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An empirical model is developed for the FeRh system with the view of gaining further insight into the
first-order antiferromagnetic-ferromagnetic (AFM-FM) and volume phase transition known to occur at 370 K.
A volume-per-atom dependent minimal nearest neighbor Landau-Heisenberg Hamiltonian is employed in which
longitudinal and transverse moment fluctuations are considered for both the Fe and Rh atoms. As a function
of volume-per-atom, the corresponding onsite Landau function coefficients and the nearest-neighbor exchange
parameters are fitted directly to a wide range of existing colinear and noncolinear density functional theory
calculations. Using a developed Monte Carlo strategy the thermal properties of the AFM and FM phases are
investigated, as well as the phase transition. It is found that the model is able to describe well the thermal
expansion, heat capacities and the associated entropy increase that accompanies the magnetic/volume phase
transition. The model suggests an equally important role for the magnetic and volume fluctuations in driving the
phase transition.
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I. INTRODUCTION

Fe50Rh50, in the ordered cesium-chloride structure, under-
goes a first-order phase transition at 370 K from an anti-
ferromagnetic (AFM) to a ferromagnetic (FM) structure,1–3

and is accompanied by a volume increase of approximately
0.5%–1%.4 More recent neutron measurements demonstrate
that, within experimental error, the magnetic and volume tran-
sitions occur at the same critical temperature.5 From neutron
experiments,6 the high-temperature FM state is characterized
by a magnetic structure in which the Fe moments have a
magnitude of 3μB and the Rh moments, a magnitude of
1μB. For the low-temperature AFM phase, the sublattice
Fe moment magnitudes are somewhat smaller and the Rh
has a considerably reduced moment. With the help of early
electronic structure calculations,7–9 the generally agreed upon,
0 K, magnetic configurations of both magnetic phases are
shown in Fig. 1. Experimentally, the AFM to FM transition
is also accompanied by a large increase in entropy,10–14 that
has been associated with the different heat capacity properties
of the two phases.15,16 How the lattice and magnetic (elec-
tronic/spin) degrees of freedom give rise to these quantities,
and what critical role they play in the phase transition remains
an contemporary question that has gained recent impetus in
light of a new class of experiments able to directly probe these
degrees of freedom with picosecond temporal resolution.17–22

Early local (local density approximation) density functional
theory (DFT) work by Moruzzi and Marcus9 demonstrated
a number of AF structures, the ground state being referred
to as the AFMII phase [see Fig. 1(a)]. In this work, the
magnetic energy landscape was explored with respect to
colinear variations of the total magnetic moment. It was
found that there also exists a metastable FM configuration
and, upon a significant increase of volume-per-atom, this
becomes the lowest-energy magnetic structure. Calculated
equation-of-state curves revealed that a transition between
these magnetic structures, at their associated equilibrium
volumes, would be accompanied by a change in the volume-
per-atom of approximately 1.7%. In the AFMII phase, the
magnetic moment magnitudes of the Fe atoms are somewhat
higher than that of bulk BCC Fe at approximately 3μB, with

the Rh moment being identically zero. For the FM phase,
the work found that with the associated volume increase the
Fe moment increases its moment magnitude to approximately
3.1μB and the parallel (now nonzero) Rh moment magnitude is
approximately 1μB. The energy difference between the AFMII
and FM states at their corresponding equilibrium volumes was
found to be approximately 2mRy per atom.

More recent nonlocal DFT work, by Gu and Antropov,23 us-
ing a gradient-corrected exchange correlation function found
this energy difference to be much smaller at approximately
0.2 mRy per atom, which is closer to that seen in experiment.24

The relative volume differences using nonlocal DFT did not
change greatly when compared to their local DFT values,
however in general the absolute equilibrium volumes increased
by up to 1%. In this work noncolinear magnetic configurations
were also considered. Indeed a simple magnetic structural
transformation was detailed linking the two phases. Here the
oppositely aligned Fe moments of the AFMII phase are canted
towards an orthogonal [100] direction with the Rh moment
constrained to be parallel to the sum of the Fe moments. With
a canting of 90 ◦, the FM structure is obtained with the total
magnetic moment direction being orthogonal to the sublattice
moment direction of the starting AFMII magnetic structure.
For volumes at, and in the vicinity of, the equilibrium volumes
of the two stable phases, the FM phase is unstable with respect
to this magnetic transformation when using local DFT, but is
found to be stabilized when nonlocal DFT is used.

In the DFT work of Sandratskii and Mavropoulos,25

who used a local density approximation for the exchange
correlation, an energy barrier was also found at a much
higher volume suggesting nonlocal corrections, whilst nec-
essary for increased accuracy, are not inherently necessary
for the stabilization of the FM phase. This quite recent
and pedagogical work systematically investigated a range
of noncolinear variations, shedding important light on the
underlying exchange mechanisms of the system, providing
important data for the development of empirical models such
as that reported here.

Parallel and in conjunction with the DFT work, a number of
empirical/semi-empirical models have been developed based
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(a) (b)

FIG. 1. (Color online) The relevant zero Kelvin colinear equilib-
rium magnetic structures of the FeRh system: (a) AFMII and (b) FM.
In both figures, the blue (green) balls/arrows represent the Fe (Rh)
atoms/moments.

on some form of exchange. An early and well-known model
by Kittel,26 exploits a simple Heisenberg model, in which the
exchange interaction between the Fe moments undergoes a
sign change at the appropriate volume-per-atom, thus giving a
simple explanation of the AFM to FM phase transformation.
This exchange inversion model is however not considered to
be appropriate for the FeRh system, since it is unable to explain
the experimentally observed strong entropy change measured
during the phase transition.13

The fact that at a finite temperature the FM magnetic
structure becomes the stable state, and all 0 K DFT results
observe that the AFMII phase has the lowest energy for the
experimental volume-per-atom regime, points towards the FM
phase being stabilized by entropy associated with either the
spin-degrees of freedom and/or the lattice degrees of freedom.
From the local DFT work of Ref. 9, the approximately
2 mRy energy difference between the two phases suggests a
considerable entropy effect would have to be at play. However,
with the nonlocal DFT work reducing this energy difference
by almost an order of magnitude, the required entropy now
falls into the regime that is achievable through transverse spin
fluctuations. Indeed, using classical magnon theory, Gu and
Antropov23 have demonstrated that such spin-wave excitations
can stabilize the FM phase. Their calculations were performed
within the frame work of a classical Heisenberg model whose
exchange constants were derived from their noncolinear DFT
calculations. In their work two quite separate Heisenberg
models were assumed for each phase, where in the AFM
phase the Rh was not magnetic and therefore excluded, and
in the FM phase, it had a fixed (volume independent) moment
magnitude of 1μB. In this model, the Fe moments also had
fixed moment magnitudes of 3μB. The entropy change at the
transition temperature due to such spin-wave excitations was
found to be comparable to experiment.

Ju et al.17 advanced the important step that the Rh atom
was able to have a finite moment magnitude in the AFMII
phase, due to an exchange field arising from the neighboring Fe
atoms via a temperature-dependent susceptibility. From their
DFT calculations, it was argued that the energy for a finite Rh
moment depended quadratically on it’s moment magnitude
and, with the prefactor being negative, was interpreted within
the framework of Stoner magnetism. Such a temperature-
dependent term introduces an effective FM exchange inter-
action between the eight Fe atoms neighboring each Rh atom

and thus a first, second, and third neighbor effective Fe-Fe
FM exchange interaction that is linearly dependent on the
proposed susceptibility. As the temperature approaches the
transition temperature and the susceptibility rises, eventually
this effective FM interaction competes with the explicit AFM
exchange between the nearest neighbor Fe atoms causing the
AFMII structure to be unstable and thus the AFM-FM phase
transition.

On the other hand, the work of Sandratskii and
Mavropoulos25 found a spatially varying spin-density at the
Rh atom for the AFM state, which integrates to zero giving
the expected zero net magnetic moment for the Rh atom.
Such a result is at variance with a simple Stoner picture of
the nonmagnetic state where the zero moment corresponds
to a uniform, approximately zero, spin density. Their work
also found that the Rh atom is able to have a finite moment
magnitude, but at the expense of an energy that varied
quadratically with moment magnitude. Similar to Ju et al.,17

this allows for a single Heisenberg-type Hamiltonian to be
applicable to both phases and therefore a study of the volume
dependence of the exchange parameters. In Ref. 25, the main
interactions are an Fe-Fe AFM exchange interaction and a
nearest neighbor Fe-Rh FM exchange interaction. Thus, at 0 K,
the AFM phase gains its low energy from a dominating AFM
exchange interaction which, with increasing volume-per-atom,
reduces allowing the FM interaction between the Fe and
Rh atoms to eventually dominate the energetics resulting in
the FM phase becoming the ground state at a high enough
(experimentally inaccessible) volume, despite the additional
cost of the Rh atom having an induced magnetic moment.

Separate to the empirical model development within a
Heisenberg Hamiltonian framework, Gruner et al.27 have also
developed an Ising model derived from their own extensive
local DFT calculations. The authors argue that the use of an
Ising model is justified because the FeRh phase transition
occurs between two colinear magnetic configurations. Such
a model does not admit spin-wave excitations and also is
unable to describe the noncolinear variation of magnetic mo-
ment suggested by DFT work.23,25 Despite these restrictions,
Monte Carlo simulations did reveal an AFM-FM transition
at 322 K with a corresponding entropy change comparable
to experiment. The model is unique in that it includes local
volume fluctuations at the atomic scale.

