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Detecting nonmagnetic excitations in quantum magnets
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Many unconventional quantum phases host special nonmagnetic excitations such as photons and visons.
We discuss two possible ways to detect these excitations experimentally. First, spin-lattice coupling mixes
the excitations with phonons. The phonon spectral function acquires new features that can be detected by
neutron or x-ray scattering. Second, valence-bond fluctuations translate into charge density fluctuations on
nonbipartite lattices. Such charge fluctuations can be characterized by conventional spectroscopies such as
terahertz spectroscopy. As by-products, we discuss the general mechanisms of spin-Peierls transitions in two-
and three-dimensional spin liquids.
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I. INTRODUCTION

The search for exotic quantum phases1 in frustrated
antiferromagnets has been one of the main challenges in
the field of strongly correlated systems. Such phases are
believed to emerge when long-range order is destroyed by
competing interactions and strong quantum fluctuations. In a
typical situation, SU(2) symmetry remains intact down to zero
temperature so that excitations can be classified by their spin.
While magnetic excitations can be studied using techniques
such as inelastic neutron scattering (i.e., spinons),2,3 exotic
nonmagnetic excitations remain elusive.

Indeed, novel nonmagnetic excitations are predicted in
generic unconventional magnetic phases. Consider the seminal
resonating valence-bond (RVB) phase.4 Extensive investiga-
tions of the quantum dimer model (QDM)1 revealed that there
are two types of dimer liquids in two and three dimensions. The
U(1) liquid exists on bipartite lattices in three dimensions. Its
low-energy excitations are transverse gapless fluctuations of
dimer density, or “photons” of an emergent U(1) gauge theory.5

On the other hand, the Z2 liquid appears in nonbipartite lattices
and possesses topological order. The low-energy excitations
are Z2 vortices, or “visons.”6,7 While a single vison is a
nonlocal object, excitations of an even number of visons
correspond to dimer density fluctuations.8,9

While these results were obtained in the QDM, generic
constructions10,11 exist in which QDMs are low-energy limits
of SU(2) invariant spin models. Such phases and excitations
could exist in the low-energy limits of the Heisenberg model
thanks to universality. The authors of an extensive density-
matrix renormalization group (DMRG)12 study of a spin-1/2
Heisenberg antiferromagnetic model on the kagome lattice
concluded that its ground state is a Z2 spin liquid. Studies of
the multispin exchange model13,14 on a triangular lattice found
a gapped spin-liquid phase that looks like a Z2 liquid. Both
models are realized in real materials (for reviews, see Refs. 1
and 15). Observing singlet excitations in these materials would
be positive evidence of the existence of the Z2 liquid phase in
nature.

In this paper, we discuss two general ways to experimentally
probe singlet excitations in quantum antiferromagnets. First,
singlet excitations mix with optical phonons through spin-
lattice coupling. For suitable parameters, this leads to new

features in the phonon spectral function which can be detected
by neutron or x-ray scattering. Spin-lattice coupling has been
an exciting topic throughout the years. Its study was pioneered
by the discovery and characterization of the spin-Peierls
transition.16–19 It was realized20,21 that similar mechanisms can
induce long-range order in the highly frustrated Heisenberg
antiferromagnet on the pyrochlore lattice. Magnetoelastic
splitting of degenerate optical phonons was observed in
ZnCr2O4 (Ref. 22) and a number of other compounds. The
strongest effect (10% splitting) has been seen in MnO.23 Wang
and Vishwanath generalized the idea to a local phonon.24 The
dynamical effects of phonons were explored,25 motivated by
the spin-Peirels compound CuGeO3 (Refs. 26 and 27). These
studies demonstrated the importance of both the static and
dynamical effects of the spin-lattice coupling.

The second way exploits the ability of singlet excitations
to couple directly to an electric field. Bulaevskii et al.28

discovered that some magnetic ground states and excitations
of certain Mott insulators have nonzero local electric charge
or current. In particular, fluctuations of valence-bond densities
induces electric dipoles. The coupling is stronger for weak
Mott insulators due to smaller U/t , where t is the hopping
amplitude of electrons and U is the onsite repulsion. Spin-
lattice coupling can lead to the same effect.28 Consequently,
valence-bond density fluctuations couple to electromagnetic
radiations directly. Conventional spectroscopic techniques
may be used to directly detect nonmagnetic excitations.

