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Interaction between propagating spin waves and domain walls on a ferromagnetic nanowire
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We numerically investigate the interaction between propagating spin waves and a transverse domain wall in
a nanowire by using micromagnetic simulations. In order to understand the mechanisms that lead to domain
wall motions, we calculate domain wall velocity in a defect-free nanowire and the depinning fields for a pinned
domain wall that is depinned in and against the direction of the spin-wave propagation. We find that the physical
origin of the spin-wave-induced domain wall motion strongly depends on the propagating spin-wave frequency.
At certain spin-wave frequencies, transverse domain wall vibrations lead to transverse wall displacements by the
spin waves, while at other frequencies, large spin-wave reflection drives domain wall motion. By analyzing the
depinning field calculations, the different underlying physical mechanisms are distinguished.
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I. INTRODUCTION

Different approaches have been suggested to induce domain
wall (DW) displacements as required for devices based on DW
motion.1–3 The traditional approaches using external fields
faces scaling problems, because as the size of the device is
reduced, the current density needed to generate a sufficiently
large Oersted field to depin the DW increases.4 On the other
hand, current-induced DW motion via the spin torque effect
has attracted significant attention lately because it opens an
alternative path to induce efficient magnetization dynamics
and also to design novel devices.5–7 However, it also faces
some problems, such as Joule heating due to Ohmic losses.8,9

Recently, micromagnetic simulations have shown that propa-
gating spin waves (SWs) in a ferromagnetic nanowire are able
to assist magnetic DW motion.10,11 Although many research
groups have intensively studied the basic characteristics and
the possible applications of SWs in a magnetic nanowire
theoretically12–14 and experimentally,15–17 spin-wave-induced
DW motion is a new concept to manipulate domain walls,
which could serve, for instance, in fast nonvolatile memory
devices due to the high velocity of the propagating SWs.17

Additionally, SWs exhibit wave properties, such as superposi-
tion and phase shift, which might be useful for logic devices.18

Although first micromagnetic simulations have shown that
SWs can help to move a DW,10,11 they were carried out for
ideal wire geometries with no DW pinning. In real systems,
the DW can be trapped by edge roughness, grain boundaries,
and other pinning sites. Such pinning effects strongly influence
the potential landscape for the DW and, consequently, its
dynamics.19,20 Therefore, in order to simulate the behavior
in a more realistic system, it is necessary to investigate
the interaction between propagating SWs and a pinned DW.
Moreover, the basic mechanisms to move a DW by propagating
SWs are unclear. Here, we study the SW-assisted domain wall
depinning, which has not been studied so far and it provides

useful information about the underlying mechanisms of the
interaction between SWs and DWs.

In this paper, we investigate the interaction between
propagating SWs and a transverse wall (TW) in a magnetic
nanowire. We calculate the TW velocity as a function of the
SW frequency. A significant negative TW motion (against
the spin-wave propagation direction) due to the angular
momentum transfer from the propagating magnons to the
TW is observed for the lower frequency range. For high
frequencies, three peaks with positive velocities are observed.
In order to understand the underlying physics, we calculate the
depinning fields and the depinning processes for a TW pinned
at a square notch. We find that there are two major mechanisms
that contribute to the depinning and motion of the TW. One
is the momentum transfer from SW to TW due to the strong
SW reflections for the overall SW frequency range. The other
mechanism is the collective TW vibration mediated by the
internal modes of TW at certain SW frequencies.