The present work develops further an empirical Heisenberg
model in which the moment magnitude of both the Fe and
Rh atoms can vary via the addition of a Landau term. Thus
both transverse and longitudinal moment fluctuations are
considered on an equal footing. Doing so allows the model to
be fitted directly to the earlier colinear DFT results of Moruzzi
and Marcus9 as a function of volume-per-atom, and to be
compared reasonably well to the noncolinear DFT work of
Gu and Antropov,23 and Sandratskii and Mavropoulos.25 The
developed model considers only the relevant nearest neighbor
exchange interaction between the Fe and Fe, and the Fe and
Rh moments. Within this framework, it is found that in order
to stabilize the FM phase with respect to transverse moment
fluctuations, a nearest-neighbor Fe-Fe indirect-like exchange
interaction is required. By exploiting an additional volume-
dependent nonmagnetic energy (equation-of-state) relation,
the total cohesive energy of the system as a function of global
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volume-per-atom and moment degrees of freedom is obtained.
This is, in turn, used in a Monte Carlo algorithm to model the
finite-temperature properties of both the AFM and FM phases
of the FeRh system. Despite the global volume restriction of
the model, the finite-temperature simulations infer that local
volume fluctuations play a crucial role in the magnetic and
structural transition. This result will be discussed within the
frame work of recent pump-probe experiments in which both
the structural and magnetic evolution of the phase transition
have been measured at the picosecond time scale.

II. MODEL DEVELOPMENT

A. Classical Landau-Heisenberg Hamiltonian:
initial considerations

To develop an empirical model that allows for variations in
both moment magnitude (longitudinal fluctuations) and direc-
tion (transverse fluctuations), two well-established theoretical
frameworks are exploited.

To model the longitudinal fluctuations, an analogy to
Landau mean field theory28 is used. This entails that the
magnetic energy is approximated as a power series with respect
to the moment magnitude: the so-called Landau function
which, due to time-reversal symmetry, generally contains only
even powers of the moment. For such an expansion there
exist two important examples. In systems where there exists
a spontaneous magnetization, such as in ferromagnetic BCC
Fe, the Landau function takes the form

E(M) = A|M|4 − B|M|2. (1)

Here both A and B are positive to give the symmetry-breaking
magnetic solutions at a finite magnetic moment equal to√

B/(2A). In this context Eq. (1) represents a realization
of the Stoner model29 and is the leading-order contribution
to the magnetic energy for an itinerant system where the
electronic density of states (DOS) is peaked in the vicinity
of the Fermi energy and the onsite inter-orbital exchange is
sufficient to satisfy the Stoner criterion for ferromagnetism.
Indeed, for Eq. (1), the Stoner criterion corresponds to the
stability condition, B/(2A) > 0, which is obviously met when
both A and B are positive.

On the other hand, if the Stoner criterion is not met, by B

being negative, the Landau function becomes

E(M) = A|M|4 − B|M|2 = −B|M|2, (2)

where A is set to zero (when only the leading-order term
is needed). This may be viewed as representing the leading-
order magnetic energy for a metallic system, where the only
stable solution is the nonmagnetic one (at M = 0) in which the
energy increases quadratically with respect to a finite moment
magnitude. The Stoner criterion, now not being met, is due to
a too low value of either the electronic DOS in the vicinity of
the Fermi energy and/or the onsite interorbital exchange.

Whilst the Stoner model can describe well the phenomenon
of itinerant magnetism for certain metals, the usage of the
above Landau functions need not be directly linked to Stoner
magnetism. This is also the case for the metallic regime of
Eq. (2). The framework of Landau mean field theory is far
more general than that of the Stoner model, as is readily
demonstrated for FeRh.

For application to the FeRh system, a Landau function must
be chosen for both the Fe and Rh atom types. Due to the
relative robustness of the Fe moment magnitude with respect
to volume and temperature, a Stoner-type form [Eq. (1)] is
clearly justified. For the Rh atom, the work of Sandratskii and
Mavropoulos25 suggests a form similar to Eq. (2), however
the authors provide strong ab initio evidence that this is
not indicative of the Rh atom being a simple metallic atom.
Indeed, their work shows, that the DOS undergoes significant
changes in hybridization between the AFM and FM magnetic
configurations at 0 K. It therefore might seem remarkable that
such a simple energy functional is sufficient, but it is worth
pointing out that integrated DOS quantities such as total energy
and total moment are often insensitive to the fine details of an
electronic DOS.30

For the present FeRh empirical model, the Landau function
for the Fe atom is therefore written as

EFe(MFe) = AFe|MFe|4 − BFe|MFe|2, (3)

where both AFe and BFe are positive, and for the Rh atom as

ERh(MRh) = −BRh|MRh|2, (4)

where BRh is negative.
To model transverse fluctuations in the magnetic moment

a minimal Heisenberg exchange model is first considered, in
which only the nearest-neighbor Fe-Rh and second-nearest-
neighbor Fe-Fe interactions are included, each respectively
being parameterized by the exchange coupling constants JFeRh

and JFeFe. The total energy of an N atom system is therefore
given by

E =
N∑

i=1

Eti (Mi) − 1

2

N∑
i �=j=1

Jti tj Mi · Mj , (5)

where ti , the atom type, will either be Fe or Rh. It is noted
that since both transverse and longitudinal fluctuations are
allowed, the exchange parameters are in units of energy per
Bohr magneton squared, that is, the moment magnitudes are
not absorbed into the exchange constants.

The Hamiltonian of Eq. (5) will be referred to as the Landau-
Heisenberg Hamiltonian. It is worth pointing out that there is
no contradiction in using a Landau-Heisenberg model to study
a first-order phase transition, since (as will be shortly shown)
this transition is with respect to two stable and independent
solutions of the Hamiltonian, Eq. (5). In fact within each stable
solution, a second-order phase transition occurs in going to the
paramagnetic phase, physics that is well described by the use
of such a Landau-Heisenberg Hamiltonian.

To determine the zero Kelvin ground state antiferromag-
netic structure and the excited state ferromagnetic structure,
a conventional cell of 2 × 2 × 2 unit cubic cells consisting of
sixteen atoms is used. Although this is not the primitive cell,
its use facilitates a simple visualization of the BCC lattice and
its corresponding magnetic structures (see Fig. 1), where only
one of the body center Rh atoms is shown of the conventional
cell.

Under the assumption that (i) both the AFM and FM
magnetic structures are colinear, and (ii) there exists two (FCC)
sublattice magnetic moment magnitudes MFe1 and MFe2 for
the Fe atoms [as in Figs. 1(a)] and (iii), the Rh atoms have the
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magnetic moment magnitude MRh, the energy per conventional
cell can be written as

EColinear = 4
(
AFeM

4
Fe1 − BFeM

2
Fe1

) + 4
(
AFeM

4
Fe2 − BFeM

2
Fe2

)
− 8BRhM

2
Rh − 24JFeFeMFe1MFe2

− 32JFeRh(MFe1 + MFe2)MRh. (6)

Eq. (6) has the required magnetic symmetry that, if MFe1 =
−MFe2, the contribution due to JFeRh vanishes resulting in
MRh = 0 via independent minimization of Eq. (4).

By equating to zero each differential with respect to the
three moment magnitudes, stationary solutions of the above
may be found for MFe1, MFe2 and MRh. Doing so results in the
AFM ground state solution being,

MFe1 = ±
√

BFe − 3JFeFe

2AFe
(7)

MFe2 = ∓
√

BFe − 3JFeFe

2AFe
(8)

MRh = 0, (9)

with the energy per atom equaling,

E = − (BFe − 3JFeFe)2

8AFe
. (10)

Whereas the FM solution has the form,

MFe1(Fe2) = ±

√√√√BFe + 3JFeFe − 16 J 2
FeRh
BRh

2AFe
(11)

MRh = ±4JFeRh

√√√√BFe + 3JFeFe − 16 J 2
FeRh
BRh

2AFeB
2
Rh

, (12)

with the energy per atom equaling,

E = −
(
BFe + 3JFeFe − 16 J 2

FeRh
BRh

)2

8AFe
. (13)

Inspection of Eq. (12) immediately reveals JFeRh must be
positive (FM) if the Rh moment is to be in the same direction
as the FM Fe moments, and thus the exchange interaction
between the nearest neighbor Fe and Rh atoms must be FM.
The (always) higher energy AFMI soution discussed in Ref. 9
is also admitted by Eq. (6), and will not be considered further
in this work.

In the work of Moruzzi and Marcus,9 DFT data as a
function of volume-per-atom was calculated including the
energy difference between the AFMII and FM magnetic states,
the moment magnitude of the Fe atoms in the AFMII state,
and the moment magnitudes of the Fe and Rh atoms in the
FM state. Additionally, calculations were performed in which
the total magnetic moment of the employed conventional cell
was constrained to a fixed value from which the total energy
relative to the AFMII ground-state energy and corresponding
total Fe/Rh moments were calculated for different values
of the volume-per-atom. Such data is useful since it gives
the energy barrier between the AFMII and FM magnetic
structures when only the longitudinal moment component
can be varied (that is, the colinearity of the moments is

retained). In the present model, these quantities can also be
investigated by obtaining the stable solutions of Eq. (6) with
respect to the constraint MTotal = 4MFe1 + 4MFe2 + 8MRh, via
the Lagrange multiplier technique. In this way the stable
solutions can be analytically obtained as a function of both
the MTotal and volume-per-atom. While such equations are
analytically tractable, it becomes more efficient for the fitting
to approximate the energy function at the AFMII and FM
regions as two separate quadratic functions with respect
to MTotal, the intersection of which will give a reasonable
estimate of the colinear energy barrier between the AFMII
and FM magnetic states. This approximation is found to work
extremely well [see Figs. 3(c) and 3(d)].