The rest of the paper is organized as follows. First, we study
the mixing between optical phonons and singlet excitations.
We introduce the general formulation of the mixing and
summarize the main results in Sec. II. The formulation is
applied to both U(1) and Z2 liquids in Secs. III and IV. In
these sections, we also discuss the general mechanisms of
spin-Peierls transitions in both liquids. We then illustrate in
Sec. V the possible charge signature of singlet excitations in the
context of the spin-1/2 Heisenberg antiferromagnetic model
on kagome. Finally, we conclude our paper by discussing
possible discoveries of singlet excitations in real materials.

II. GENERAL FORMULATION

Let us demonstrate the first mechanism in the simplest
context. Consider spins interacting via Heisenberg exchange
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FIG. 1. (Color online) The new phonon mode around Q is
illustrated on a two-dimensional slice of cubic lattice. The mode is
induced by the “photon,” i.e., transverse fluctuation of dimer densities.
Bond thicknesses reflect dimer densities.

whose strength depends on the distance between the spins:20–22

J (R + u)Si · Sj ≈ J (R)Si · Sj + ∂J

∂r

∣∣∣∣
r=R

(Si · Sj )u. (1)

Here, R is the equilibrium distance between the two spins
if there is no spin-lattice coupling. u is the elongation of
the bond, and u couples linearly with bond operator Si · Sj

which measures the singlet density on bond 〈ij 〉. The coupling
mixes the singlet excitations and phonons. The phonon spectral
function will acquire features of the singlet excitations.

To elaborate on this idea, we consider the following
Hamiltonian on a general lattice:

H =
∑

r

[
1

2
u̇(r)2 + 1

2
ω2

0u(r)2 + f u(r) · V(r)

]
+ Hs. (2)

Here, Hs is the spin Hamiltonian and u(r) is the displacement
of the ion at site r. We adopt the Einstein phonon model with
mass of the ion assumed to be 1 for simplicity. Based on the
model in Eq. (1), the V(r) field is defined as follows:24

V(r) = 1

f

∑
r′∈{r}

êrr′ [êrr′ · ∇rJ (r − r′)]Sr · Sr′ . (3)

Here, {r} is the set of neighbors of site r and êrr′ ≡
(r − r′)/|r − r′|. f = ∑

r′∈{r} êrr′ · ∇rJr−r′ is the spin-lattice
coupling.

For small ion displacements, the full phonon Green’s
function in the random-phase approximation (RPA) is

G̃−1
αβ (r1,t1; r2,t2) = G−1

αβ (r1,t1; r2,t2) − f 2χαβ(r1,t1; r2,t2),

(4)

where G̃ is the full phonon Green’s function, G is the bare one,
and χ is the time-ordered bond-bond correlation function,

χαβ(r1,t1; r2,t2) ≡ 〈T{Vα(r1,t1)Vβ(r2,t2)}〉. (5)

In the Fourier space, relation (4) is written as

G̃−1
αβ (k,ω) = G−1

αβ (k,ω) − f 2χαβ(k,ω). (6)

In Secs. III and IV, we will explore the consequence
of Eqs. (4) and (6). For readers not interested in technical
details, we summarize the main results here. These readers
can continue directly to Sec. VI .

There are two types of dimer liquids.1 The U(1) dimer liquid
exists on three-dimensional bipartite lattices.1,5 Its low-energy
effective theory has the same form as electrodynamics.5

The magnetic field B is related to the dimer, or singlet,
density. Low-energy excitations, i.e., photons,5 are transverse
fluctuations of the singlet density. The mixture between optical
phonons and photons generates new transverse sound modes.
In contrast to acoustic phonons, there is no longitudinal
mode. For a cubic lattice, the new sound modes are located
at momentum Q = (π,π,π ). Such modes can be observed
experimentally using x-ray or neutron-scattering techniques. If
the spin-lattice coupling is larger than a critical value, then the
velocity of the new sound modes becomes negative. The sys-
tem enters a valence-bond solid phase and the lattice distorts.
The two transverse sound modes become the fluctuations of the
magnitude and the direction of the condensate, respectively.
The fluctuation of the magnitude is gapless and disperses along
only one direction. On the other hand, the direction fluctuation
of the lattice distortion and singlet condensate are constrained
to be perpendicular to each other.

