
0, neV − � + h � 0,

neV − � + h otherwise;
(3.23)

E
′′
4 = � + h + eV . (3.24)

IV. RESULTS AND DISCUSSION

In the SFS case, the shape of CVCs depends on several
parameters. Besides those important in the SNS case, such as
the barrier thickness d = 2a, the mean free path l in the barrier,
and the temperature T , of crucial importance here is the value
of the exchange energy h in F. We discuss all these effects,
but we would like to point out first that distinct structures of
CVCs are found for h not to large, h � �. A similar conclusion
was found in a study29 of phase-coherent transport in diffusive
voltage-biased SFS plane junctions. For h equal to a few �,
the effects of AR are still visible, in particular at low voltages,
for small d and relatively large l.

In experiments with weakly ferromagnetic alloys in the
barrier, the value of h is of the order of several (up to 10)
�. However, one can expect that in the near-future it will
be possible to prepare ferromagnetic alloys with a weaker
exchange energy.29

Working with l > d and d � ξ0, we find that for h smaller
than or of the order of �, CVCs can show several characteristic
features. Similarly to the SNS case, CVCs can exhibit a rapid
rise in the current at low voltages (the ”foot” or ”shoulder”
of the characteristics) and arch-like structures with sometimes
negative differential conductivity near the beginning of the
curves. However, the presence and positions of irregularities
in CVCs are strongly influenced by the value of the exchange
energy h in the barrier.

In the following, we introduce reduced units: energies
are reduced by �(T ), h̃ = h/�(T ), Ṽ = eV/�(T ), whereas
d̃ = d/ξ0 and l̃ = l/ξ0. The total current, including the
contributions of the ohmic current and of the AR current,
I = IN + IAR = LxLy(〈jN 〉 + 〈jAR〉), is normalized by the
temperature-dependent current I0 = 2�(T )/eRN . In all ex-
amples we have chosen the parameters of the junction to
correspond to the clean case (see below).

FIG. 2. (Color online) (a) Current-voltage characteristic I (V )
for T/Tc = 0.05, l/ξ0 = 4.5, d/ξ0 = 0.5, and four values of the
exchange energy h/�(T ): 0, 1, 1.5, and 4 (from top to bottom).
(b) Current-voltage characteristic I (V ) for T/Tc = 0.05, l/ξ0 = 7.5,
d/ξ0 = 1.5, and three values of the exchange energy h/�(T ): 0.5,
0.7, and 0.9 (from top to bottom).

The effects of the exchange energy h̃ in the F on CVCs,
shown in all figures, are illustrated, in particular, in Fig. 2.
One can distinguish two types of effects.

(1) With increasing h̃, CVCs are shifted down in a large
domain of voltages;

(2) For h̃ � 1, we find that, in comparison with the SNS
case,11 there are new, h̃-induced structures in CVCs; and for
h̃ � 1, CVCs are monotonous and there are no additional
structures.

The first effect is expected since, according to Upadhyay
et al.36 and de Jong and Beennaker,37 for an FS contact, AR
should be sensitive to polarization of the conduction electrons
in the F. Not every electron with spin-up can find a spin-
down electron with which to pair, and which then would be
Andreev retroreflected from the F/S interface as a hole. The
corresponding Cooper pair thus will not be able to form and
enter into the S. This should reduce AR as h̃ increases, since the
electron and the hole lose the correlation due to the exchange-
energy-induced band splitting in F.31

As for the second effect, we note that in diffusive SFS
junctions with nontransparent S/F interfaces, the appearance
of additional h-dependent structures in CVCs (and in the
conductance curves) found for intermediate values of Thouless
energies, εTh ∼ �, was explained by the change in the DOS in
the presence of the exchange field.29 In the present case, these
structures, certainly influenced by the change in DOS and by
the shift of energies Ẽk → Ẽk ± h̃, are primarily affected by
the effects of h̃ on AR. The AR probabilities determine the
limits of integrals contributing to 〈 jAR〉, Eq. (3.17). When the
range of one of the integrals in Eq. (3.17) shrinks to 0, there
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is no contribution of AR at the corresponding voltage. From
Eq. (3.17) it is easy to see that for the last three integrals this
occurs at Ṽn = 2/(n − 1), i.e., at the same voltages as in the
SNS case.11 As for the first integral, its contribution to the
current is practically zero, as can be seen from the numerical
calculations.