II. MATERIALS, GEOMETRY, AND NUMERICAL MODEL

Figure 1 shows the simulated structure and the initial spin
configuration in our simulations with the corresponding coor-
dinate system. The nanowire is 4000-nm long, 150-nm wide,
5-nm thick, and a head-to-head TW is nucleated at the center
of the nanowire and pinned by a square notch (5 × 5 nm2).
We select a cell size of 5 × 5 × 5 nm3 and standard material
parameter values for permalloy are used in the simulations:
saturation magnetization MS = 8.0 × 105 A/m, exchange
stiffness A = 1.3 × 10−11 J/m, and a damping constant
α = 0.01. We use the object-oriented micromagnetic
framework (OOMMF)21 code to solve the Landau-Lifshitz (LL)
equation:

∂M
∂t

= −γ M × Heff + αγ

MS

M × (M × Heff), (1)
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FIG. 1. (Color online) The initial spin configuration of the
trapped head-to-head TW nucleated at the position of a square notch
in the center of the nanowire. The square notch size is 5 × 5 nm2.
In the bottom we zoom into the central part of the wire to show the
internal structure of the TW pinned at the notch. In order to generate
SWs, we apply a localized sinusoidal field at a position denoted as
the SW source. The SW source is located at 500 nm from the center
of the nanowire. To depin the TW, we apply an external field Bext

along the ±x direction.

where M is the vector of local magnetization and γ is the
gyromagnetic ratio (2.21 × 105 m/As). Heff is the effective
field, which is composed of exchange, anisotropy, magneto-
static, and external field. The magnetocrystalline anisotropy
is not considered in this simulation. In order to generate
monochromatic SWs, we apply a single harmonic sinusoidal
external field B0 sin(2πfH t)uy along the y direction only
at a localized area (5 × 150 × 5 nm3) at 1500 nm (x =
0 nm) from the left edge of the wire, as indicated in
Fig. 1. To prevent SW reflections from the ends, we include
absorbing boundary conditions based on gradually increasing
the damping constant as approaching the edges of the com-
putational region.22 In order to promote the DW depinnig, an
external field of Bext = Bextux is applied along the positive
or negative x direction. For the pinning site, the depinning
fields without SWs for both applied field directions are
Bdep = ±1.7 mT. In each case, the depinning field is obtained
by calculating the equilibrium position of the wall for a series
of increasing applied field (Bext) in steps of 0.1 mT until a value
is reached for which the domain wall depins from the notch.

III. RESULTS AND DISCUSSIONS

First, we study the time evolution of the TW position
for SWs of various frequencies (fH = 5.25, 6.25, and

11.25 GHz, and a total simulation time �t = 20 ns) for a
free-defect nanowire. To generate propagating coherent SWs,
the localized external field is fixed at B0 = 10 mT and
the TW is located at x = 500 nm to the right of the SW
source. In Fig. 2(a), for the case of fH = 5.25 GHz, the
TW moves toward the SW source with a constant slope. On
the other hand, it can be observed that TWs move along
the +x direction for fH = 6.25 and 11.25 GHz. In order
to compute the TW velocity (vTW) as driven by the excited
SWs, the instantaneous value of the normalized x component
of the magnetization (〈mx〉 = 〈Mx〉/〈MS〉) averaged in the
wire volume is calculated, and shown in Fig. 2(b) (fH =
3 − 30 GHz and �fH = 0.25 GHz). We observe a negative
velocity (corresponding to the TW moving towards the SW
source) for low spin-wave frequencies (4.0 GHz < fH <

5.5 GHz). The maximum velocity in that direction is found
vTW = −0.22 m/s. Above fH = 5.5 GHz, the TW velocity is
positive with three peaks (fH = 6.25, 11.25, and 13.75 GHz
with resulting velocities of vTW = 1.32, 0.94, and 0.52 m/s,
respectively). This negative TW velocity has been explained
in Refs. 23 and 24 based on a transfer of angular momentum
from the propagating magnons to the TW. For the other SW
frequencies (fH = 6.25 and 11.25 GHz), TWs move linearly
far from the SW source due to the different physical origins.

