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Saddle point states in two-dimensional superconducting films biased near the depairing current
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The structure and energy of saddle point (SP) states in a two-dimensional (2D) superconducting film of finite
width w with transport current I are found in the framework of the Ginzburg-Landau model. We show that very
near the depairing current Idep, a SP state with a vortex does not exist; it transforms to a 2D nucleus state, which
is a finite region with partially suppressed order parameter. It is also shown that for slightly lower currents the
contribution of the vortex core energy is important for a SP state with a vortex and it cannot be neglected for
I � 0.6Idep. It is demonstrated that in a film with local current concentration near a bend, the energy of the SP
state may be much smaller than that in the straight film, and this favors the effect of fluctuations in such samples.

DOI: 10.1103/PhysRevB.85.174507 PACS number(s): 74.78.−w, 73.23.−b, 74.20.De

I. INTRODUCTION

Many physical systems have several metastable states at
fixed external parameters (temperature, magnetic field, etc.)
which correspond to different local minima of their free energy.
Examples are the different configurations of DNA molecules,1

vortex “molecules” in mesoscopic superconductors,2,3 and
magnetic states of a lattice of magnetic nanocaps.4 The
metastable states are usually separated from each other by
an energy barrier �F which can be overcome due to thermal
activation. If the height of the energy barrier is much larger than
the thermal energy kBT , then such transitions are relatively rare
events, and one may estimate their rate as ∼exp(−�F/kBT ).5

The standard procedure to calculate �F is to find the saddle
point states which correspond to the local maxima of the free
energy and find the energy difference between them and the
metastable states.1–3,5

In superconductors with transport current less than the criti-
cal one, this idea can also be applied for calculation of the finite
resistance appearing due to fluctuations. For one-dimensional
(1D) superconducting wires, Langer and Ambegaokar6 (LA)
found in the framework of the Ginzburg-Landau (GL) model
that in the saddle point state the superconducting order
parameter ψ = |ψ |eiϕ is partially suppressed in a finite region
along the wire and the amplitude of the suppression depends on
the current. If one starts from such a 1D nucleus state the time
evolution of the order parameter will inevitably lead to phase
slip6 and to a finite resistance Rwire. LA found a dependence
of �F on both the current and temperature which with good
accuracy7 could be written as

�FLA

F0
= 2

√
2

3π

w

ξ

(
1 − I

Idep

)5/4

, (1)

where F0 = �2
0d/16π2λ2, �0 is the magnetic flux quantum,

w is the width and d is the thickness of the wire, respectively,
λ is the London penetration depth, ξ is the coherence length,
and Idep = c�0wd/12

√
3π2ξλ2 is the depairing current in the

Ginzburg-Landau model. According to the general concept,
Rwire = ν exp(−�FLA/kBT ), where the preexponential factor
ν is calculated in Refs. 8 and 9.

In contrast to 1D wires, in thin (d � λ) 2D films several
saddle point states exist at a given value of the current. Further,
we discuss the case of a relatively narrow film with ξ � w <

λ2/d (this condition ensures the uniformity of the current

distribution over the width of a superconductor with transport
current in the ground state). At the present time three types of
saddle point states in such samples are distinguished: (i) the
state with a single vortex,10–15 (ii) the vortex-antivortex (VA)
state,14–17 and (iii) the LA state extended to the 2D case.13–15

In Ref. 15 it was argued that the VA state has at least twice
larger energy than the single-vortex state and the LA-like state
is the most energetically unfavorable among the considered
states at all currents I � Idep. However, in Ref. 15, the current
dependence of �FLA [see Eq. (1)] was not taken into account.
If one takes the result for the energy of the single-vortex (V)
state near the depairing current 1 − I/Idep � 1 (found in the
London model13–15),

�FV

F0
� 1 − I

Idep
, (2)

and compares it with Eq. (1), then it is easy to see that even
for wide films w � ξ there is a finite region of currents 1 −
(3πξ/2

√
2w)4 < I/Idep � 1 where �FLA < �FV . But such

a quantitative comparison is not correct because Eq. (2) does
not contain the energy of the vortex core (Ecore ∼ 0.38F0 for
a vortex located far from the edges18) and, as we show below,
it seriously underestimates �FV at I � 0.6Idep.