For h̃-dependent structures, we find the following results.
(1) For h̃ � 1 [Fig. 2(a)], the nonlinearities of CVCs

progressively disappear with increasing h̃. For comparison the
curve for the SNS case, h̃ = 0, is also shown.

(2) For h̃ < 1 [Fig. 2(b)], the voltage range Ṽ < h̃ is the
domain of many ARs. In the voltage range Ṽ > h̃ there are
pronounced structures with one or two peaks between each two
voltages Ṽn+1 and Ṽn. The results of our numerical calculations
show that, similarly to the SNS case, for Ṽ > Ṽn there are
only n − 1 or less ARs. For example, for Ṽ > Ṽ2 = 2 there
is only one harmonic, n − 1 = 1, for Ṽ > Ṽ3 = 1, n − 1 = 2,
etc. For Ṽ > Ṽn the CVCs calculated with the corresponding
small number of harmonics (a few n) coincide exactly with
those obtained with n = 100 or more. In particular, there is
always one peak for Ṽ > 2, absent in the SNS case. The
range of voltage with several ARs, Ṽ > h̃, diminishes with
increasing h̃, the number and the positions of peaks being h̃

dependent: when h̃ increases, the number of peaks decreases,
while the distance between them changes. We find that the
distance between the two highest voltage peaks is 2h̃, the first
three peaks being situated at Ṽ = (2 + h̃), Ṽ = (2 − h̃), and
Ṽ = (2 + h̃)/(n − 1), respectively.

The influence of barrier thickness can be seen in Fig. 3. We
note that for a relatively large l̃ and thin F barrier, there is a

(a)

(b)

FIG. 3. (Color online) (a) Current-voltage characteristic I (V )
for h/�(T ) = 1, l/ξ0 = 4.5, T/Tc = 0.05, and three values of the
barrier thickness d/ξ0: 0.5, 1.5, and 3 (from top to bottom). Inset:
The same (a) for h/�(T ) = 0.5 and l/ξ0 = 7.5. (b) Current-voltage
characteristic I (V ) for h/�(T ) = 4, l/ξ0 = 4.5, T/Tc = 0.05, and
two values of the barrier thickness d/ξ0: 0.5 (top) and 1.5 (bottom).

(a)

(b)

FIG. 4. (Color online) Current-voltage characteristic I (V ) for
T/Tc = 0.05, d/ξ0 = 0.5, and two values of the mean free path in
the barrier l/ξ0: 4.5 (top) and 3.75 (bottom). (a) h/�(T ) = 1. (b)
h/�(T ) = 4.

steep rise in CVCs at low voltages. The shape of the curves
depend, first, on d̃, whereas the number of irregularities is de-
termined by h̃. With increasing barrier thickness d̃ , CVCs shift
down, and the structures of CVCs progressively disappear,
especially for large h̃. This is in accordance with the results
of the theoretical study of plane SNS diffusive junctions by
Cuevas et al.38

The effect of the mean free path l̃ is presented in Fig. 4,
where it is shown that with diminishing l̃, CVCs decrease
at low voltages. For Ṽ � 1 there is only a little difference
between the CVCs for large but different mean free paths.
Note that the junctions can be in the clean or dirty regime,
according to the values of l̃ and h̃ for fixed d̃: for l̃ > d̃ ,
l̃ > (π/h̃)(�(0)/�(T )) this is the clean case, and for opposite
inequalities, the dirty case.21 The presented CVCs result from
calculations with junction parameters chosen to correspond to
the clean case.

With increasing temperature, CVCs also decrease
(see Fig. 5). The physical reason is the same as in the SNS
case. The number of thermally excited quasiparticles increases,
and the AR contribution of quasiparticles with negative z

momentum can cancel that due to quasiparticles with positive
momentum [see Eq. (3.6)], which is the generalization of the
KGN, Eq. (3.28) of Ref. 11. Again, more pronounced nonlinear
structures are obtained for lower exchange energies h̃ and at
lower temperatures.

