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Thermodynamic Casimir effect: Universality and corrections to scaling
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We study the thermodynamic Casimir force for films in the three-dimensional Ising universality class with
symmetry breaking boundary conditions. We focus on the effect of corrections to scaling and probe numerically
the universality of our results. In particular, we check the hypothesis that corrections are well described by
an effective thickness L0,eff = L0 + c(L0 + Ls)1−ω + Ls , where c and Ls are system specific parameters and
ω ≈ 0.8 is the exponent of the leading bulk correction. We simulate the improved Blume-Capel model and the
spin-1/2 Ising model on the simple cubic lattice. First, we analyze the behavior of various quantities at the
critical point. Taking into account corrections ∝ L−ω

0 in the case of the Ising model, we find good consistency
of results obtained from these two different models. In particular, we get from the analysis of our data for
the Ising model for the difference of Casimir amplitudes �+− − �++ = 3.200(5), which nicely compares with
�+− − �++ = 3.208(5) obtained by studying the improved Blume-Capel model. Next, we study the behavior
of the thermodynamic Casimir force for large values of the scaling variable x = t(L0/ξ0)1/ν . It can be obtained
up to an overall amplitude by expressing the partition function of the film in terms of eigenvalues and eigenstates
of the transfer matrix and boundary states. Here, we demonstrate how this amplitude can be computed with high
accuracy. Finally, we discuss our results for the scaling functions θ+− and θ++ of the thermodynamic Casimir
force for the whole range of the scaling variable. We conclude that our numerical results are in accordance with
universality. Corrections to scaling are well approximated by an effective thickness.
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I. INTRODUCTION

At a second-order phase transition, various quantities like
the correlation length ξ or the specific heat Cbulk diverge
following power laws such as

ξ � ξ0,±|t |−ν, Cbulk � A±|t |−α, (1)

where t = (T − Tc)/Tc is the reduced temperature, ν and α are
the critical exponents of the correlation length and the specific
heat, respectively. The indices ± of the amplitudes ξ0,± and A±
indicate the phase: + for the high temperature phase and −
for the low temperature phase. Critical exponents such as ν

and α and amplitude ratios such as ξ0,+/ξ0,− and A+/A− are
universal. This means that these quantities do not depend on the
microscopic details of the system but are exactly the same for
all systems within a universality class. A universality class is
characterized by the dimension of the system, the range of the
interaction and the symmetry properties of the order parameter.
For reviews on critical phenomena see, e.g., Refs. 1–4. Power
laws such as Eq. (1) are valid only asymptotically in the limit
t → 0. At finite reduced temperature, corrections have to be
taken into account:5,6

ξ = ξ0,±|t |−ν

× (1 + a±|t |θ + bt + c±|t |2θ + d±|t |θ ′ + . . . ). (2)

There are analytic and nonanalytic (confluent) corrections.
The nonanalytic corrections are associated with nontrivial ex-
ponents θ = νω, θ ′ = νω′,.... For the universality class of the
three-dimensional Ising model with short-ranged interactions,
one finds consistently ω ≈ 0.8 from field theoretic methods,
the analysis of high-temperature series expansions, and Monte
Carlo simulations of lattice models.4 Our recent estimate
is ω = 0.832(6).7 The estimate ω′ = 1.67(11) obtained by
the scaling field method8 still lacks confirmation by other

approaches. Furthermore, we expect corrections caused by
the breaking of symmetries by the lattice. In the case of the
simple cubic lattice that we consider here, these corrections
are associated with ω′′ ≈ 2.9

The singular behavior (1) requires that the thermodynamic
limit is taken. For finite systems, the behavior of thermo-
dynamic quantities is given by analytic functions of the
parameters of the system and its linear size L0. Finite size
scaling10 predicts that in the neighborhood of the critical point,
for sufficiently large L0, this behavior is characterized by a
universal function of certain combinations of the parameters
of the system and its linear size L0. In the absence of an external
field, a quantity A(L0,t) that is a function of the temperature
and the linear size L0 of the system behaves as

A(L0,t) � L
y

0 g[t(L0/ξ0,+)1/ν], (3)

where the function g(x) depends on the universality class of
the bulk system and on the geometry of the finite system and
y = w/ν, where A(∞,t) ∝ |t |−w. Also, finite size scaling is
affected by corrections to scaling,10

A(L0,t) = L
y

0 g[t(L0/ξ0,+)1/ν]

× {
1 + b q[t(L0/ξ0,+)1/ν] L−ω

0 + . . .
}
, (4)

where q(x) is a universal function and b depends on the details
of the system.