The Z2 liquid phase is the ground state of QDMs on
two- and three-dimensional nonbipartite lattices.1 The phase
preserves all symmetries and is gapped to all excitations. It
possesses topological order:1 the degree of degeneracy of
the ground state depends on the topology of the hosting
manifold. The low-energy theory is the Z2 gauge theory.1,29

Elementary excitations are visons,6,7 i.e., massive bosonic
particles. The visons are nonlocal excitations; singlet density
fluctuations involve at least two visons.8,9 Vison dispersion
can be determined by the Z2 gauge theory.1,29 The coupling
between one phonon and two visons induces new phonon
modes below the edge of the two-vison continuum. As the
vison mass decreases, these new phonon modes move away
from the continuum and gain spectrum density. For suitable
parameters, such modes can be observed by x-ray and neutron
scattering. We stress that the Z2 gauge theory predicts the
momentum and the relative strength of these new modes. They
provide specific signatures of the Z2 liquid phase that can be
verified or falsified by experiments. As the vison mass becomes
smaller than a critical value, one or several new phonon modes
condense and the system becomes a valence-bond solid. This
is the general mechanism of the spin-Peirels transition in the
Z2 liquid phase.

III. U(1) LIQUID

The first type of spin liquid is the U(1) liquid. Such liquid
is the ground state of QDMs on three-dimensional bipartite
lattices for an extended parameter region. As an example, we
focus on the QDM on a cubic lattice. The QDM on a cubic
lattice has two phases:5 the staggered valence-bond crystal
phase and the U(1) liquid phase. The low-energy physics of
the liquid phase is described by the following Hamiltonian in
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the continuum limit:5

Hs =
∫

d3r

[
1

2
E2 + 1

2
ρ2B2 + ρ4(∇ × B)2

]
. (7)

In the Coulomb gauge A0 = 0, ∇ · A = 0, the electric and
magnetic fields are expressed as E = ∂tA and B = ∇ × A. On
the lattice, the magnetic field B is defined on the bonds:30

Bα(r) = eiQ·r
(

nα(r) − 1

z

)
, (8)

where Q = (π,π,π ) and nα(r) is the number of dimers on the
bond connecting r and r + α̂ (α = x,y,z). Here, z = 6 is the
coordination number of the cubic lattice.

To include the spin-lattice coupling, we write the bond
operator S(r) · S(r + α̂) in terms of the gauge field. The
bond operator amounts to two operations on a general dimer
covering. Its diagonal part counts the number of dimers on
the bond, while the off-diagonal part flips the dimers around
the plaquette to which the bond belongs. The plaquette-flipping
operator translates into E2.5 As a result, the off-diagonal term is
irrelevant in the renormalization-group sense. The spin-lattice
Hamiltonian translates into the following compact form in the
continuum limit:

Hsp =
∫

d3rf1B · ũ, (9)

where ũ ≡ eiQ·ru and f1 is the spin-lattice coupling. The
Hamiltonian for the phonon is

Hp =
∫

d3r

[
1

2
(∂t ũ)2 + 1

2
ω2

0ũ2

]
. (10)

The total Hamiltonian is H = Hp + Hsp + Hs .
We focus on the phonon spectrum in the U(1) liquid phase

where the ρ4 term can be neglected. Applying Eqs. (4) and
(6), the phonon develops two transverse sound modes around
momentum Q (see supplementary meterial31). These modes
manifest themselves as new low-energy poles in the phonon
spectral function. For momentum Q + k (k 	 1), the energy
is approximately

ω(k) ≈
√

ρ2 − f 2
1

ω2
0

k. (11)

The spectrum weight of the modes is proportional to
f 2

1 k2/(ω2
0 − ρ2k

2)2. In contrast, the spectrum of the longi-
tudinal phonon remains unchanged. This is a reflection of the
transverse nature of gauge fluctuations. Such sound modes
generally exist in QDMs on other three-dimensional bipartite
lattices.