Until now, considering the SNS case, we have relied on
the results of KGN theory. However, it is worthwhile to
comment briefly on a comparison of our results with those
of the generalized theory of Gunsenheimer and Zaikin.15

(1) As in the SNS case,11,15 we find that there is a
current enhancement at low voltages, due to multiple ARs.
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(a)

(b)

FIG. 5. (Color online) Current-voltage characteristic I (V ) for
d/ξ0 = 0.5, l/ξ0 = 4.5, and two values of the temperature T/Tc:
0.05 (top) and 0.82 (bottom). (a) h/�(0) = 1. (b) h/�(0) = 4.

However, in the SFS case, the corresponding range of
voltages is determined primarily by the value of the exchange
energy h.

(2) Similarly to the SNS case,11,15 characteristic voltages
Vn = �/e

n−1 play a role in determining the nonlinearities of
CVCs. For SFS junctions and eV/� > h the peaks in CVCs
occur between each two voltages eVn+1/� and eVn/�; see
above.

(3) In Ref. 15 it was found that the amplitude of subgap
peaks reaches a maximum at kBT ∼ �, diminishing both at
low and at high temperatures. In the present case, we find
that the nonlinearities in CVCs disappear with increasing
temperature, for the same reason as invoked in Ref. 11.

Finally, let us discuss briefly a comparison of our results
with existing experimental data obtained in the dynamic
regime. As stated above, even in SFS junctions with a weakly
ferromagnetic barrier the exchange energy is h � �. In this
case, we find that CVCs are always monotonous. For h = 4�

CVCs calculated in the clean limit are similar to those obtained
experimentally in diffusive junctions; see, e.g., Sellier et al.20

for d < ξ0 and Krasnov et al.25 for d > ξ0. For h < � there
are still no experimental data.

V. CONCLUSION

In conclusion, we have presented a theory for CVCs of
SFS weak links. The model operates for different barrier
thicknesses d, the mean free path in the barrier l > d, and
different temperatures T < Tc. Our main result is that rich
structures in CVCs are obtained for a weak exchange energy,
h � �, for clean junctions. The model can be used for
more general cases, but for arbitrary l a modification of the
expression for the current would be necessary,11 whereas the

DOS could be calculated including the effect of impurity
scattering. The calculation could also be generalized to the
case of d-wave symmetry in superconducting electrodes. Both
these tasks will be the subject of our future work.

In the present case, for a given exchange energy the shape
of CVCs depends, first, on the barrier thickness. The presence
and number of the nonlinear structures are determined by
the exchange energy as well as the position of peaks: with
increasing h the number of peaks diminishes, the distance
between the two highest voltage peaks found for h < �

increases, whereas for h of the order of a few � the peaks
disappear completely. We believe that the predicted behavior
could be measured in SFS systems realized on the basis of
weak ferromagnetic alloys and that our results would trigger
experimental activity on the fabrication of such alloys with
h � �.

Our work paves the way for the study of other transport
properties in SFS systems, such as unusual Shapiro steps
in 45◦ misoriented d-wave S/F/d-wave S junctions, where
superharmonic current-phase relations have been predicted.39
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APPENDIX

In the F layer, −a < z < a, the solution of BdGE is

ψF (z,t) = C+
1

⎛
⎜⎝

1
0
0
0

⎞
⎟⎠ u+

↑ + C−
1

⎛
⎜⎝

1
0
0
0

⎞
⎟⎠ u−

↑ + C+
2

⎛
⎜⎝

0
1
0
0

⎞
⎟⎠ u+

↓

+ C−
2

⎛
⎜⎝

0
1
0
0

⎞
⎟⎠ u−

↓ + C+
3

⎛
⎜⎝

0
0
1
0

⎞
⎟⎠ v+

↑ + C−
3

⎛
⎜⎝

0
0
1
0

⎞
⎟⎠ v−

↑

+ C+
4

⎛
⎜⎝

0
0
0
1

⎞
⎟⎠ v+

↓ + C−
4

⎛
⎜⎝

0
0
0
1

⎞
⎟⎠ v−

↓ , (A1)