Figure 2(c) shows the spatially resolved fast Fourier
transformation (FFT) of Mz (fH = 5.25, 6.25, and 11.25 GHz)
on a defect-free nanowire with a single domain state up to x =
1500 nm from the SW source. The SW amplitude is directly
proportional25 to the FFT amplitude of Mz. In order to draw the
SW amplitude curves, we first calculate the averaged Mz/Ms

and then the peak amplitude of the FFT is obtained. As shown
in Fig. 2(c), the shapes of the SW amplitudes depends on the
frequencies of the localized oscillating fields. We highlight that
there are optimal frequencies for the SW propagations due to
the geometry of nanowire.23 For the case of fH = 5.25 GHz
(black line), SWs are not able to propagate to the end of the
nanowire since there is a forbidden gap of the SW dispersion
relation.10 On the other hand, for the cases of fH = 6.25 GHz
(red line) and 11.25 GHz (blue line), there are long-lived prop-
agating SWs up to x = 1500 nm. However, the SW with fH =
11.25 GHz is able to propagate longer than the case of fH =
6.25 GHz. Until now, the TW velocity and the SW amplitudes
for various SW frequencies are investigated. However, the
mechanisms for the TW motion are not revealed yet.
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FIG. 2. (Color online) (a) TW displacement as a function of simulation time (�t = 20 ns, fH = 5.25, 6.25, and 11.25 GHz). (b) The
TW velocity (vTW) as a function of SW frequency (fH = 3 GHz 30 GHz, �fH = 0.25 GHz, and �t = 20 ns). (c) The SW amplitude
(= FFT amplitudes of Mz) as a function of the position from the SW source (x = 0) without a TW (fH = 5.25, 6.25, and 11.25 GHz).
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FIG. 3. (Color online) Spin-wave amplitudes with and without a TW for two spin-wave frequencies (a) fH = 6.25 GHz and (b) fH =
11.25 GHz. These frequencies correspond to the positive peaks in Fig. 2(b).

In order to understand the underlying physics about the
TW motion due to the propagating SWs, we calculate the SW
amplitudes as a function of the x position with and without a
TW for fH = 6.25 GHz and 11.25 GHz. These two frequencies
correspond to the positive peaks of the TW velocity [see
Fig. 2(b)]. In Fig. 3, black lines and red lines indicate the
SW amplitudes without and with a TW, respectively. To hold
the TW at the equilibrium position, we introduce a small

rectangular notch (5 nm × 5 nm) at the center of the nanowire
as shown in Fig. 1. First, we highlight that there are standing
waves due to the SW reflection for both frequencies. For fH =
6.25 GHz, we observe that SWs are not able to propagate across
the TW and most of the SW is reflected at the TW position
(x = 500 nm) in Fig. 3(a). In this case, the SW reflection is the
dominant mechanism for the TW motion by the propagating
SWs. However, for fH = 11.25 GHz, SWs can penetrate
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FIG. 4. (Color online) (a) The SW amplitudes as a function of time (t = 5.0–5.5 ns with fH = 6.0 GHz, B0 = 200 mT, and Bext = 0.5 mT)
at the TW position (x = 500 nm and x = 700 nm) (black line, the SW amplitude without a TW; red line, the SW amplitude with a TW). (b)
The FFT spectra of the SW amplitude for the case of (a) at the TW position (x = 500 nm). (c) The SW amplitudes as a function of time at x =
500 nm (t = 5.0–10.0 ns with fH = 11.0 GHz, B0 = 200 mT, and Bext = 0.8 mT). (d) The FFT spectrum of the SW amplitude for the case of
(c) at the TW position. Inset shows the snapshots of the y-component magnetization for two different simulation times.
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FIG. 5. (Color online) (a and c) �Bdep calculations with the external fields along the ±x direction (B0 = 150 and 200 mT). (a) �Bdep

calculations with the external fields along the +x direction [�Bdep ≡ 1.7 mT −Bdep(fH )]. (b) The normalized Mx/MS curves with various
external fields (up, fH = 6.0 GHz; down, fH = 11.0 GHz). B0 = 150 mT is used (blue line, fH = 6.0 GHz and Bdep = 1.0 mT; red line, fH =
11.0 GHz and Bdep = 1.3 mT). (c) �Bdep calculations with the external fields along the −x direction [�Bdep ≡ − 1.7 mT −Bdep(fH )]. (d) The
normalized Mx/MS curves with various external fields (up, fH = 8.5 GHz; down, fH = 11.0 GHz). B0 = 200 mT is used.