If f1 > ω0
√

ρ2, then these sound modes become unstable.
The system develops a valence-bond order at momentum Q
and the lattice distorts accordingly. This is the spin-Peierls
transition in the three-dimensional U(1) liquid. To understand
this transition better, we write out the “potential energy” as a
function of ũ and B:

V (ũ,B) = 1
2ω2

0ũ2 + f1ũ · B + 1
2ρ2B2. (12)

We write both the ũ and B in terms of a parallel component
and a perpendicular component:

ũ = uẑ + u⊥, B = −Bẑ + B⊥, (13)

where u⊥ · ẑ = 0, B⊥ · ẑ = 0, and u⊥ · B⊥ = 0. The potential
energy V also splits into the “parallel” part V‖ and the
“perpendicular” part V⊥ under the parametrization.

We consider the parallel part first:

V‖ = 1
2ω2

0u
2 − f1uB + 1

2ρ2B
2. (14)

It can be rewritten in terms of normal models η1 ≡
cos(θ/2)u − sin(θ/2)B and η2 ≡ sin(θ/2)u + cos(θ/2)B
with θ ≡ tan−1[2f1/(ω2

0 − ρ2)]:

V‖ = 1
2

(
λ1η

2
1 + λ2η

2
2

) + K1η
4
1 + K2η

4
2, (15)

where λ1,2 = 1/2(ω2
0 + ρ2) ±

√
1/4(ω2

0 − ρ2)2 + f 2
1 and

K1,2 > 0. The quartic terms are added to ensure the stability.
Physically, they come from the anharmonic contributions in
phonon energy. When f1 > ω0

√
ρ2, λ2 becomes negative and

the η2 mode condenses. The magnitude of the condensate is
proportional to f1 − ω0

√
ρ2.

In the condensed phase, both the magnitude and the
direction of the condensate fluctuate. To study the magnitude
fluctuations, we rewrite u = ū + δu and B = B̄ + δB in
Eq. (14) and keep only the quadratic terms in δu and δB.
We introduce δA such that ∇ × δA = δBẑ. The gauge is fixed
by demanding δA = δAŷ so that ∂xδA = δB. After standard
manipulations, we discover that the magnitude fluctuation has
a low-energy mode with the following dispersion:

ω2 ≈ 4
√

ρ2

ω0
(f1 − ω0

√
ρ2)k2

x. (16)

This mode is gapless and only disperses along one direction.
Just as in the liquid phase, the mode can be observed by
scattering techniques since it is a mixture of phonon and dimer
density fluctuation.

The fluctuation of the condensate direction is controlled by
V⊥:

V⊥ = 1
2ω2

0u2
⊥ + 1

2ρ2B2
⊥. (17)

Naively, it seems that u⊥ and B⊥ are effectively decoupled.
However, their directions are strongly correlated by the
constraint that u⊥ · B⊥ = 0.

These results are expected from general arguments. The
condensation of normal mode η2 defines a special direction. As
a result, the degeneracy between the two transverse low-energy
modes in the liquid phase is lifted. These two modes become
the magnitude and the direction fluctuations, respectively.
While the ordering wave vector of the condensed phase
depends on the lattice, the mechanisms described above are
generally applicable to all three-dimensional bipartite lattices.

IV. Z2 LIQUID PHASE

The second generic dimer liquid phase is the Z2 liquid
phase on two- and three-dimensional nonbipartite lattices.1

Such a state preserves all lattice symmetries and has a gap to all
excitations. The system possesses topological order. Consider
a Z2 liquid on a cylinder; the state belongs to the even or
odd topological sectors if a cut around the cylinder crosses
an even or odd number of dimers. The low-energy excitations
are visons,6,7 i.e., Z2 vortices residing on the sites of the dual
lattices. At the Rokhsar-Kivelson (RK)32 point, the ground
state is an equal amplitude combination of all possible dimer
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l

i

FIG. 2. (Color online) One-vison and two-vison excitations. A
vison at i is created by operators on all of the bonds to the left of i.
A two-vison excitation is related to the dimer density on the bond l

between them.

states. To obtain a vison at site r̃, we make a cut1 from the
site to the lattice boundary (Fig. 2). A state with one vison is
a combination of all possible dimer coverings. However, the
amplitude of a dimer covering is negative if the cut crosses an
odd number of dimers. Visons are nonlocal objects. A local
operator such as Sr · Sr+l̂ involves an even number of visons.