The DFT data of Moruzzi and Marcus,9 will now be used
to obtain numerical estimates of the Stoner (AFe, BFe, and
BRh) and exchange parameters (JFeFe and JFeRh) of Eq. (6),
as a function of volume-per-atom defined by a Wigner-Seitze
radius rWS. To do this, these parameters are represented as a
truncated power series

3∑
n=0

an(rWS − rWS,0)n, (14)

about some chosen reference Wigner-Seitze radius rWS,0. For
the present work, a simulated annealing strategy31 is employed
to find the optimal {an} for each Stoner and each exchange
parameter. Table I lists the corresponding values for the
optimal fit.

Figure 2(a) plots the energy difference between the AFMII
and FM magnetic states and Fig. 2(b) plots the magnitudes of
the AFMII Fe moment, and the FM Fe and Rh moments as
a function of volume-per-atom, along with the corresponding
DFT data of Moruzzi and Marcus.9 Agreement between the
optimal fit and DFT values is quite good. In the fit, the
lowest few Wigner-Seitz radii data had a decreased weight
such that the fit would be optimal for the typical experimental
regime of atomic volumes. Figure 2(c) now plots the resulting
absolute values of the magnetic energy for the two phases,
demonstrating the model exhibits the known phenomenon that
upon compression electronic correlations are reduced resulting
in a decreasingly negative magnetic energy and a reduced
magnetic moment [Fig. 2(b)]—the so-called magneto-volume
effect. It is noted that the absolute values of the magnetic
energy are not fitted.

Moruzzi and Marcus9 also obtained DFT derived equation-
of-state (EOS) curves for the AFMII and FM magnetic
structures, giving them in terms of the four-parameter Morse
function

E(rWS) = A − 2D exp−λ(rWS−r0) +D exp−2λ(rWS−r0) . (15)

To reproduce such EOS curves for both magnetic structures,
an EOS curve must be obtained for the nonmagnetic con-
tribution to the total energy: a volume-per-atom dependent
energy contribution that is then added to the volume-per-atom
dependent magnetic energies [Fig. 2(c)] to obtain the total
energy. In the present work, the single nonmagnetic EOS
curve [parameterized by Eq. (15)] is obtained by fitting it
to the difference between the obtained absolute magnetic
energies [Fig. 2(c)] and the corresponding magnetic EOS
curves of Moruzzi and Marcus. It is noted that this stage
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TABLE I. Optimal coefficients of the truncated power series representation [Eq. (14)] for the Landau and Heisenberg exchange parameters,
with rWS,0 = 2.878335833 atomic units (au). Also listed are the optimal parameters for the nonmagnetic Morse representation of the equation
of state. For modifications that stabilize the FM phase and improve its equilibrium energy, see Sec. II C.

Parameter a0 (mRy) a1 (mRy/au) a2 (mRy/au2) a3 (mRy/au3)

AFe 0.93368 −1.18306 × 10−2 0.84856 2.18889
BFe 17.95829 15.94231 − 15.83892 25.49692
BRh − 19.40221 −34.35754 45.91000 99.52522
JFeFe − 0.32865 0.39170 − 2.37376 − 5.68641
JFeRh 1.54646 1.93756 − 0.63683 9.09707

Morse parameter ANM (mRy) DNM (mRy) λNM (1/au) rWS,NM (au)
549.81581 512.00935 1.31446 2.72765

of the fitting is performed after the fitting of the magnetic
energies and moments. Indeed, since the absolute values of
the magnetic energies are not known in the work of Moruzzi
and Marcus, the final form of the nonmagnetic EOS curve
is somewhat arbitrary, it being necessary for the calculation
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FIG. 2. (Color online) Comparison between optimal fit and DFT
data as a function of Wigner-Seitz radius for (a) the magnetic energy
difference between the AFMII and FM phases, and (b) the magnetic
moments of both phases. (c) Absolute magnetic energies and
(d) equation of state of the AFMII and FM phases as a function
of Wigner-Seitz radius. (e) and (f) show the resulting Landau and
Heisenberg exchange parameters as function of Wigner-Seitz radius.

of the given EOS curves of the AFMII and FM phases, and
(as will be shown in Sec. III) for the inclusion of volume
fluctuations at finite temperature. Table I lists the associated
optimal Morse parameters of Eq. (15), and Fig. 2(d) displays
the resulting EOS curves for both magnetic phases and the
nonmagnetic phase. The nonmagnetic curve compares quite
well with those calculated by Gruner et al.27 Figures 2(a),
2(c), and 2(d) all show the important feature that, at 0 K,
below a critical Wigner-Seitz radius the AFMII phase is the
ground-state structure.

Figures 2(e) and 2(f) display the actual values of the
Landau and Heisenberg exchange parameters as a function of
Wigner-Seitz radius. In Fig. 2(e), all Landau parameters have
the required sign, where BFe and |BRh| increase with increasing
Wigner-Seitz radius, and AFe remains approximately constant
with respect to volume. In Fig. 2(f), the exchange parameter
between Fe and Rh is positive, indicating a FM interaction
between the two atoms—a requirement for the Rh moment to
be parallel to the Fe moments in the FM phase [Eq. (12)]. On
the other hand, the optimal fit results in a AFM exchange
interaction between the nearest neighbor Fe atoms. These
results will be discussed in further detail in Sec. IV.

Figure 3 displays the predictions of the model as a function
of total colinear moment MTotal = 4MFe1 + 4MFe2 + 8MRh.
Here Figs. 3(a) and 3(b) plot the individual magnetic moments
and Figs. 3(c) and 3(f), the magnetic energy, for two values
of the Wigner-Seitz radius considered in Ref. 9. For a total
moment of zero, the lower panels show the ground-state
magnetic structure is that of the AFMII phase and by increasing
the total moment the FM phase eventually becomes the
ground state. The magnetic energy at which the ground state
changes constitutes the relevant energy barrier between the two
phases when only colinear variations of magnetic moment are
considered. The corresponding moment variation as a function
of total colinear moment confirm this interpretation. All curves
in Fig. 3 compares extremely well to those obtained by
Moruzzi and Marcus9 (see their Figs. 4 and 5), where poorest
agreement occurs in the regions far from the ground-state
phases, an expected result, due to the simple fourth-degree
polynomial form of the Landau-Heisenberg Hamiltonian.

B. Noncolinear excitations

The solutions found in the previous section are now
investigated in terms of variations of the transverse degrees of
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FIG. 3. (Color online) Ground state magnetic moments of the Fe
and Rh atoms as a function of total magnetic moment per conventional
cell for a Wigner-Seitz radius of (a) 2.66 au and (b) 2.88 au. (c) and (d)
show the corresponding ground-state magnetic energy dependencies.

freedom of the magnetic moments, which lead to noncolinear
arrangements of the magnetic structure. To do this, a similar
approach is taken to that of Sandratskii and Mavropoulos,25

where the focus was, in part, to extract information on the
relevant exchange mechanisms from their DFT results.

The first such variation involves a rotation of the Rh moment
in the FM magnetic state away from the Fe moment, keeping
the direction of the Fe moments fixed. In analogy to the DFT
approach, for each such angle of rotation, Eq. (5) is minimized
with respect to the moment magnitudes to obtain the relevant
stable solution. Figure 4(a) displays the resulting moment
magnitudes and Fig. 4(b), the variation in magnetic energy as
a function of angle for a range of volume-per-atom values. As
a function of angle, the moment magnitude on the Fe atoms
varies little whereas on the Rh atoms it decreases to zero
when perpendicular to the Fe moment, resulting in a magnetic
configuration that is unstable. The curves compare extremely
well to those in Fig. 6 of Ref. 25. For all quantities, a family
of curves are plotted that span the Wigner-Seitz radii from
2.78 au (marked in red) to 2.9 au. Note that the present energy
curves are plotted as energy per atom, whereas in Ref. 25 they
are plotted as energy per fundamental unit (per one Fe and one
Rh atom).