The effect of the vortex core was taken into account in
recent work13 using the GL model. But the authors focused on
the region of small currents I � Idep (where the contribution
of Ecore to �FV is relatively small) and they concluded that
for films with w > wc � 4.4ξ the energy of the single-vortex
state is lower than the energy of the LA state. Below we
show that a vortex saddle point (SP) state does not exist at
I ∼ Idep; it transforms to a vortex-free 2D nucleus (which
is a finite region with partially suppressed order parameter)
located near the edge of the film. We confirm our estimation
above that very near Idep even for wide films w � wc the
saddle point state of Langer and Ambegaokar has the lowest
energy among the SP states. We also study the practically
important case of a film with one 180◦ bend, which models the
part of the superconducting meander used in superconducting
single-photon detectors.19–21 We show that due to current
concentration near the bend the jump to the saddle point state
needs much less energy at I → Ic in comparison with that in
a 2D film with uniform current distribution, which promotes
the effects of fluctuations in such samples. This result is rather
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general and could be applied to any superconducting system
with a local current concentration.

II. METHOD

To find the state which is a solution of the stationary
Ginzburg-Landau equations but is unstable (a saddle point
state), we use the following numerical procedure. When we
search for a SP state with a vortex we first put (as an
initial condition) the phase distribution corresponding to the
vortex located at the point (n,m) of the discrete grid and
additionally fix the phase difference between adjacent points
ϕ(n,m + 1) − ϕ(n,m − 1) = π [which, in some respects, pins
the vortex at the point (n,m)] at any time step. We find the
solution of the stationary GL equations by using the relaxation
method (by adding the time derivative ∂ψ/∂t in the GL
equation for the order parameter and waiting until it goes
to zero). By variation of the current (as an external parameter)
it is possible to find a stationary state when the vortex does
not move from the point (n,m). At low currents there are
several points where the vortex position could be fixed by this
method for given I . By our definition the one with the highest
energy corresponds to the SP state (it corresponds to the local
maximum of the Gibbs energy as a function of the vortex
position in the London approach10–12,14,15). After reaching this
state the energy difference can be found using the expression

�F = Fsaddle − Fground − h̄

2e
I�ϕ, (3)

where �ϕ is an additional phase difference between the ends
of the film which appears in the SP state in comparison with
the ground state, and Fsaddle and Fground are the Ginzburg-
Landau free energies of the saddle point and ground states,
respectively.

To find a vortex-free saddle point state, we fix the magnitude
of the order parameter |ψ | > 0 at one point at the edge and
allow ψ to vary at all other points. Than we increase the current
up to the moment when the state becomes nonstationary. By
our definition we find the vortex-free SP state corresponding
to the given value of the current. We checked that if we start
from this state and let ψ vary everywhere in the film, the vortex
is nucleated at the point where we initially fix |ψ | and passes
across the film. This finding is an extension to the 2D case
of the main idea of LA that if one starts from a SP state with
finite |ψ | everywhere in the sample the time evolution of the
order parameter will inevitably lead to phase slip and a voltage
pulse.

The proposed method is much simpler (from the point
of view of the numerical procedure) than the methods used
in Refs. 22 and 23 for finding SP states in a mesoscopic
superconducting disk in a magnetic field or 2D film with a
transport current.13,17 A similar procedure to fix the vortex
position was used, for example, in Ref. 24. Moreover, our
method could be easily applied to 2D samples of arbitrary
geometry (triangles, disks, stars, etc.) and to the 3D case to
find the vortex-free saddle point states. We checked that the
method gives the same results for the 1D saddle point state
(for both the spatial dependence of the order parameter and the
excess energy �F ) as analytically found in Ref. 6. The validity
of the proposed method is also supported by our results for 2D

FIG. 1. (Color online) Energy of saddle point states of three kinds:
LA (green dashed curve), vortex (“line”) [red circles (widely spaced
empty squares)], and 2D nucleus (closely spaced empty squares) in
the film with w = 4.5ξ . In the insets we present contour plots of |ψ |
at different currents and different kinds of SP states.

films because they coincide with results found in the London
model at low currents.