In the remainder of the section, we describe how phonons
are coupled to visons through spin-lattice coupling using the
Z2 liquid phase on the triangular lattice as an example. First,
we briefly review the Z2 gauge theory description of the
liquid phase. The vison-phonon coupling is derived both from
microscopic models and through symmetry arguments. Under
the RPA approximation, the coupling introduces new phonon
modes below the two-vison continuum. As the vison mass m

decreases, these modes move away from the continuum edge
and gain spectral weight. For suitable parameters, such modes
can be observed by neutron and x-ray scattering at specific
momentum. At a critical m, one of the modes condenses, the
lattice distorts, and the system enters a valence-bond crystal
phase. This is the analog of the spin-Peierls transition in Z2

liquid.

A. Z2 gauge theory

The low-energy physics of the Z2 liquid on a triangular
lattice is described by the Z2 gauge theory on the dual lattice,
i.e., the honeycomb lattice.33,34 Its Hamiltonian is34

H = −J
∑
〈r1r2〉

Mr1r2σ
z
r1
σ z

r2
− �

∑
r

σx
r . (18)

Here, Mr1r2 are Z2 phases arranged such that the flux through
each hexagon is −1. σ z

r either creates or destroys a vison at
site r.

Following Misguich and Mila,34 we introduce the hard-core
boson representation:

σ z
r = br + b†r, σ x

i = 1 − 2b†rbr. (19)

We anticipate that the excitations are gapped. Consequently,
the hard-core property of the bosons can be neglected since
the boson density is small at low energy. The theory is then
solved by standard techniques since it is quadratic in boson
operators. The low-energy quasiparticles are visons.

The vison energy is minimized at four momenta:33,34 k1 =
−k3 = (π/6,π/2) and k2 = −k4 = (5π/6,π/2). We denote
the vison with momentum kα + q as aα,q. The energy of

aα,q is approximately ωq =
√

m2 + v2
bq2 for small q. The

spectrum features agree with the numerical results of Ref. 35.
We introduce vison field operators around kα:

φα(r) = 1√
V

∑
q

1√
2ωq

exp

(
iq · r − q

�

)
aα,q, (20)

where � is the momentum cutoff beyond which the lattice
details become important. These fields obey Klein-Gordan
equations. They capture the low-energy physics of the Z2 liquid
phase.

B. The vison-phonon coupling

The phonons couple to bond operator Si · Sj . As was
discussed, the bond operator has two effects on a dimer-
covering state. The diagonal part measures the dimer density
on bond 〈ij 〉, while the off-diagonal part changes the dimer
configuration around the plaquette to which bond 〈ij 〉 belongs.
Let us focus on the diagonal part first. The off-diagonal
part will only change the overall constant in front of the
Hamiltonian thanks to the symmetry arguments presented
later.

The dimer density on a bond is related to two vison
operators: Si · Sj ∼ c0Mrr′σ z

r σ z
r′ where r and r′ are the two

dual lattice sites adjacent to bond 〈ij 〉. We rewrite σ z
r in

terms of φα(r). The general vison-phonon coupling assumes
the following form in the continuum limit:

H =
∫

ddr
∑
a,l

∑
α�β

ua,l(r)
[
g

(a,l)
αβ ei(kα+kβ )·rφα(r)φβ(r)

+ f
(a,l)
αβ e−i(kα−kβ )·rφ∗

α(r)φβ(r) + H.c.
]
. (21)

Here, a is the sublattice label and l = x,y. g
(a,l)
αβ and f

(a,l)
αβ are

coefficients determined from the Z2 gauge theory. They are
listed in the Appendix.

The form of the vison-phonon coupling can also be fixed
up to an overall constant by lattice symmetry. To this end,
we determine how φα(r) transforms under translation, rotation
by π/3, and reflection around direction (1/2,

√
3/2). Due to

the presence of π flux, we need to accompany the lattice
symmetry operations with specific gauge transformations in
order to keep the Hamiltonian intact. These are projective
symmetry operations. On a triangular lattice, they were studied
by Moessner and Sondi.29 We follow their convention.