Here, we shall study films with symmetry-breaking bound-
ary conditions. This choice is motivated by the fact that for
classical binary liquid mixtures, typically, the surfaces are
more attractive for one of the two components of the mixture.
In addition to the corrections discussed above, these boundary
conditions give rise to additional corrections where the leading
one is ∝L−1

0 ,11–13 where L0 is now the thickness of the film. In
this work, we focus on the thermodynamic Casimir effect14

in films. Due to the fact that in the neighborhood of the
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critical point the range of thermal fluctuations is restricted
by the finite thickness of the film, an effective force arises.
The thermodynamic Casimir force per area is given by

FCasimir = −∂f̃ex

∂L0
, (5)

where f̃ex = f̃film − L0f̃bulk is the excess free energy per area
of the film, where f̃film is the free energy per area of the
film and f̃bulk the free energy density of the bulk system. The
thermodynamic Casimir force per area follows the finite size
scaling law

FCasimir � kBT L−3
0 θ [t(L0/ξ0,+)1/ν], (6)

see, e.g., Refs. 15 and 16. For a discussion of nonuniversal
contributions due to long-ranged tails of the interaction, which
is not the subject of the present paper, we refer the reader to
Ref. 17. After the seminal work in Ref. 14, it took about
two decades until the thermodynamic Casimir effect could
be demonstrated in experiments. The data obtained for films
of different thicknesses of 4He near the λ transition are
represented to a reasonable approximation by a unique finite
size scaling function.18,19 Also experiments with liquid binary
mixtures near the mixing-demixing transition were performed,
where either films20 or the sphere-plate geometry21,22 were
studied. Unfortunately, field theoretic methods do not allow
to compute the scaling function θ (x) for the full range
of the scaling variable.12,13 Therefore it was an important
achievement that recently the thermodynamic Casimir force
was computed by Monte Carlo simulations of lattice models.
Corresponding to the experiments on 4He, the XY model on
the simple cubic lattice was simulated.23,24 Also the Ising
model on the simple cubic lattice that shares the universality
class of the mixing-demixing transition of binary mixtures
was studied.24,25 A reasonable match of the universal scaling
functions θ obtained from experiments and the corresponding
Monte Carlo simulations of lattice models was found. For a
recent review see Ref. 26.

However, it turned out that it is quite difficult to obtain
precise results for the universal scaling function θ from these
Monte Carlo simulations. For the thicknesses that can be
reached, corrections to scaling are still significant. Fitting the
data it is difficult to disentangle corrections ∝L−ω and ∝L−1.
Furthermore, the universal function q(x), Eq. (4), that governs
the corrections ∝L−ω is a priori unknown. The authors of
Refs. 23–25 used ad hoc approximations of q(x) in the analysis
of their data. Depending on the particular Ansatz that they used,
the results24,25 for the universal scaling function vary by a large
amount.

In order to alleviate this problem, we studied improved
models that are characterized by the fact that the amplitude of
the leading bulk correction vanishes.27,28 Since the parameter
of the improved model is determined numerically, in practice,
a residual amplitude remains, which is, however, at least by a
factor of 30 smaller than that of the Ising and the XY models
on the simple cubic lattice, respectively.7,29 Our results for
the scaling functions of the thermodynamic Casimir force
agree qualitatively with those of Refs. 23–25. However, the
numerical discrepancies are considerably larger than the errors
that are quoted. In particular, the results obtained very recently

in Ref. 30 from simulations of the Ising model by using the
preferred Ansatz of the authors, see Eqs. (17) and (18) in
Ref. 30, deviate clearly from those in Ref. 28, see Fig. 6(a)
in Ref. 30, and from that in Ref. 31, see Fig. 6(b) in Ref. 30.
For a discussion of this fact by the authors in Ref. 30, see the
text on page 041605-9 in Ref. 30 starting about 20 lines below
Table II.