with

u±
↑ = e− i

h̄
(E+eV z

2a
)t e±iq+

1 z, (A2)

u±
↓ = e− i

h̄
(E+eV z

2a
)t e±iq−

1 z, (A3)

v±
↑ = e− i

h̄
(E−eV z

2a
)t e±iq−

2 z, (A4)

v±
↓ = e− i

h̄
(E−eV z

2a
)t e±iq+

2 z (A5)

and

q±
1 = kzf + 1

h̄vzf

(
E + eV

z

2a
± h

)
, (A6)

q±
2 = kzf − 1

h̄vzf

(
E − eV

z

2a
± h

)
, (A7)

where vzf = h̄kzf /m is the z component of the Fermi velocity.
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In superconducting banks, |z| > a, we have

ψS(z,t) = e− i
h̄
Et

⎧⎪⎨
⎪⎩
⎡
⎢⎣D+

1

⎛
⎜⎝

1
0
0
ν

⎞
⎟⎠ + F+

1

⎛
⎜⎝

0
1
ν

0

⎞
⎟⎠
⎤
⎥⎦ eik+z�(z − a) +

⎡
⎢⎣D−

1

⎛
⎜⎝

1
0
0
ν

⎞
⎟⎠ + F−

1

⎛
⎜⎝

0
1
ν

0

⎞
⎟⎠
⎤
⎥⎦e−ik+z�(−z − a)

+

⎡
⎢⎣D+

2

⎛
⎜⎝

1
0
0

ν−1

⎞
⎟⎠ + F+

2

⎛
⎜⎝

0
1

ν−1

0

⎞
⎟⎠
⎤
⎥⎦ eik−z�(−z − a) +

⎡
⎢⎣D−

2

⎛
⎜⎝

1
0
0

ν−1

⎞
⎟⎠ + F−

2

⎛
⎜⎝

0
1

ν−1

0

⎞
⎟⎠
⎤
⎥⎦ e−ik−z�(z − a)

⎫⎪⎬
⎪⎭ , (A8)

with

k± =
[
k2
zf ± i

2m

h̄2 (�2 − E2)1/2

]1/2

≈ kzf ± i
m

h̄2

(�2 − E2)1/2

kzf

for E < �, (A9)

k± =
[
k2
zf ± 2m

h̄2 (E2 − �2)1/2

]1/2

≈ kzf ± m

h̄2

(E2 − �2)1/2

kzf

for E > �, (A10)

ν = E − i(�2 − E2)1/2

�
for E < �, (A11)

ν = E − (E2 − �2)1/2

�
for E > �. (A12)

Electrons and holes with the same direction of z momentum
are coupled together by Andreev scattering and are decoupled
from electrons and holes with the opposite direction of z

momentum. As a consequence, in the same way as in Ref. 11,
wave functions (A1) and (A8) split into the two independent
solutions which refer to positive and negative z momentum.
The most general solution of the time-dependent BdGE is the
sum of all positive- and negative-energy solutions:

ψ±
S (z,t) =

∫ +∞

−∞
dEψ±

S (E,z,t), (A13)

ψ±
F (z,t) =

∫ +∞

−∞
dEψ±

F (E,z,t). (A14)

Neglecting the ordinary reflection processes for sufficiently
large kzf , we have to match only the wave amplitudes,
Eqs. (A1) and (A8), at the phase boundaries z = ±a.30 This
results in the following recursion equations for the coefficients
of the F-layer wave functions:

C±
1 (E ± n2eV ) = C±

1 (E)e
i(4n(E+h)±4n2eV ) a

h̄vzf A±
2n(E), (A15)

C±
4 (E ± n2eV )

= C±
1 (E ∓ eV )e

i((4n+2)(E+h)±4n2eV ∓eV ) a
h̄vzf A±

2n+1(E),

(A16)

C±
2 (E ± n2eV ) = C±

2 (E)e
i(4n(E−h)±4n2eV ) a

h̄vzf A±
2n(E),

(A17)

C±
3 (E ± n2eV )

= C±
2 (E ∓ eV )e

i((4n+2)(E−h)±4n2eV ∓eV ) a
h̄vzf A±

2n+1(E).