We also determined how the phonon transforms under the
same set of lattice symmetry operations. The Hamiltonian
is determined by finding the scalar representation of lattice
symmetries involving one phonon and two visons. The result
agrees with the form obtained from Z2 gauge theory. This
confirms the validity of derived Eq. (21).

C. New phonon modes and the Spin-Peierls transition

We begin to explore the physical consequence of vison-
phonon coupling by studying a toy problem. Consider a real
scalar field u(r) (phonon) coupled to a complex scalar field
φ[(r)] (vison). The noninteracting Lagrangian reads

L=
∫

d2r
[

1

2

(
u̇2 − ω2

0u
2
) + |φ̇|2 − |∇φ|2 + m2|φ|2

]
. (22)
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Here, φ = φ1 + φ
†
2 where

φα(r) =
∫

d2q

(2π )2

1√
2ωq

aα,q exp(iq · r) (23)

with α = 1,2. The vison-phonon coupling assumes the general
form as in Eq. (21). We further assume k2 = −k1 and g11 =
g22 = g for simplicity.

Applying Eq. (5), we compute the dynamical susceptibility
at momentum 2k1:

χ (ω,2k1)

= g2

2v2
bωπ

[
tanh−1

(2
√

m2 + v2
b�

2

ω

)
− tanh−1

(
2m

ω

)]
.

(24)

Here, � is a momentum cutoff. We assume vb�� m. Consider
ω = 2m − x with 0 < x 	 2m; the dynamical susceptibility
can be approximated by the following expression:

χ (ω,2k1) ≈ g2

8v2
bmπ

log

(
x

4m

)
. (25)

As x → 0+, χ (ω,k1) diverges logarithmically. Such diver-
gence introduces a new phonon mode below 2m. To make it
explicit, we write out the full phonon Green’s function under
the RPA approximation,

G(2m − x,2k1) ≈ 1

4m2 − ω2
0 − g2

8πv2
bm

log
(

x
4m

) + iε
, (26)

where ε is a small positive number. A pole always exists for
small enough x:

x0

2m
= 2 exp

[
−8πv2

bm
(
ω2

0 − 4m2
)

g2

]
. (27)

As m become smaller, the pole is moving away from the lower
edge of the two-vison continuum. At a finite critical mass
mc, the new phonon mode condenses and the system enters
a valence-bond crystal order. The lattice distorts accordingly.
This is the general mechanism of the spin-Peierls transition in
Z2 spin liquid.

The toy model captures the main physical points. For
realistic models, there are further technical complications.
Consider the triangular lattice; the low-energy vison fields
are defined at four different momenta. As a result, new phonon
modes are introduced at several locations in momentum space.
Also, there are four phonons per unit cell; the dynamical
susceptibility is a 4 × 4 matrix in general. As a result, there
could be more than one new phonon mode introduced at a
certain momentum.

We want to stress that the possible detection of these new
phonon modes paves the way for new dialogues between
theory and experiment. Conventional ways to detect nonmag-
netic excitations such as specific-heat or thermal-conductivity
measurements yield only integrated information. The approach
we propose, on the other hand, predicts the momentum of the
new phonon modes and their relative strength. If such modes
are observed with predicted properties, it would provide strong
evidence of the existence of Z2 liquid.

Q

−Q

−Q

−Q

Q

FIG. 3. (Color online) A dimer-covering state of the kagome
lattice. A vacuum triangle carries an electric dipole, illustrated by
the black arrow, assuming Q > 0. Vertices around the defect triangle
carry charge −Q, while other vertices carry Q.

D. Narrow continuum and bound state of visons

In the previous sections, we assumed that visons behave
as free bosons in low energy and that the vison bandwidth is
large. These assumptions might not be true on all nonbipartite
lattices. For example, it is well known that there is a two-vison
bound state at the M point for the quantum dimer model on
a triangular lattice around the RK point.36 For the kagome
lattice, the vison dispersion is flat if only the nearest-neighbor
interaction is included in the Z2 gauge theory.37 If further
neighbor interactions are weak, then the two-vison continuum
can be very narrow. In both scenarios, two-vison excitations
have well-defined energy. Such excitations directly mix with
optical phonons and introduce new phonon modes, which can
be detected by x-ray or neutron-scattering experiments.