In the numerical calculations the step of the rectangular grid
was δx = δy = ξ/4 and the width of the film varied from 4.5ξ

up to 30ξ . The length of the film was chosen as L = 4w (which
is long enough to allow neglect of the effect of finite length).
The boundary conditions, written here in dimensionless units
(for units see, for example, Ref. 23), ψ∗∇ψ |y=±L/2 = iI/wd

and ∇ψ |x=±w/2 = 0.

III. RESULTS

In Fig. 1 the dependence of �F on the current for different
SP states is presented for the film with w = 4.5ξ . We should
note that a vortex in such a narrow film has a strongly deformed
core (see the upper inset in Fig. 1) and it resembles more a
Josephson than an Abrikosov vortex.25 In wider films (see
Figs. 2 and 3), deformation of a vortex core occurs when the
vortex is near the edge at the distance �x � 2ξ (see the insets
in Figs. 2 and 3). A similar result was found for a vortex placed
near an artificial defect (see Fig. 2 in Ref. 24) and near the edge
of a superconducting disk (see Fig. 3 in Ref. 22) or film (see
Fig. 2 in Ref. 13).

Unfortunately our numerical method does not allow us to
find a SP state with a vortex when �x < 1.5ξ (the last red
circle at the largest current in Figs. 1–3 corresponds to �x =
1.5ξ ), because we were not able to find a stationary solution of
the Ginzburg-Landau equation with the additional condition
ϕ(n,m + 1) − ϕ(n,m − 1) = π (this effective pinning “force”
becomes insufficiently strong to pin the vortex very near the
edge). But we notice that if we fix |ψ | = 0 along a line of
finite length near the edge (see the inset in Fig. 1 where the
contour plot of |ψ | at I/Idep = 0.51 is shown) and find the
stationary solution of the GL equations with this additional
condition, then the excess energy �F of such a “line” state
(see the widely spaced empty squares in Figs. 1–3) is close
to the energy of the vortex state (when the vortex is relatively
close to the edge—see Figs. 2 and 3). Because of that one may
approximate the energy of the vortex state when �x < 1.5ξ

by the energy of the “line” state with length l < 2ξ .
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FIG. 2. (Color online) Energy of saddle point states of three kinds:
LA (green dashed curve), vortex (“line”) [red circles (widely spaced
empty squares)], and 2D nucleus (closely spaced empty squares) in
the film with w = 7ξ . The blue curve corresponds to Eq. (4). The
black dotted line is the dependence �F/F0 = 1.43(1 − I/1.026Idep)
which fits well (deviation less than 2%) our numerical results at
0.6 � I/Idep � 0.97. At I > I ∗ � 0.73Idep the LA state has the
lowest energy.

At currents I ∼ Idep the vortex (“line”) state transforms
to the vortex-free SP state (closely spaced empty squares in
Figs. 1–3) when the phase circulation along any closed contour
in the film is equal to zero and |ψ | > 0 everywhere in the film.
To find it we fix the amplitude of the order parameter |ψ | at one
point at the edge. Because of the proximity effect and I ∼ Idep,
this leads to suppression of |ψ | in a relatively large region
around this point (see the inset in Fig. 1 at I/Idep = 0.94).
Further, we call it a 2D nucleus state to distinguish it from the
1D nucleus state of LA (compare the insets in Fig. 1 at I = 0
and at I/Idep = 0.94).

In Figs. 2 and 3 we also plot the dependence of �F on the
energy of the vortex SP state found in the London limit13–15

FIG. 3. (Color online) Energy of saddle point states of three kinds:
LA (green dashed curve), vortex (“line”) [red circles (widely spaced
empty squares)], and 2D nucleus (closely spaced empty squares
near depairing current) in the film with w = 15ξ . The blue curve
corresponds to Eq. (4). The black dotted line is the dependence
�F/F0 = 1.85(1 − I/1.028Idep) which fits well (deviation less than
2%) our numerical results at 0.6 � I/Idep � 0.97. At I > I ∗ �
0.92Idep the LA state has the lowest energy.