the TW with relatively small reflection. Even though TWs
move with relatively high velocities at fH = 6.25 GHz and
11.25 GHz as shown in Fig. 2(a), this implies that the details
of the TW propagation mechanisms are totally different. On
the contrary, Han et al.10 pointed only to one physical origin of
the SW-induced TW motion. They claimed that a TW moves
resonantly at specific SW frequencies. However, here we show
that there is a second mechanism, which we discuss in the
present study.

In order to investigate further these two different mech-
anisms, we calculate the propagating SW amplitudes as a
function of time (t = 5.0 − 5.5 ns) for the pinned TW. The
SW amplitudes at the center of the TW (x = 500 nm) and to
the right side of the TW (x = 700 nm) with B0 = 200 mT for
two different frequencies (fH = 6 and 11 GHz) are depicted in
Figs. 4(a) and 4(c), respectively. In order to take a closer look
at the depinning mechanisms with the propagating SW, we
apply external fields, 0.1 mT smaller than the depinning fields
(Bext = 0.5 and 0.8 mT for fH = 6 and 11 GHz, respectively).
We observe that the SW amplitude already decreases from
50 (at x = 500 nm) to 30 (at x = 700 nm) without a TW
in Fig. 4(a) (black lines top and bottom figures). When we
introduce a TW, the SW profiles strongly deviate from the
simple sinusoidal function, which is clearly shown in the SW
amplitude at x = 500 nm in Fig. 4(a). Figure 4(b) shows the

FFT of the SW amplitude at x = 500 nm for both cases with
and without a TW in Fig. 4(a). Higher order harmonics (f =
12, 18, 24, and 30 GHz) of the main frequency fH = 6 GHz are
excited as can be observed in Fig. 4(b). Without a TW, there
are higher order harmonics of odd number (f = 18, 30 GHz),
but they are very small, and these higher order harmonics stem
from the fact that the wave front of the SW at fH = 6 GHz is
not sinusoidal [see Fig. 4(a)].

Figure 4(c) shows the SW amplitudes for fH = 11 GHz
as a function of time (t = 5.0 − 10.0 ns). As mentioned
before, the decrease of the SW amplitude due to the existence
of TW is smaller than the fH = 6 GHz [see Fig. 4(a)]. One
major difference is the beating of the SW amplitudes at
x = 500 nm. The amplitudes of SW change with a frequency
of 1.27 GHz. The clear peak of 1.27 GHz is seen in Fig. 4(d)
together with 11- and 22-GHz peaks. The origin of the
1.27-GHz peak is the vibration or collective oscillation of the
whole TW structure.10 At fH = 11 GHz, SWs generate such
a collective motion. The internal mode can be excited with
the corresponding propagating SW, but the absorbed energy
transfers to the collective motion of the whole TW. Although,
a significant FFT amplitude is present at higher harmonic
SW frequency (fH = 22 GHz) due to the SW reflection, the
amplitude is relatively smaller than the case of fH = 6 GHz.
The inset shows the y components of the magnetization for
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two different simulations times (t = 9.12 ns and 9.49 ns,
respectively) with fH = 11 GHz. The whole TW is resonantly
excited. Note that the vibrations are not symmetric due to the
external field.