The second such variation begins with the AFMII state
and ends with the FM state providing a candidate transition
pathway between the two phases. This is achieved by canting
the Fe moments, originally along, say, the [100] direction
toward the [010] direction with the Rh moment constrained
to be along this [010] direction. Within these constraints the
energy is minimized to find the stable moment magnitudes of
the Fe and Rh atoms. Figure 4(c) displays the resulting moment
magnitudes and Fig. 4(d) the variation in magnetic energy as
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FIG. 4. (Color online) Noncolinear dependency of the Fe and
Rh moments and their corresponding magnetic energy variation.
(a) and (b) represent a variation of the Rh moment direction in the
FM phase with the Fe moment direction fixed, and (c) and (d) the
variation in which the Fe moments of the AFMII phase are canted
towards an orthogonal Cartesian direction, with the Rh moment
being constrained to point along that direction. This latter variation
constitutes a magnetic structural excitation linking the AFMII and FM
phases. (e) Represent a similar canting variation with the Rh moment
constrained to be zero, thus directly probing the Fe-Fe exchange
interaction. For all quantities, a family of curves are plotted that span
the Wigner-Seitz radii from 2.78 (marked in red) to 2.9 au.

a function of angle for a range of volume-per-atom values.
Inspection of Fig. 4(d) reveals that when the FM phase has an
energy greater than the AFMII phase (at θ = 90◦) the former
is unstable with respect to θ . Although DFT demonstrates
this for low Wigner-Seitz radii, at higher radii the FM phase
stabilizes (see Fig. 7 in Ref. 25). Thus the model developed in
the previous section is unable to describe a crucial feature of
the system where the higher-energy FM phase, at large enough
Wigner-Seitz radii, exists at a local energy minimum. The
resolution of this deficiency will be presented in the preceding
section.

The third noncolinear moment variation carried out by
Sandratskii and Mavropoulos25 involves a similar canting
of the Fe moments from the AFMII phase, however, now
with the moment magnitude of the Rh being set identically
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FIG. 5. (Color online) Variation of the magnetic energy difference
between the AFMII and FM phases [see Fig. 4(d)] for different values
of (a) J

(2)
FeFe and (b) fractional change in JFeRh (with J

(2)
FeFe = −0.002).

In both (a) and (b) the uppermost curve of each family of curves
represents a Wigner-Seitz radius of 2.70 au and the lowermost curve
a radius of 2.9 au. (c) Displays the corresponding equation of state
curves for the AFMII and FM phases with J

(2)
FeFe = −0.002 and

1.085JFeRh.

to zero. It is argued this variation directly probes the Fe-Fe
exchange interaction. The corresponding energy curves are
plotted in Fig. 4(e) and labeled as the Fe-Fe curves. Following
Ref. 25, this figure also replots those of Fig. 4(d), labeling
them as Fe-Fe + Fe-Rh, since this variation probes both
the FeFe and FeRh exchange interaction. The difference of
these curves is also plotted and labeled as Fe-Rh with the
interpretation that this represents predominantly the exchange
interaction between the Fe and Rh moments. Comparison with
the DFT work of Sandratskii and Mavropoulos25 reveals quite
good agreement, however in the DFT work this energy curve
depends only weakly on volume whereas in the present fit there
exists a clear non-negligible volume dependence. The latter
is also reflected in Fig. 2(f) which indeed shows an explicit
dependence of JFeRh on volume, a quantity which Ref. 25
states is robust against volume-per-atom changes. The optimal
fitting procedure undertaken in Sec. II A therefore appears not
to enforce this feature. It however should be noted that in all
stationary energy expressions arising from Eq. (5), the Fe-Rh
contribution takes the form, J 2

FeRh/BRh, which when plotted
[see Fig. 2(f)] is found to be robust against volume changes.

C. The final model

To stabilize the FM phase the Hamiltonian presented in
Eq. (5) must be modified. To facilitate an energy barrier
between the AFMII and FM phases, inspection of Fig. 4(d)
suggests an effective angular dependence between the second
nearest neighbor Fe moments that needs to be more rapid than
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FIG. 6. (Color online) Average thermal properties as a function
of temperature derived from a Monte Carlo simulation. The figures
show data for separate simulations of the AFMII and FM magnetic
structures, for (a) volume-per-atom measured as the Wigner-Seitz
radius, (b) the internal energy difference between the AFMII and FM
magnetic structure, (c) the moment magnitudes for the Fe and Rh
atoms, and the normalized intersite correlation functions between the
nearest neighbor (d) Fe and Rh moments, (e) the Fe and Fe moments,
and (f) the Rh and Rh moments. In (c), the Fe magnetic moment
magnitudes of the AFMII and FM phase are indistinguishable at the
scale of the graph.

the cosine dependence explicitly given by the Fe-Fe exchange
interaction. The canting of the Fe AFM moments towards
an orthogonal Cartesian direction and the corresponding
emergence of a Rh moment along that direction, suggests that
introducing more distant exchange interactions will not suffice.
The simplest additional interaction that gives the required
barrier, and also preserves the O(3) symmetry class of the
Heisenberg model, is a nearest neighbor interaction between
the Fe and Rh that scales as the cosine squared. Specifically,
the interaction term will have the exchange form

−J
(2)
FeFe(MFe1 · MFe2)2. (16)

In what follows, this term will be referred to as quadratic
exchange. Such a term, when added to the model, requires
no refit to the parametrization derived from the colinear DFT
in Sec. II A. Indeed, when including the interaction arising
from Eq. (16), the colinear energy [analogous to Eq. (6)]
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FIG. 7. (Color online) Results of MC simulations as a function of
temperature. Here (a) displays the MC evolution of the Wigner-Seitz
radius for each temperature, where the lowest curve corresponds to the
50 K MC simulation and the highest to the 600 K simulation. The radii
for the greater than 50 K MC simulations have been progressively
shifted upward. (b) Displays the average Wigner-Seitz radius as a
function of temperature. The equilibrium radii of Fig. 6(a) are also
shown in this figure. (c) Shows a closeup of the Wigner-Seitz radius
evolution of the 400 K data for the circled region in (b) and (d) shows
the corresponding intersite correlation functions for the FeRh, FeFe,
and RhRh nearest neighbor moments.

becomes,

EColinear = 4
(
AFeM

4
Fe1 − BFeM

2
Fe1

) + 4
(
AFeM

4
Fe2 − BFeM

2
Fe2

)
− 8BRhM

2
Rh − 24JFeFeMFe1MFe2

− 24J
(2)
FeFeM

2
Fe1M

2
Fe2 − 32JFeRh(MFe1 + MFe2)MRh,

(17)

resulting in an additional biquadratic term with respect to the
two Fe moment magnitudes. Because of this biquadratic term,
the AFMII magnetic energy expression takes the form

E = − (BFe − 3JFeFe)2

8
(
AFe − 3J

(2)
FeFe

) , (18)

and the FM magnetic energy,

E = −
(
BFe + 3JFeFe − 16J 2

FeRh
BRh

)2

8
(
AFe − 3J

(2)
FeFe

) . (19)

Equations (18) and (19) are of similar form to Eqs. (10) and
(13), and can be derived from them via the substitution, AFe →
AFe − 3J

(2)
FeFe. This is also the case for the corresponding

moments. Thus in the colinear geometry the addition of the
quadratic-exchange term renormalizes the AFe. This simple
relationship entails that, upon giving a value to J

(2)
FeFe, AFe can

be shifted by 3J
(2)
FeFe to retain the parametrization of Sec. II A.

Figure 5(a) replots the noncolinear variation associated with

Fig. 4(d), and also for two nonzero values of J
(2)
FeFe, demonstrat-

ing that quadratic exchange directly gives an energy barrier
of any reasonable value for small values of the quadratic-
exchange parameter (−0.02 and −0.002 mRy/μ4

B) with the
magnetic energies of the AFMII and FM phases unchanged.
The addition of such an interaction affects negligibly all other
quantities shown in Fig. 4. For simplicity The present model
will assume that the parameter J

(2)
FeFe is a constant independent

of volume-per-atom.
As discussed in Sec. I, the works of Moruzzi and Marcus9

and Sandratskii and Mavropoulos25 both employed a local
density approximation for the exchange functional. On the
other hand, Gu and Antropov23 used a nonlocal exchange
functional and found that the energy difference of the AFMII
and FM equilibrium phases was reduced from 1.89 mRy/atom
to 0.206 mRy/atom, the latter of which is more agreeable to
a known experimental value of 0.196 mRy/atom.24 This is
a considerable energy reduction, and is expected to strongly
affect the nature of the transition between these two phases
at finite temperature. It is therefore desirable to modify the
obtained optimization to reproduce this feature, again without
performing a refit.

Inspection of Eqs. (10) and (13) show that, at T = 0, the
energy of the AFMII phase does not depend on parameters
involving the Rh atoms (since its moment is zero) and that
the energy of the FM phase will depend, in part, on the ratio
J 2

FeRh/BRh. Therefore modifying JFeRh and/or BRh will change
the energy of only the FM phase. Since transverse moment
fluctuations are believed to play a critical role, the present
work chooses to modify JFeRh. Figure 5(b) displays similar
energy curves such as Figs. 4(d) and 5(a), for a value of
J

(2)
FeFe = −0.002 mRy/μ4

B demonstrating the effect of changing
JFeRh by a factor of 1.085. The curve does indeed show that
the energy difference between the two equilibrium magnetic
phases is greatly affected by only a slight variation in the
Fe-Rh exchange parameter. The resulting EOS curves shown
in Fig. 5(c) compare well to that of the nonlocal DFT work
of Gu and Antropov23 [see their Fig. 1(a)]. Again such a
modification affects in a negligible way the other properties
of the model. As evidenced by the present EOS curves, the
developed model underestimates the absolute value of the
equilibrium atomic volumes when compared to the nonlocal
DFT work. To improve the absolute equilibrium volume per
atom values would entail a refit, a task that is not performed
in the present work.