TABLE I. Values of coefficients in the fitting expressions for the
energy of vortex and 2D nucleus saddle point states [Eq. (5)] and
vortex core energy when the vortex is in the center of the film [the
coefficient ε in Eq. (4)].

w/ξ A B C n ε

7 1.43 1.026 0.89 0.7 0.37
10 1.67 1.026 1.02 0.7 0.38
15 1.85 1.028 0.88 0.6 0.38
30 1.88 1.034 0.68 0.5 0.38

(solid blue curve)

�FV

F0
= −1

2
ln

(
1 + I 2

α2I 2
dep

)
− I

αIdep
tan−1

[
αIdep

I

]

+ ε + ln

(
2w

πξ

)
, (4)

where α = 3
√

3πξ/4w and we add the energy of the vortex
core Ecore = εF0. The numerical coefficient ε is found from
comparison of Eq. (4) with the numerical result at I = 0 and
it is presented in Table I for different widths. Notice the good
agreement between the GL and London models at I � 0.6Idep.
At larger currents the vortex is located at the distance �x � 2ξ

from the edge, and one has to take into account deformation
of the core, which provides the dependence ε(I ). This leads
to a large discrepancy between the London (with ε = const)
and GL models at I � 0.6Idep (see Figs. 2 and 3). Moreover,
at I ∼ Idep the vortex state transforms to the 2D nucleus state,
which cannot be found in the London limit.

Our numerical results at I/Idep � 0.6 could be fitted
(examples of the fitting are presented in Figs. 2 and 3 and
the inset in Fig. 5) by the following functions:

�F

F0
�

{
A(1 − I/BIdep), 0.6 � I/Idep � 0.97,

C(1 − I/Idep)n, 0.95 � I/Idep � 1.
(5)

The coefficients A, B, and C and power n for different widths
are listed in Table I. Note that the coefficient A is almost
twice larger than the result which follows from the London
model [see Eq. (2)]. It reflects the contribution of Ecore(I )
to �F which for I � 0.6Idep cannot be neglected, and Ecore

gradually decreases with increasing I .
At I/Idep ∼ 1 the power n < 1 (see Table I) in Eq. (5) tells

one that there is a finite (but rather narrow for wide films with
w � ξ ) interval of currents I ∗(w) < I < Idep where the 1D
nucleus (LA) state has the lowest energy (see Figs. 2 and 3).
This result, counterintuitive at first sight, is explained by the
presence of the last term in the right-hand side of Eq. (3).
Although in the LA state the order parameter is suppressed
over the whole width (see the inset at I = 0 in Fig. 1) and
it costs more condensation energy than in the vortex or 2D
nucleus state, the phase difference �ϕ is much larger in the
LA state than in other SP states at I ∼ Idep and this causes
the above result.

Previously, we considered only the single-vortex state and
a 2D nucleus which is located near the edge of the film. In
Fig. 4 we demonstrate that the energy of a 2D nucleus located
in the center of the film is larger than the energy of the edge 2D
nucleus. The vortex-antivortex state into which the 2D nucleus
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FIG. 4. (Color online) Energy of saddle point states of differ-
ent kinds: single vortex (red circles), vortex-antivortex pair (blue
squares), and “line” (2D) nucleus located at the edge [empty widely
(closely) spaced circles] and in the center [empty widely (closely)
spaced squares] of the film.

state is transformed at lower currents (see the solid and widely
spaced empty squares in Fig. 4) has energy larger than the
single-vortex state. A similar result was found in the London
limit where the difference reaches a factor of 2 between �FV

and �FV A.15,17

We also find the saddle point states in a 2D superconducting
film with a 180◦ bend—see the left inset in Fig. 5. In our
simulations we choose the width of the film w = 10ξ , the
length of the sample in the bend region L = 2w, and two
widths of the slit: wslit = 2.5ξ (shown in the left inset in Fig. 5)
and wslit = 10ξ . In Fig. 5 we present our results for the energy
of single-vortex and edge 2D nucleus states. Note that the
current in Fig. 5 is normalized to the critical current of the
sample and not to Idep as in Figs. 1–4 (Ic = 0.85Idep for the film
with wslit = 2.5ξ, Ic = 0.91Idep for the film with wslit = 10ξ ,
and Ic = Idep for the straight film).