In order to reveal more details of the differences between
fH = 6 and 11 GHz, we calculate the TW dynamics and the
depinning fields as a function of SW frequency. Figures 5(a)
and 5(c) show the depinning field differences [�Bdep(fH )]
for positive and negative Bext along the x direction. For
both cases, the depinning fields without SWs are ±1.7 mT.
We calculate �Bdep as a function of SW frequency (fH <

20 GHz and �fH = 0.5 GHz) for B0 = 150 and 200 mT. To
prevent TW oscillations when the external field is changed, we
calculate the equilibrium spin configurations for each applied
field before applying the localized excitation that generates
SWs. In Fig. 5(a), both momentum transfer and the collective
motion of the TW assist the depinning of TW due to the fact
that the directions of the propagating SW and the external
field are parallel. Although the SW amplitudes decrease when
the SW frequency increases, we observe four positive peaks
of �Bdep (≡ 1.7 −Bdep(fH )) at fH = 6.0, 7.5, 10.5–11.0,
and 13.5–14.0 GHz in Fig. 4(a). The normalized Mx/MS as
a function of time for both fH = 6 and 11 GHz with B0 =
150 mT as shown in Fig. 5(b) is calculated. At fH = 6 GHz,
the TW interacts with the propagating SW and then depins
(Bext = 0.8 − 1.0 mT) or fluctuates (Bext = 0.7 mT). For
fH = 6 GHz, the collective motion of TW is not observed,
except for Bext = 1.0 mT as shown in the top panel of
Fig. 5(b). Only small harmonic oscillations are found for Bext

= 1.0 mT as we already explained in Figs. 4(a) and 4(b).
In addition, for the second peak (fH = 7.5 GHz), the TW
fluctuates or directly depins without harmonic oscillations (not
shown here). However, at fH = 11 GHz, the propagating
SWs generate the collective oscillation of the TW for all
external fields (Bext = 1.1 − 1.3 mT) as shown in the bottom
panel of Fig. 5(b). It should be mentioned that the intrinsic
characteristic TW oscillation frequencies are about 1.25, 1.15,
and 0.95 GHz with Bext = 1.1, 1.2, and 1.3 mT, respectively.

Figure 5(c) shows �Bdep with the negative external field
along the −x direction (≡ −1.7 − Bdep(fH )). In this case, the
role of the SWs is even clearer than for the positive external
field case. For fH = 5.0–5.5 GHz, the SW decays very quickly
and exists only in the left side of the TW as we discussed earlier
[see Fig. 2(c)]. Therefore the TW is attracted to the SW source,
and it helps the depinning processes to the −x direction with
the negative external field. Thus, a negative Bdep is obtained at
that frequency range as shown in Fig. 5(c). For fH > 6.0 GHz,
�Bdep is always positive except 8.5 and 11.0 GHz for B0 =
200 mT. The positive �Bdep implies the SW prevents the
depinning processes against the negative external field. This is
consistent with the fact that the propagating SW moves a TW
in the SW propagating direction. However, there are negative
�Bdep at specific frequencies, fH = 8.5 and 11.0 GHz. At
the frequencies (internal modes), the SW helps the depinning

processes in spite of the opposite SW propagation direction
to the external magnetic field. This is further clear evidence
of the different mechanisms dominating at fH = 6 and
11 GHz, respectively. At the specific frequencies, we plot the
normalized Mx/MS as a function of the time in Fig. 5(d) with
various negative external fields. The top and bottom panels
(fH = 8.5 and 11.0 GHz) show clear oscillations of the TW,
the collective oscillation of the TW. The oscillation frequencies
are around 1 GHz, as already explained in Fig. 4(d). Although
the small peak at fH = 7.5 GHz in Fig. 5(a) is observed, it is
unclear whether the frequency is a new internal mode or not
since the propagating SWs and the applied field have the same
directions. However, we observe a clear new internal mode for
fH = 8.5 GHz in Fig. 5(c), and it is the external fields that are
able to give rise to new internal modes.