The aim of the present work is to reach a better understand-
ing of corrections to scaling. This means that we intend to
determine the function q(x) of Eq. (4) for the thermodynamic
Casimir force. Note that due to universality of the function
q(x), our results might also be useful in the analysis of data
obtained in experiments. Also here, we start with an Ansatz
for q(x) that is motivated as follows. The corrections ∝L−1

0
caused by the boundaries can be expressed by a constant shift
in the thickness of the film. In equations such as Eq. (3), the
thickness L0 is replaced by

L0,eff = L0 + Ls, (7)

where Ls depends on the details of the system but not on
the observable. Here, we shall probe the hypothesis that in a
similar way corrections ∝L−ω

0 can be taken into account by

L0,eff = L0 + c(L0 + Ls)
1−ω + Ls. (8)

While renormalization group arguments suggest that Eq. (7) is
indeed exact, the generalization is at best a good approxima-
tion. It is motivated by the fact that for the strongly symmetry
breaking boundary conditions studied here, fluctuations are
suppressed in the neighborhood of the boundaries. Hence the
effect of corrections to scaling should be the largest close to
the boundaries. Plugging Eq. (8) into Eq. (3), ignoring the
correction ∝L−1

0 due to the boundary, we get

A(L0,t)

= (
L0 + cL1−ω

0

)y
g
{
t
[
(L0 + cL1−ω

0 )/ξ0,+
]1/ν}

= L
y

0 g(x) ×
{

1 + c

[
y + x

ν

g′(x)

g(x)

]
L−ω

0 + O
(
L−2ω

0

)}
,

(9)

where x = t[L0/ξ0,+]1/ν . Hence our hypothesis (8) results in

q(x) = y + x

ν

g′(x)

g(x)
. (10)

The outline of the paper is the following. In Sec. II, we
define the models that we simulated and the observables that
we measured. In Sec. III, we briefly recall how finite size
scaling theory applies to the free energy per area and the
thermodynamic Casimir force per area. In Sec. IV, we study
various quantities exactly at the critical point. Next, in Sec. V,
we study the behavior of the thermodynamic Casimir force for
large values of the scaling variable x. To this end, we analyze
the magnetization profile near the boundary of the film and
the correlation function of the bulk system. In Sec. VI, we
discuss our results for the scaling functions θ++ and θ+− in the
full range of the scaling argument. Then we summarize and
discuss our results. Finally, in Appendix, we discuss various
results obtained for the bulk of the spin-1/2 Ising model.
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II. MODEL

We study the Blume-Capel model on the simple cubic
lattice. It is defined by the reduced Hamiltonian

H = −β
∑
〈xy〉

sxsy + D
∑

x

s2
x , (11)

where the spin might assume the values sx ∈ {−1,0,1}. x =
(x0,x1,x2) denotes a site on the simple cubic lattice, where xi ∈
{1,2, . . . ,Li} and 〈xy〉 denotes a pair of nearest neighbors on
the lattice. The inverse temperature is denoted by β = 1/kBT .
The partition function is given by Z = ∑

{s} exp(−H ), where
the sum runs over all spin configurations. The parameter D

controls the density of vacancies sx = 0. In the limit D →
−∞, vacancies are completely suppressed and hence the spin-
1/2 Ising model is recovered.

In d � 2 dimensions, the model undergoes a continuous
phase transition for −∞ � D < Dtri at a βc that depends
on D. For D > Dtri, the model undergoes a first-order phase
transition. Reference 32 gives for the three-dimensional simple
cubic lattice, Dtri = 2.0313(4).

Numerically, using Monte Carlo simulations it has been
shown that there is a point [D∗,βc(D∗)] on the line of
second-order phase transitions, where the amplitude of lead-
ing corrections to scaling vanishes. Our recent estimate is
D∗ = 0.656(20).7 In Ref. 7, we simulated the model at
D = 0.655 close to βc on lattices of a linear size up to
L = 360. From a standard finite size scaling analysis of
phenomenological couplings like the Binder cumulant, we find
βc(0.655) = 0.387721735(25). Furthermore, the amplitude of
leading corrections to scaling is at least by a factor of 30
smaller than for the spin-1/2 Ising model. As discussed in
Appendix A 1, we shall use βc = 0.22165462(2) as an estimate
of the inverse critical temperature of the spin-1/2 Ising model
in the following.