Thus the final model constitutes the parametrization given
in Table I with J

(2)
FeFe = −0.002 mRy/μ4

B and the JFeRh

parameter modified by a factor of 1.085. It is noted that these
two optimal parameters were obtained by hand.

III. FINITE TEMPERATURE PROPERTIES

A. Free energy, pressure, and thermal expansion:
a Monte Carlo simulation strategy

The energy per atom as a function volume-per-atom, �, and
a given magnetic moment configuration may be now written
as a sum of a nonmagnetic and magnetic contribution

E(�; {Mi}) = ENM(�) + EM(�; {Mi}) (20)
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where the nonmagnetic term is the EOS function and the mag-
netic term is the developed Heisenberg-Landau Hamiltonian.
At fixed volume per atom, �, the free energy with respect to
only the magnetic degrees of freedom is given by

F (�,T ) = ENM(�) − kBT ln ZM(�,T )

= ENM(�) + FM(�,T ), (21)

where ZM(�,T ) is the partition function for the magnetic
degrees of freedom and FM(�,T ) is the corresponding
magnetic free energy.

In the above, a finite temperature contribution arising
from the lattice degrees of freedom is lacking. Such a
contribution could be systematically added by constructing
the nonmagnetic contribution from a pairwise or many-body
interatomic force model, from which the dynamical matrix
could be constructed [which would also contain a contribution
from the 0 K magnetic energy in Eq. (20)] to obtain the
vibrational frequencies {ωi,i = 1,3N}. This would give an
extra term to the free energy, resulting in,

F (�,T ) = ENM(�) − kBT

3N∑
i=1

ln

[
ωi

kBT

]
+ FM(�,T ), (22)

where the middle term can be written as FPhonons(�,T ).
Presently the goal is to obtain the pressure of the system

at a given volume-per-atom and temperature. Formally this is
given by

P (�,T ) = −dF (�,T )

d�
, (23)

which evaluates to

P (�,T ) = −dENM(�)

d�
− 3kBT

�
× 1

3N

3N∑
i=1

�

ωi

dωi

d�

−
〈
dEM(�)

d�

〉
T

. (24)

The last term in the above equation is an ensemble average
of the volume derivative of the magnetic energy with respect
to the magnetic energy degrees of freedom and was obtained
via the identity

dF

d�
= −kBT

d ln Z

d�
= −kBT

Z

dZ

d�
=

〈
dE

d�

〉
T

. (25)

The lattice degrees of freedom contribution contains the term
�/ωidωi/d� = γi , which is the Grüneisen parameter for the
eigenmode i. The summation over all modes may therefore be
replaced with the average Grüneisen parameter, γ , giving

P (�,T ) = −dENM(�)

d�
− 3kBT γ

�
−

〈
dEM(�)

d�

〉
T

. (26)

The pressure arising from the magnetic contribution is given
as a function of the relevant on-site and intersite moment
correlation functions〈

dEM(�,T )

d�

〉
T

= 1

2

(
dAFe(�)

d�

〈
M4

Fe

〉
M

− dBFe(�)

d�

〈
M2

Fe

〉
M

− dBRh(�)

d�

〈
M2

Rh

〉
M

− 3
dJFeFe(�)

d�
〈MFe · MFe〉M

− 3
dJ

(2)
FeFe(�)

d�
〈(MFe · MFe)2〉M

− 4
dJFeRh(�)

d�
〈MFe · MRh〉M

)
. (27)

Setting, P (�,T ) = 0, defines a function �(T ) giving the
thermal expansion properties of the system.

The above results suggest a Monte Carlo approach to model
the statistical mechanics with respect to a globally fluctuating
volume-per-atom and local moment degrees of freedom, in
which the change in energy of the Monte Carlo step can be

(i) a variation of a randomly selected moment. Since there
is no restriction on the moment, this may be performed by
sampling a spherically symmetric distribution of δM vectors
where |δM|/|M| ∼ 0.001 (say) with which the change in
magnetic energy is calculated for a given global volume-per-
atom.

(ii) a variation of the global volume-per-atom � →
� + δ�.

Here, for each Monte Carlo iteration, step (i) is performed
with probability N/(N + 1) and step (ii) is performed with
probability 1/(N + 1) to ensure a Markovian process. The
change in energy required for step 2 is given by

δENM(�) + δFPhonons(�,T ) + δEM(�; {Mi}), (28)

in which

δENM(�) = ENM(� + δ�) − ENM(�)

δFPhonons(�,T ) = −3kBT
δ�

�

1

3N

3N∑
i=1

�

ωi

δωi

δ�

= −3kBT
δ�

�
γ

δEM(�; {Mi}) = EM(� + δ�; {Mi}) − EM(�; {Mi}).
B. Finite-temperature Monte Carlo simulations

Using the Monte Carlo (MC) approach developed in the
previous section, the thermal properties of a many-moment
FeRh system are investigated using the Landau-Heisenberg
Hamiltonian with the parameters of Table I, and the appropriate
modifications associated with the quadratic exchange term
(J (2)

FeFe = 0.002;AFe → AFe + 3J
(2)
FeFe) and modified Fe-Rh ex-

change term (JFeRh → 1.085JFeRh). The employed simulation
cell contains 10 × 10 × 10 unit cells giving a total of 2000
moments. The two relevant magnetic structures, AFMII and
FM are considered in separate simulations, where each
involves 30 × 109 MC steps. For the Gruneisen parameter, the
values given by Moruzzi and Marcus9 for the two phases are
used: γ = γAFMII = 1.752 for the AFMII phase simulations
and γ = γFM = 1.587 for the FM phase simulations.

Figure 6 displays a number of observables as a function
of temperature, where for each temperature, an average of
the associated quantity is obtained after initial thermalization.
Figure 6(a) displays the Wigner-Seitz radius as a function of
temperature and it is seen that for both magnetic structures,
the volume-per-atom increases with increasing temperature.
Indeed for the lower temperature range of 50 K to 300 K the
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thermal expansion is quite linear allowing for the extraction of
the relevant thermal expansion parameters. Doing so gives
the linear coefficients for thermal expansion as αAFM =
1.2 × 10−5 K−1 and αFM = 5.4 × 10−6 K−1. These numbers
compare favourably with experimental thermal-expansion
measurements,32 which give αT <TAFM-FM = 0.95 × 10−5 K−1

and αT >TAFM-FM = 6 × 10−6 K−1. For the FM phase, the
volume-per-atom peaks and eventually decreases indicating
strong anharmonic effects, which probably arise from the
moment degrees of freedom, via Eq. (24). At the highest
temperature considered, the phases have approximately the
same volume-per-atom.

Figure 6(b) displays the internal energy difference between
the two phases as a function of temperature. At the lowest
temperatures, the thermal energy difference differs little from
the 0 K value of approximately −0.2 mRy. With increasing
temperature the internal energy difference increases to −0.15
mRy at the known transition temperature regime (at approx-
imately 300 K) and to −0.05 mRy at 600 K. Figure 6(c)
now displays the magnetic moment magnitude for both the Fe
and Rh atoms for both magnetic structures. As expected, the
moment magnitude for the Fe atoms varies little with respect to
temperature, due to its weak dependence on volume-per-atom.
For the AFMII phase, the moment magnitude of the Rh atom
steadily increases from its zero value at 0 K, whereas for
the FM phase it decreases. At the highest temperature of 600
K the Rh moment magnitudes of both magnetic phases are
approximately the same.

Figures 6(d)–6(f) display the nearest-neighbor Fe-Fe, Fe-
Rh, and Rh-Rh moment-moment correlation functions for
both magnetic phases. At low temperatures their inspection
reveals clear AFM and FM structures. For the FM phase,
all correlation functions decrease with temperature, indicating
an eventual transition to the paramagnetic phase and a Curie
temperature somewhere between 600 K and 700 K. In the
comparable finite-temperature MC simulations of Sandratskii
and Mavropoulos,25 a Curie temperature of 600 K is found
that, like the present work, agrees reasonably well with the
experimental Curie temperature of 670 K.3

For the case of the AFMII structure, Fig. 6(e) reveals
a decrease of the Fe-Fe AFM correlation with increasing
temperature suggesting a transition to the paramagnetic phase,
at a Neel temperature that is not so different from that of
the Curie temperature of the FM phase. In conjunction with
this, increased correlation involving the Rh atom is observed
with increasing temperature, suggesting a more complex
transition to paramagnetism for the AFM structure. That both
phases tend to the paramagnetic phase is consistent with the
high-temperature convergence of the volume-per-atom data
[Fig. 6(a)], the internal energy difference between the magnetic
phases [Fig. 6(b)] and the Rh moment magnitudes [Fig. 6(c)].

The induced Rh moment seen in Fig. 6(c) for the AFMII
phase has also been observed in the finite-temperature MC
simulations of Sandratskii and Mavropoulos,25 who find that
it plays an important role in determining the Neel temperature.
Figure 6(d) shows that the Rh moments are weakly FM
correlated with the nearest neighbor Fe moments. This is
no doubt due to the explicit FM exchange between the Rh
and Fe moments. In addition, Fig. 6(f) shows that for finite
temperatures a weak FM correlation emerges between the

nearest neighbor Rh moments in the AFMII phase. Thus within
the AFMII phase there is a weak short-range signature of the
magnetic structure of the FM phase. However, as expected,
both 〈MFe〉 and 〈MRh〉 are zero for the AFMII phase.