(A18)

Here the multiple AR probability amplitudes are

A±
2n(E) =

2n∏
l=1

ν(E ± leV ∓ eV/2), (A19)

A±
2n+1(E) =

2n+1∏
l=1

ν(E ± leV ∓ eV/2), (A20)

and

A±
0 (E) = 1, (A21)

while |ν(ε)|2 is the probability that an AR occurs at energy ε in
the phase boundary of a semi-infinite superconducting bank.

Because of the recursion relation, Eqs. (A15)–(A18), the
coefficients C±

4 and C±
3 are completely determined by the

coefficients C±
1 and C±

2 , respectively, which in turn can
be chosen freely only within an energy interval of width
2eV . We build wave packets with a Gaussian momentum
distribution by choosing11,30

C±
1 (E) = N√

πδ2
e[(E−γk↑)/δ]2

e
i E

h̄vzf
a
, (A22)

C±
2 (E) = N√

πδ2
e[(E−γk↓)/δ]2

e
i E

h̄vzf
a
, (A23)

with
nk2eV � γkσ � (nk + 1)2eV, (A24)

where nk is an integer. The inequality δ2 < (2eV )2 ensures
that the amplitudes of C±

1 (E) and C±
2 (E) are low outside

the interval (A24), while γkσ is the wave-packet energy in
the center of the F layer before the first AR occurs. We choose
the same initial energy distribution C+

1 and C−
1 , Eq. (A22)

[and C+
2 and C−

2 , Eq. (A23), for wave packets with opposite
momenta], since equilibrium states with positive and negative
z momenta are degenerate. We can split the integral of Eq.
(A14) into energy intervals of width 2eV and relate these
intervals to the initial one defined by Eq. (A24), with the help
of the recursion equations (A15)–(A18).
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In this way, generalizing the procedure for the SNS case,11 we can write the wave function in the F layer as

ψ±
F (z,t,Ek) =

⎛
⎜⎜⎜⎝

u±
k↑(z,t)

u±
k↓(z,t)

v±
k↑(z,t)

v±
k↓(z,t)

⎞
⎟⎟⎟⎠=

+∞∑
n=−∞

⎡
⎢⎣
⎛
⎜⎝

1
0
0
0

⎞
⎟⎠ u±

n↑(z,t,k) +

⎛
⎜⎝

0
1
0
0

⎞
⎟⎠ u±

n↓(z,t,k) +

⎛
⎜⎝

0
0
1
0

⎞
⎟⎠ v±

n↑(z,t,k) +

⎛
⎜⎝

0
0
0
1

⎞
⎟⎠ v±

n↓(z,t,k)

⎤
⎥⎦ (A25)

with

u±
n↑(z,t,k) =

∫ (nk+1)2eV

nk2eV

dEC±
1 (E ± n2eV )u±

↑ (E ± n2eV ), (A26)

u±
n↓(z,t,k) =

∫ (nk+1)2eV

nk2eV

dEC±
2 (E ± n2eV )u±

↓ (E ± n2eV ), (A27)

v±
n↑(z,t,k) =

∫ (nk+1)2eV ±eV

nk2eV ±eV

dEC±
3 (E ± n2eV )v±

↑ (E ± n2eV ), (A28)

v±
n↓(z,t,k) =

∫ (nk+1)2eV ±eV

nk2eV ±eV

dEC±
4 (E ± n2eV )v±

↓ (E ± n2eV ). (A29)

We evaluate previous integrals with the help of Eqs. (A2)–(A5), relations (A15)–(A21), and Gaussians (A22) and (A23). With
the definition

γkσ = Ek ± eV

2
+ ρσh, (A30)

this results in Eqs. (2.5)–(2.12).
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