IV. CONCLUSIONS

In conclusion, we have numerically investigated the inter-
actions between the propagating SWs and a TW in a magnetic
nanowire. First, we have calculated the TW velocity with
propagating SWs as a function of the excited SW frequency in a
defect-free nanowire. At fH = 5.25 GHz, negative TW motion
was observed since a transfer of angular momentum from the
propagating magnons to the TW. Above fH = 5.5 GHz, we
have observed three positive velocity peaks (fH = 6.25, 11.25,
and 13.75 GHz). We have found from the calculations of
SW amplitudes and the depinning fields that there are two
different mechanisms to excite and depin the TW. One is
the momentum transfer from SWs to the TW-accompanied
strong SW reflections at fH = 6 GHz. The other mechanism is
the collective TW oscillation mediated by the internal modes
of TW at certain SW frequencies (fH = 8.5 and 11 GHz).
Especially, a new internal mode is found for the uniform
external field at fH = 8.5 GHz. Based on our study, we can
conclude that the details of the interaction between propagating
SWs and TWs depends on not only the propagating SW
frequencies, but also the collective TW vibrations of the spin
structure in the nanowires.
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L. J. Heyderman, F. Kronast, R. Mattheis, C. Ulysse, and G. Faini,
Phys. Rev. B 82, 104427 (2010).

21http://math.nist.org/oommf/.
22G. Consolo, L. Lopez-Diaz, L. Torres, and B. Azzerboni, IEEE

Trans. Magn. 43, 2974 (2007); Phys. Rev. B 75, 214428
(2007).

23P. Yan, X. S. Wang, and X. R. Wang, Phys. Rev. Lett. 107, 177207
(2011).

24A. V. Mikhailov and A. I. Yaremchuk, JETP Lett. 39, 354
(1984).

25S.-M. Seo, H.-W. Lee, H. Kohno, and K.-J. Lee, Appl. Phys. Lett.
98, 012514 (2011).

174428-6

http://dx.doi.org/10.1063/1.2931069
http://dx.doi.org/10.1063/1.2990629
http://dx.doi.org/10.1063/1.2990629
http://dx.doi.org/10.1103/PhysRevLett.92.077205
http://dx.doi.org/10.1103/PhysRevLett.95.026601
http://dx.doi.org/10.1103/PhysRevLett.95.026601
http://dx.doi.org/10.1063/1.1594841
http://dx.doi.org/10.1063/1.2399441
http://dx.doi.org/10.1063/1.2399441
http://dx.doi.org/10.1063/1.2754351
http://dx.doi.org/10.1063/1.3098409
http://dx.doi.org/10.1063/1.3446833
http://dx.doi.org/10.1063/1.3446833
http://dx.doi.org/10.1103/PhysRevB.68.024422
http://dx.doi.org/10.1103/PhysRevB.68.024422
http://dx.doi.org/10.1103/PhysRevLett.102.127202
http://dx.doi.org/10.1103/PhysRevLett.102.127202
http://dx.doi.org/10.1103/PhysRevLett.102.147202
http://dx.doi.org/10.1103/PhysRevLett.102.147202
http://dx.doi.org/10.1103/PhysRevLett.89.237202
http://dx.doi.org/10.1103/PhysRevLett.89.237202
http://dx.doi.org/10.1126/science.1162843
http://dx.doi.org/10.1063/1.3464569
http://dx.doi.org/10.1103/PhysRevLett.93.257202
http://dx.doi.org/10.1103/PhysRevLett.93.257202
http://dx.doi.org/10.1063/1.2836326
http://dx.doi.org/10.1063/1.2836326
http://dx.doi.org/10.1103/PhysRevB.82.104427
http://math.nist.org/oommf/
http://dx.doi.org/10.1109/TMAG.2007.893124
http://dx.doi.org/10.1109/TMAG.2007.893124
http://dx.doi.org/10.1103/PhysRevB.75.214428
http://dx.doi.org/10.1103/PhysRevB.75.214428
http://dx.doi.org/10.1103/PhysRevLett.107.177207
http://dx.doi.org/10.1103/PhysRevLett.107.177207
http://dx.doi.org/10.1063/1.3541651
http://dx.doi.org/10.1063/1.3541651