The finite-temperature simulations involving 2000 mo-
ments for both the AFMII and FM phases did not undergo a
phase change during the MC simulations. Although this result
might be due to a simulation time-scale issue, it is compounded
by the fact that for the present model only global volume-per-
atom fluctuations are admitted. For a volume-per-atom change
that is of the magnitude necessary for the phase transition to
occur, the associated energy change is extensive and therefore,
from an energy perspective, inaccessible. While this result, the
absence of a transition, is an artifact of the current model it
does however demonstrate that volume plays a crucial role in
the transition and infers local volume-per-atom fluctuations are
required to obtain the transition. To investigate these aspects
a much smaller sample is now considered of size 4 × 4 × 4
containing only 128 moments. For this size of simulation cell,
two values of Grueneisen parameter are used: (i) an average
of the AFMII and FM values, γ = (1.752 + 1.587)/2, and
(ii) an increased value chosen to be γ = (1.752 + 1.587)/2 +
1. The latter case will further enhance the global volume-per-
atom fluctuations. Thus, with these simulations volume-per-
atom fluctuations become larger at the expense of restricted
moment fluctuations. In what follows, each simulation begins
with the AFMII phase and for each temperature (50–600 K
in steps of 50 K) 100 × 109 MC steps are performed. All
data shown and discussed (Figs. 7–9) will be for case (ii), the
highest Gruneisen parameter. The results of case (i) will be
discussed at the end of this section.

Figure 7(a) displays the Wigner-Seitz radii as a function
of MC step for all temperatures considered. In this figure,
the radii trajectory for each temperature is shifted upward to
separate each curve for better inspection, where the lowest
curve is at a temperature of 50 K and the uppermost curve
is at a temperature of 600 K. For the curves corresponding
to temperatures less than 350 K, no transition in volume-
per-atom is evident. However at and above this temperature
discrete changes in volume become increasingly frequent as
the temperature rises. Inspection of the actual Wigner-Seitz
radii regimes for each temperature reveals that the volumes
accessible at each temperature are close to either that of the
AFMII or FM structures seen in the larger cell-size simulations
of Fig. 6. Indeed, at the lower temperatures, the system stays at
a volume-per-atom similar to the expected volume-per-atom
of the AFMII phase, and at the uppermost temperatures the
system stays mainly in volume-per-atom corresponding to the
FM phase. This may be seen in Fig. 7(b), which plots the
average Wigner-Seitz radius of each temperature along with
its standard deviation. In this figure the equilibrium data of
Fig. 6(a) is also shown. This plot clearly shows a transition
to volumes that may be associated with the FM magnetic
structure, occurring at a temperature regime between 300–
400 K. Away from this transition regime, the actual volume-
per-atom is generally higher than that for the larger systems.
These differences arise from the larger Gruneisen parameter
used for case (ii). Despite this, the entire trend seen in Fig. 6(b)
is qualitatively similar to that indicated by experimental ther-
mal expansion measurements (compare with Fig. 1 in Ref. 32).
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To confirm that such volume fluctuations do in fact corre-
spond to a change in magnetic structure, focus on the magnetic
properties is now given to the circled region in Fig. 7(a) at 400
K. Figure 7(c) displays the corresponding volume-per-atom
change of this region and, Fig. 7(d), the associated change
in the Fe-Rh, Fe-Fe, and Rh-Rh intersite moment correlation
functions. The latter figure clearly indicates that at the volume
change there is a change in magnetic structure from the AFMII
to the FM phase, and that with respect to MC time step,
the magnetic structure change and volume change occur in
parallel. Further inspection of Figs. 7(c) and 7(d) also reveals
an example of an unsuccessful excursion (occurring at MC
step 22 × 109) from the AFMII phase in terms of magnetic
structure and, to a lesser extent, volume.

Figure 8 now shows all these quantities for the temperatures
of 350 K and 400 K, for the entire MC simulation. Upon
inspection of these figures, it becomes clear that whenever
a volume change occurs there is indeed a corresponding
change in magnetic structure. Moreover between these two
temperatures a clear change in which phase is dominant is
apparent. In Fig. 8(a), which displays the Wigner-Seitz radii
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FIG. 8. (Color online) Plots of the 350 K and 400 K MC
simulations undertaken in Fig. 7. Here (a) shows the Wigner-Seitz
radii (where the 400 K value has been shifted up by 0.02 au), (b) the
absolute energy (where the 400 K value has been shifted by 1 mRy),
(c) the moment magnitude of the Rh atoms, and the normalized
intersite correlation functions for the (d) FeRh, (e) FeFe, and (f)
RhRh nearest neighbor moments.

(with the 400 K radius shifted up by 0.02 atomic units),
the regions undergoing a transition are indicated by arrows.
Figure 8(b) now shows the absolute energy per atom (with the
400 K energy shifted up by 1 mRy) with the same transition
regions again marked. What becomes clear is that the FM phase
has a higher energy than the AFMII phase, even at 400 K where
the system spends the majority of the simulation in the FM
structure. At higher temperatures, changes in absolute energy
cannot be detected within the fluctuations, nevertheless the
system prefers to spend an increasing amount of the simulation
in the FM phase.

The above results are a tentative signature of entropy
stabilization of the FM phase due to fluctuations in both the
moment and volume-per-atom degrees of freedom. In fact,
inspection of Fig. 8(b) reveals an increase in internal energy
of approximately 0.2 mRy/atom when going from the AFMII
to FM states, at the temperature range 350–400 K. Within this
range of temperatures there would exist a temperature, Tc, at
which the small system spends an equal amount of time in
each magnetic phase—a situation in which the free-energy
of both phases would be equal and SFM(Tc) − SAFMII(Tc) =
(UFM(Tc) − UAFMII(Tc))/Tc ≈ 0.2 mRy/Tc. Allowing Tc to be
in the range 350–400 K gives a corresponding specific entropy
range of 8.2−9.4 JKg−1K−1 which compares reasonably
with the measured change in entropy at the transition,10,14,33

	Sexp = 13−19.6 JKg−1K−1.
This somewhat crude approach can be given firmer ground-

ing via determination of the specific heat. Figure 9(a) displays
the corresponding specific heat as a function of temperature
calculated via the fluctuations of the internal energy for both
simulations cell sizes. In this figure, the Dulong-Petit limit
value of the specific heat, 3R/2 (where R is the gas constant
for the FeRh system in units of JK−1Kg−1) arising from the
volume fluctuations is also shown. Relative to this value,
the specific heat may be regarded as arising predominantly
from the magnetic degrees of freedom. At the scale of
the graph, the larger simulation cell shows that the AFMII
and FM specific heats do not significantly differ (giving
comparable linear specific heat coefficients in the range of ∼90
mJK−2Kg−1, where experiment gives low-temperature values

100 200 300 400 500 600
temperature (K)

150

200

250

300

350

sp
ec

if
ic

 h
ea

t (
JK

-1
K

g-1
) AFM (large cell)

FM (large cell)

Small cell
3R/2

0 100 200 300 400 500 600
temperature (K)

0

50

100

150

200

250

300

350

re
la

ti
ve

 e
nt

ro
py

 (
JK

-2
K

g-1
)

(a) (b)

FIG. 9. (Color online) (a) specific heat as a function of temper-
ature for the stable AFMII and FM phases using the 10 × 10 × 10
simulation cell and for the smaller 4 × 4 × 4 simulation cell in which
volume fluctuations are enough to induce a magnetic transition. (b)
Corresponding graphs of these three simulations for the entropy
relative to their value at 50 K showing a jump in entropy as the
smaller system transforms from the AFMII to the FM phase.
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of 10.5−16 mJK−2Kg−1 for the AFM phase and 59−62.5
mJK−2Kg−1 for the FM phase),15,16 and due to the lack of a
magnetic transition, no specific heat anomaly is evident in
the temperature regime of 350–400 K. On the other hand
the specific heat derived from the smaller simulation cell,
where local volume-per-atom fluctuations are now possible,
does exhibit a clear peak at approximately 300 K and the
specific heat of the low-temperature AFMII phase is lower by
a factor of two than that of the high-temperature FM phase
(relative to the Dulong-Petit limit). Figure 9(b) now displays
the specific entropy change for each simulation with respect
to the corresponding entropy at 50 K. This is obtained from
the specific heats of Fig. 9(a) via

s(T ) − s(50 K) =
∫ T

50 K
dT

c(T )

T
. (29)

Inspection of this figure demonstrates that for the larger
simulation cell, there is little difference between the stable
AFMII and FM phases, however for the small simulation cell
at approximately 300 K, an anomalous increase in the entropy
is evident corresponding to the AFMII/FM transition. This
value is the order of 15 JKg−1K−1, which again compares
well with experiment. That the transition is evident at the
300 K simulation rather than the 350 K simulation where the
system clearly fluctuates between the two magnetic phases
(Fig. 8) suggests, in part, precursor effects, but it might
also be due to the relatively poor temperature resolution
[and therefore integration variable in Eq. (29)] of the current
simulations.

For case (i), in which the Gruneisen parameter is taken
as the average of the AFMII and FM phases, transitions
to the FM volume/magnetic structure also start to occur at
400 K, however the system rapidly falls back to the AFMII
structure. With increasing temperature, such events become
more frequent, but with the system never spending a significant
number of Monte Carlo steps in the FM structure, suggesting
that for case (i), the volume fluctuations are not large enough
to stabilize the higher-energy FM phase.