V. POSSIBLE CHARGE SIGNATURE

On nonbipartite lattices, singlet density fluctuations gener-
ate electric dipoles.28 We consider three spins on an equilat-
eral triangle interacting antiferromagnetically. The exchange
energy is minimized by combining two of them into a singlet.
The induced electric dipole lies in the plane of the triangle
normally to the singlet bond28 (Fig. 3). In other words, charge
2Q accumulates on the free spin while the two spins forming
the singlet carry charge −Q each. If the dipole is induced
by higher-order perturbations in a weak Mott insulator, then
Q > 0 is proportional to (t/U )3. The sign and the magnitude
of spin-lattice coupling determines Q when the dipole is
generated by magnetostriction.

Consider a spin-1/2 Heisenberg antiferromagnetic model
on the kagome lattice (Fig. 3), i.e., a network of corner-sharing
triangles. The low-energy states are dimer-covering states with
the maximum number of nearest-neighbor singlets. A quarter
of the triangles, the so-called defect triangles, lack singlets.38,39

The uneven distribution of singlet densities translates into
inhomogeneous charge densities. A simple counting shows
that the vertices of the defect triangles each carry −Q, while
all other vertices have Q.

An applied ac electric field can be used to induce the motion
of defect triangles. For typical sample size (L = 1 mm) and
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singlet excitation energy (ω = 0.1 meV), the applied field is
approximately uniform, q = ω/c � 1/L. The scattering of
the applied field will provide information about the singlet
spectrum of the system at q = 0. Suitable techniques include,
for example, terahertz spectroscopy.

VI. DISCUSSION

In this work, we described how exotic singlet excitations
can be detected, at least in principle, by existing spectroscopic
methods. While focusing on specific models, we stress that the
two mechanisms described are model independent as long as
the global SU(2) symmetry is intact.

Currently, two classes of materials could host the Z2 liquid
state. The first set of materials, including ZnCu3(OH)6Cl2
(herbertsmithite), Cu3V2O7(OH)2·2H2O (volborithite), and
BaCu3V2O8(OH)2 (vesignieite) (see Refs. 1 and 15 for
reviews), realize the S = 1/2 Heisenberg antiferromagnetic
model on the kagome lattice. Yan et al.12 presented some
evidence that the ground state of the model is a Z2 spin liquid.
The vison spectrum were studied by several groups.37,40,41

They identified the location of low-energy singlet excitations
in the reciprocal space. Recently, a single-crystal sample
of herbertsmithite was synthesized.42 Measuring the spectral
function of phonons in the magnetic energy range (up to a few
meV) could reveal novel singlet excitations. It would also be
interesting to measure its spectrum at q = 0 using conventional
spectroscopies.

The second class of materials, including κ-(BEDT-
TTF)2Cu2(CN)3 and EtMe3Sb[Pd(dmit)2]2 (see Ref. 15 for a
review), realizes the multispin exchange model on a triangular
lattice. Studies13,14 show that the ground state of the model can
be a gapless or a gapped spin liquid for different parameters.
The gapped liquid phase resembles the Z2 liquid phase with a
large number of singlet excitations within the spin gap.13 While
κ-(BEDT-TTF)2Cu2(CN)3

43 seems to host the gapless liquid
phase, the flexibility of the material family κ-(BEDT-TTF)2X
raises the hope that the gapped liquid phase is the ground
state for some other member whose singlet excitations can be
observed by studying the phonon spectrum.

Beyond quantum magnetism, singlet excitations are be-
lieved to be important for other strongly correlated systems
such as high-temperature superconductors.44 We speculate
that similar couplings between optical phonons and singlet
excitations also exist. It would be very interesting to search for
the trace of singlet excitations in the phonon spectrum in these
systems.
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APPENDIX

In the Appendix, we list g
(a,l)
αβ and f

(a,l)
αβ derived from the

Z2 gauge theory presented in Sec. IV A. We also checked
that these coefficients are fixed up to an overall constant by
symmetry. Only nonzero coefficients are listed.

We begin with g
(A,l)
αβ :
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(A,x)
11 = g

(A,x)
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√
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