FIG. 5. (Color online) Energy of saddle point states (vortex and
2D nucleus) for the film with a bend and slits of different widths
wslit = 2.5ξ (red circles) and wslit = 10ξ (blue triangles) and the film
without a bend with w = 10ξ (black squares). In the right inset we
present a zoom at I ∼ Ic which shows the energy of the 2D nucleus
SP states with the dashed curves as a fitting of the numerical results.
The green dashed curve shows the energy of the LA state for a straight
film with w = 10ξ .

We want to stress here that at I ∼ Ic the energy of SP
states is considerably lower in the film with a bend than in
one without it (compare the results presented in the right inset
in Fig. 5) taken at the same ratio I/Ic. Also, the stronger the
current concentration near the bend (which is manifested in
a lower value of Ic for smaller wslit), the smaller �F . We
expect that the smallest �F could be reached in the case of
an infinitesimally narrow and long crack near the edge of the
film,26,27 which provides the maximal current concentration
and maximal suppression of Ic. We explain this effect by the
partial suppression of the order parameter (on the scale of about
several ξ ) in the region with the strongest current concentration
even in the ground state. As a result it takes less energy to
jump to the SP state from the ground state with already locally
suppressed |ψ |. The proof of this idea also comes from our
results at low currents where �F differs a little for straight
films and films with a bend (see Fig. 5). At low currents the
suppression of |ψ | near the bend is weak and it only slightly
influences �F .

A decrease of �F in a 1D wire with constriction was also
found in Ref. 28. But the authors of Ref. 28 did not present �F

as a function of I/Ic and it is not clear whether their result is
connected with reduction of Ic (which gives trivially �F → 0
at current I = Ic < Idep and �F < �FLA at I < Ic) or with
a change in the power n in the asymptotic �F ∼ (1 − I/Ic)n

as in our case (see the right inset in Fig. 5).

IV. CONCLUSION

It is found that in a 2D superconducting film with spatially
uniform current distribution in the ground state the lowest-
energy saddle point state at I ∼ Idep corresponds to the state
of Langer and Ambegaokar found for a 1D wire. Only at
I < I ∗ [where I ∗(w) < Idep even for wide films w � ξ ] does
the lowest-energy SP state correspond either to the edge 2D
nucleus state or to a state with a vortex located next to the edge
and having a strongly modified core. At currents I � 0.6Idep

(for films with w � 7ξ ) the lowest-energy saddle point state
corresponds to a single vortex with an ordinary core, and the
results of the London model are recovered. We demonstrate
that in a film with current concentration, which leads to local
spatial variation of the order parameter in the ground state, the
energy of the 2D nucleus SP state may be much lower than
the energy of any saddle point states in a film with uniform
current distribution taken at the same ratio I/Ic ∼ 1.

The last result has an important practical consequence. It
shows that if in the sample there are places with strong current
concentration (bends, geometrical defects of the edge, and
so on) this favors the effect of fluctuations near Ic because
of the much lower energy barrier, in comparison with a
straight film without defects. For example, if kBT = 0.1F0

the switching of the straight film with w = 10ξ to the resistive
state roughly occurs at I � 0.96Ic = 0.96Idep (at this current
�F = 0.1F0—see the right inset in Fig. 5). But for the film
with a bend and wslit = 2.5ξ , the energy barrier �F = 0.1F0 is
reached at I � 0.85Ic � 0.72Idep and transition to a resistive
state occurs at a much lower current than one might expect
from the results for a straight film.

We believe that the results found are valid not only near
Tc (where the Ginzburg-Landau model is quantitatively valid)
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but at lower temperatures too. Indeed, in recent work29 the
asymptotic �F ∼ (1 − I/Idep)5/4 for I → Idep was confirmed
for a LA-like state in a “dirty” 1D superconducting wire at any
temperature. In a “pure” 1D wire only 15% difference from
the LA result at T → 0 was noticed in Ref. 30 in the limit
I → 0.31
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