IV. DISCUSSION

The central goal of the present work has been to develop
an empirical model for the FeRh magnetic system that is
able to describe both longitudinal and transverse moment
fluctuations. This feature is necessary to reproduce the early
colinear DFT work of Moruzzi and Marcus9 and the more
contemporary noncolinear work of Gu and Antropov23 and
Sandratskii and Mavropoulos.25 Using the Landau-Heisenberg
model Hamiltonian this has been achieved using only nearest
neighbor exchange parameters between the Fe and Rh atoms.
In this sense the model is minimal. Indeed, it may be
possible to better reproduce the DFT data via the addition
of longer-range exchange interactions (the existence of which
has been suggested by DFT23,25). That the current model
is reasonably well able to reproduce the ab initio derived
behavior of the 0 K equilibrium magnetic phases supports
such a minimal viewpoint, although inclusion of additional
interactions will affect the dispersion properties of spin-wave
excitations such as those considered by Gu and Antropov23

in the determination of their free energy contribution, and

more recently discussed by Sandratskii and Buczek.34 Whether
or not additional interactions are necessary to capture all
that the first order transition entails, is a matter of further
research.

In addition to the Landau-Heisenberg contribution, the
final developed model includes a nearest neighbor quadratic
exchange term, which stabilizes the FM phase with respect
to transverse moment fluctuations. Historically, such an
interaction has already emerged. In the exchange inversion
model of Kittel,26 a similar term is derived when starting
from a harmonic EOS plus a Heisenberg interaction between
the magnetic sublattices (whose exchange constant depends
linearly on the lattice constant). Here the equilibrium volume
depends on the mean field exchange term, and when substituted
back into the full energy expression results in the equation of
state term being dependent on the square of the Heisenberg
term. Even earlier, Lui et al.35 postulated the existence of such
a term (via a cos 2θ angular dependence between the sublattice
moments) as a phenomenological model for dysprosium,
which also undergoes a AFM-FM phase transition at 85 K.
Such a model was found to better reproduce the experimental
behavior than a model by Neel that relied on a complex
sublattice-dependent crystalline anisotropy.36 As for a true
microscopic understanding for FeRh, it remains an open
question as to whether this term may be justifiably associated
with either the known quadratic exchange or Zener exchange
mechanism,37–39 fundamental mechanisms that are normally
associated with transition metal oxides.

An alternative mechanism to a quadratic exchange term
could be to break the O(3) symmetry of the Heisenberg Hamil-
tonian via the introduction of a cubic crystalline magnetic-
anisotropy term for each Fe atom. A simple manifestation of
this would be an energy term of the form

EAnisotropy = K
(
α2

1α
2
2 + α2

2α
2
3 + α2

1α
2
3

)
(30)

where α1 = cos θ1, α2 = cos θ2, and α3 = cos θ3 constitute the
direction cosines of a particular Fe moment with respect to the
cartesian axes defined by the 〈100〉 family of crystallographic
directions. When the crystalline anisotropy constant, K , is
positive, the 〈100〉 are the easy axes and upon rotation of
a moment from one axis to another, an energy barrier of
K/4 must be overcome. For BCC Fe, K is typically 5 × 104

J/m3 which corresponds to approximately 0.00026 mRy per
Fe atom. Transferal of this energy scale to the Fe moments
in FeRh would therefore give an energy barrier of 2 × K/4 �
0.00013 mRy for the canting of the sublattice moments towards
an orthogonal cartesian direction. This is significantly smaller
than the energy barrier supplied by the quadratic Heisenberg
term, −J

(2)
FeFe|MFe|4 � 0.002 × 34 = 0.162 mRy. Clearly, a

considerably enlarged crystalline anisotropy would be needed
to stabilize the the FM phase.

The simplicity of the current model affords an analytical
investigation of the noncolinear magnetic moment variations
performed in Sec. II B. In what follows, the quadratic exchange
is not included. For the first noncolinear variation, the Rh
moment of the FM configuration is rotated away from the
Fe moment, where for each angle the stationary solution is
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obtained. Doing so, using Eq. (5), gives,

E = −
(
BFe + 3JFeFe − 16J 2

FeRh
BRh

cos2 θ
)2

8AFe
. (31)

From this, the leading-order change in energy from the θ = 0
(FM) configuration is given by

	E � −2

(
BFe + 3JFeFe − 16J 2

FeRh
BRh

)( 16J 2
FeRh

BRh

)
8AFe

sin2 θ (32)

� −4
BFe

AFe

J 2
FeRh

BRh
sin2 θ. (33)

For the parameters of the model, this turns out to be a good ap-
proximation to the energy variation shown in Fig. 4(b) over the
entire considered volume range because 3JFeFe − 16J 2

FeRh/BRh

is quite small compared to BFe. The corresponding Rh moment
magnitude is given by

MRh = −8JFeRh cos θ

BRh

√√√√BFe + 3JFeFe − 16J 2
FeRh

BRh
cos2 θ

8AFe
(34)

� −
√

8JFeRh cos θ

BRh

√
BFe

AFe
. (35)

Substitution of Eq. (35) into Eq. (33) gives the result

	E � − 1
2BRh{[MRh(θ = 0)]2 − [MRh(θ )]2}. (36)

In choosing a positive value for BRh, it is from this perspective
that Ju et al.17 have argued a Stoner-like form to describe the
energy contribution of a finite Rh moment.

The second and third colinear variations performed in
Sec. II B are also easily obtainable. Specifically, for the Fe
canting variation in which the Rh moment is fixed to be parallel
to the total Fe moment [Figs. 4(c) and 4(d)] the corresponding
energy as a function of canting angle is given by

E = −
(
BFe − 3JFeFe cos 2θ − J 2

FeRh
BRh

sin2 θ
)2

8AFe
, (37)

whereas the energy associated with an Fe canting, in which
the Rh moment magnitude is constrained to be zero [Fig. 4(e)]
is given by

E = − (BFe − 3JFeFe cos 2θ )2

8AFe
. (38)

Obtaining similar leading order forms of Eqs. (37) and (38)
results in their difference equaling the negative of Eq. (33).
Thus the assertion of Ref. 25 that the second colinear
variation probes a mixture of the the FeFe and FeRh exchange
interactions, and the third colinear variation probes only
the FeFe exchange interaction, is supported by the present
model where their difference yields directly an effective FeRh
interaction of the form given by Eq. (33).

Despite the coupled Landau and Heisenberg contributions
to the energy, it is possible to perform a direct comparison
of the fitted parameters with other work since factors in-
volving ratios of the Fe Landau parameters can be rewritten
as Fe moment magnitudes, which when multiplied by the
appropriate exchange parameters will yield an interaction
energy. Inspection of Eq. (33) gives a prefactor that varies

between 7.9 and 9.7 mRy (over the volumes considered)
or an effective exchange interaction between the Fe and Rh
moments of 1–1.2 mRy per bond. This compares quite well to
the exchange parameter, JFeRh = 1.2 mRy of Sandratskii and
Mavropoulos.25 Via Eq. (36), Eq. (33) may also be viewed
entirely from the perspective of the Landau picture, giving
an onsite energy for the Rh atom of 8.1–9.1 (evaluated at
a Rh moment magnitude of one Bohr magneton), which is
in reasonable agreement with the value of ≈6 mRy found
by Sandratskii and Mavropoulos.25 Insight into the effective
exchange between the nearest neighbor FeFe moments is found
by considering the leading-order variation of Eq. (38)

	E � −3

2

BFe

AFe
JFeFe sin2 θ. (39)

Here the prefactor varies between 9.4 and 9.9 mRy correspond-
ing to approximately 1.6 mRy per bond, which is somewhat
higher than the shell-averaged exchange interaction of Ref. 25
derived from their Fig. 9.

The current model only admits global volume-per-atom
fluctuations, and the present work appears to indicate that
because of this, the bulk magnetic phase transition cannot
directly be studied. It may be thus inferred that local volume-
per-atom fluctuations play a crucial role in the transition
from one magnetic structure to the other. This assertion is
supported by the results of the 4 × 4 × 4 cell simulations,
where due to the small global volume-per-atom and larger
Grüneisen parameter, global volume-per-atom fluctuations
are enhanced sufficiently enough to allow the system to
fluctuate between the AFMII and FM structures in the
temperature regime of approximately 300–400 K, and stay
predominantly in the FM structure at higher temperatures.
This occurs despite the increase in internal energy associated
with transforming to the FM phase, suggesting the important
role of entropy arising from the volume and/or moment
degrees of freedom. Although the simulation is in some
sense artificial, this is nevertheless a revealing result and
quantitatively consistent with the large entropy measured at the
transition.10,14,33

The current work therefore hints at the comparable role both
the magnetic and volume-per-atom degrees of freedom play
in the transformation of FeRh from the AFM to FM phase.
To investigate these issues experimentally, a new generation
of so-called pump-and-probe experiments have been able to
resolve the temporal properties of the first-order transition to
near picosecond resolution. In such experiments, the pump
illuminates the FeRh thin film with a fluence sufficient to
raise the temperature above the transition temperature, and
the probe measures the magnetization dynamics, usually, via
the optical Kerr effect. In the work of Ju et al.,17 both the
change in polarization and the reflectivity were measured.
Here the polarization gave information about the total mag-
netization and was found to increase rapidly from zero (at
the time of the pump) to a saturation value in a timescale of
approximately 50 picoseconds, after which it decreased at a
much longer timescale. This could be directly interpreted as
the transformation from the AFM phase to the FM phase, and
the corresponding emergence of a total magnetization, which
eventually reduces due to subsequent cooling of the FeRh
system. Later work by Bergman et al.18 demonstrated that
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the magnetization dynamics could be understood by reorien-
tation dynamics due to the initially nonaligned FM domains
aligning to a single homogeneous domain state. In Ref. 17,
by subtracting from the reflectivity a transient electronic
component, the authors could also obtain information on lattice
expansion. This indirect measure suggested a volume increase
that occurred somewhat faster than the overall magnetization
response. Similar experiments and conclusions were obtained
by Theile et al.19

More recent experiments tend to confirm the sub-100
picosecond timescale of the AFM-FM transformation. Radu
et al.21 used time-resolved x-ray magnetic circular dichroism
measurements to probe the magnetization dynamics and con-
firmed that the timescale for the creation of the FM magnetic
structure was indeed in the sub-100 picosecond timescale.
Quirin et al.,20 performed pump-and-probe experiments using
time-resolved XRD to directly measure structure via the time
evolution of a Bragg peak. They found that lattice expansion
occurred at a timescale of 100 picoseconds, however their
experiments did not measure the corresponding magnetic
evolution.

Mariager et al.,22 performed similar experiments that now
directly probed the lattice constant of the FeRh thin film via
XRD and the time evolution of the magnetization via the
optical Kerr effect. They found that after the pump, a new
Bragg peak emerges at the expense of the original Bragg
peak, giving a clear indication of the coexistence of two
lattice constants within the thin film, and tentative evidence
for the coexistence of both the AFM and FM phases, a central
hallmark of a first-order phase transition. Thus, from the
Bragg peak measurements quantitative temporal information
on the FM volume fraction was obtained. The data indicated
a rapid rise and saturation of the FM volume fraction with
a characteristic timescale of �14 picoseconds. However,
the optical Kerr signal that measured total magnetization
exhibited a distinctly different response in both form and
(longer) timescale. By asserting that FM regions nucleated
locally with a total magnetic moment along either of four
directions (orthogonal to the thin film normal), resulting in
an early zero net magnetization, the slower magnetization
increase could be understood from the perspective of magnetic
domain alignment dynamics. Doing so resulted in a magnetic
domain nucleation time scale of �18 picoseconds, which
is comparable to their XRD derived structural nucleation
time scale. From this the authors concluded that within their
error bars, the magnetic and volume nucleation timescales
associated with the first-order AFM to FM phase transition are
the same.

The proceeding discussion motivates modifications to the
present model to explicitly include local volume fluctuations.
How may this be achieved? In terms of the magnetic energy
contribution to the total cohesive energy, the global Wigner-
Seitz parameter can be straightforwardly taken as a local
parameter, entailing that the exchange parameters depend
on the appropriate interatomic distance and that the on-site
Landau terms become some function of local volume, again via
the nearest neighbor environment defined by the appropriate
interatomic distances. In the same spirit, the nonmagnetic
contribution to the cohesive energy can be described by an
empirical interatomic force model that correctly describes

the nonmagnetic contribution to elasticity, thermal expansion,
and equilibrium volume. Indeed, for pure FM BCC Fe, the
nonmagnetic and Landau contributions to the equilibrium
cohesive energy have been modeled in unified way via the
so-called magnetic potential formalism,40,41 in which the local
volume needed by the Landau term is effectively obtained
via the environmental dependence of the second moment of
the local electronic DOS. Inclusion of transverse moment
fluctuations into the BCC Fe system is then done via the
addition of a Heisenberg term, constituting the so-called
spin lattice dynamics technique, which is able to model
both lattice and moment degrees of freedom in BCC Fe.42,43

In general terms such an atomistic approach has also been
partially followed in the work of Gruner et al.,27 enabling
them to model local volume fluctuations and therefore the
actual AFM-FM phase transition. An alternative, somewhat
simpler, approach is to couple the magnetic degrees of
freedom to a continuum description of an appropriate elastic
medium in which local (to chosen length scale) variations
in volume are admitted. For the present Landau-Heisenberg
model, these considerations will be actively pursued in
future work.

V. CONCLUSION

In conclusion, an empirical model for the FeRh system has
been developed within the framework of a volume-per-atom
dependent Landau-Heisenberg Hamiltonian, allowing for both
longitudinal and transverse fluctuations in the magnetic mo-
ments of both the Fe and Rh atoms. Upon fitting to past
colinear and noncolinear DFT calculations of FeRh, the model
is able to reasonably well reproduce a wide range of ab
initio derived trends and quantities. It is however found that
in order to stabilize the ferromagnetic state with respect to
transverse moment fluctuations, a quadratic exchange term
must be added to the Hamiltonian, which is similar in form to
the well-known double-exchange mechanism. A nonmagnetic
contribution to energy is also added to the Hamiltonian via
a nonmagnetic equation of states curve, thus allowing the
model to admit global volume-per-atom fluctuations. Via
Monte Carlo simulation, the thermal properties of both phases
were determined giving thermal expansion coefficients and
Curie/Neel temperatures that agree reasonably well with
experiment. For large system sizes, no antiferromagnetic to
ferromagnetic transition was observed inferring the important
role of local volume fluctuations, a feature not included in the
current model. This aspect was further investigated by consid-
ering smaller simulation cells at finite temperature, a regime
where the energy of global volume-per-atom fluctuations is
comparable to that of the magnetic moment fluctuations. In
this case, the antiferromagnetic to ferromagnetic transition was
observed in the temperature range of 300–400 K and at higher
temperatures the ferromagnetic phase was stabilized. The
corresponding entropy change due to the transition compared
well to experiment. The present model therefore suggests
the comparable importance of both volume-per-atom and
magnetic moment degrees of freedom as driving forces for
the antiferromagnetic to ferromagnetic transition occurring in
the FeRh system.

174431-14



LANDAU-HEISENBERG HAMILTONIAN MODEL . . . PHYSICAL REVIEW B 85, 174431 (2012)

ACKNOWLEDGMENTS

The author thanks G. Ingold, S. O. Mariager, and
C. Quitmann for introduction to the FeRh system and

for many useful discussions, and also S. L. Dudarev for
extensive discussions on the Landau-Heisenberg modeling
framework.

*peter.derlet@psi.ch
1M. Fallot, Ann. Phys. (Paris) 10, 291 (1938).
2M. Fallot and R. Hocart, Rev. Scient. 77, 498 (1939).
3J. S. Kouvel and C. C. Hartelius, J. Appl. Phys. Suppl. 33, 1343
(1962).

4F. de Bergevin and L. Muldawer, Compt. Rend. 252, 1347 (1961).
5J.-U. Thiele, S. Maat, J. L. Robertson, and E. E. Fullerton, IEEE
Trans. Magn. 40, 2537 (2004).

6G. Shirane, R. Nathans, and C. W. Chen, Phys. Rev. 134, A1547
(1964).

7C. Koenig, J. Phys. F 19, 1123 (1982).
8J. Hasegawa, J. Magn. Magn. Mater. 66, 175 (1987).
9V. L. Moruzzi and P. M. Marcus, Phys. Rev. B 46, 2864 (1992).

10J. S. Kouvel, J. Appl. Phys. 37, 1257 (1966).
11A. I. Zakharov, A. M. Kadomtseva, R. S. Levitin, and E. G.

Ponyatovskii, Zh. Eksp. Teor. Fiz. 46, 2003 (1964) [Sov. Phys.
JETP 19, 1348 (1964)].

12J. M. Lommel, J. Appl. Phys. 40, 3880 (1969).
13J. B. McKinnon, D. Melville, and E. W. Lee, J. Phys. C 3, S46

(1970).
14M. P. Annaorazov, S. A. Nikitin, A. L. Tyurin, K. A. Asatryan, and

A. K. Dovletov, J. Appl. Phys. 79, 1689 (1996).
15P. Tu, A. J. Heeger, J. S. Kouvel, and J. B. Comly, J. Appl. Phys.

40, 1368 (1969).
16J. Ivarsson, G. R. Pickett, and J. Toth, Phys. Lett. A 35, 167 (1971).
17G. Ju, J. Hohlfeld, B. Bergman, R. J. M. van deVeerdonk, O. N.

Mryasov, J.-Y. Kim, X. Wu, D. Weller, and B. Koopmans, Phys.
Rev. Lett. 93, 197403 (2004).

18B. Bergman, G. Ju, J. Hohlfeld, R. J. M. van de Veerdonk, J.-Y. Kim,
X. Wu, D. Weller, and B. Koopmans, Phys. Rev. B 73, 060407(R)
(2006).

19J.-U. Thiele, M. Buess, and C. H. Back, Appl. Phys. Lett. 85, 2857
(2004).

20F. Quirin, M. Vattilana, U. Shymanovich, A.-E. El-Kamhawy,
A. Tarasevitch, J. Hohlfeld, D. von der Linde, and K. Sokolowski-
Tinten, Phys. Rev. B 85, 020103(R) (2012).

21I. Radu, C. Stamm, N. Pontius, T. Kachel, P. Ramm, J.-U. Thiele,
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