In Ref. 33, we simulated the Blume-Capel model at D =
0.655 in the high-temperature phase on lattices of the size L3

with periodic boundary conditions in all directions and L>∼
10ξ for 201 values of β. For a few values of β, we performed
new simulations that reduced the statistical error considerably.
In particular, for β = 0.3872, which was our value closest
to βc, we get ξ2nd(0.3872) = 26.7013(15) for second moment
correlation length now. Taking into account these new data,
we arrive at the slightly revised result

ξ2nd,0,+ = 0.2283(1) − 1.8(ν − 0.63002)

+ 275(βc − 0.387721735)

using t = βc − β as definition of the reduced temperature.

(12)

The analogous result for the spin-1/2 Ising model is given in
Eq. (A10) in Appendix A 2.

In the high-temperature phase, there is little difference
between ξ2nd and the exponential correlation length ξexp, which
is defined by the asymptotic decay of the two-point correlation
function. Following Ref. 34,

lim
t↘0

ξexp

ξ2nd
= 1.000200(3) (13)

for the thermodynamic limit of the three-dimensional system.
Note that in the following, ξ0 always refers to ξ2nd,0,+.

A. Film geometry and boundary conditions

In the present work, we study the thermodynamic Casimir
effect for systems with film geometry. In the ideal case, this
means that the system has a finite thickness L0, while in the
other two directions the thermodynamic limit L1,L2 → ∞ is
taken. In our Monte Carlo simulations, we shall study lattices
with L0 � L1,L2 and periodic boundary conditions in the 1
and 2 directions. Throughout, we shall simulate lattices with
L1 = L2 = L.

In the 0 direction, we take symmetry breaking boundary
conditions. A strong breaking of the symmetry is achieved by
fixing the spins at the boundary to either −1 or 1. Here, we shall
put these fixed spins on the layers at x0 = 0 and at x0 = L0 + 1.
This means that L0 gives the number of layers with fluctuating
spins. In the following, we shall consider the two choices:
(i) ++ boundary conditions: sx = 1 for all x with x0 = 0 or
x0 = L0 + 1, and (ii) +− boundary conditions: sx = 1 for
all x with x0 = 0 and sx = −1 for all x with x0 = L0 + 1.
Note that these boundary conditions are physically relevant for
experiments with confined near-critical binary mixtures, since
typically a surface is more attractive to one of the components
than to the other. In experiments, see, e.g., Refs. 20–22, both
possible situations can be realized; both surfaces prefer the
same component or one of the surfaces prefers one component,
while the other surface prefers the other component of the
mixture.

B. Free energy, energy and specific heat

For bulk systems, we define the reduced free energy
density as

fbulk = − 1

L0L1L2
ln Z. (14)

This means that compared with the free energy density f̃bulk, a
factor kBT is skipped. Correspondingly, we define the energy
density as the derivative of minus the reduced free energy
density with respect to β:

Ebulk = 1

L0L1L2

∂ ln Z

∂β
= 1

L0L1L2

〈∑
〈x,y〉

sxsy

〉
, (15)

and the specific heat

Cbulk = ∂Ebulk

∂β

= 1

L0L1L2

⎡
⎣
˝⎛
⎝∑

〈x,y〉
sxsy

⎞
⎠

2˛
−
�∑
〈x,y〉

sxsy

�2
⎤
⎦ . (16)

In the case of films, we consider the reduced free energy per
area,

f = − 1

L1L2
ln Z (17)
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and the energy per area,

E = 1

L1L2

∂ ln Z

∂β
= 1

L1L2

〈∑
〈x,y〉

sxsy

〉
. (18)

C. The magnetization profile of films

The film is invariant under translations in the 1 and 2
direction of the lattice. Therefore the magnetization only
depends on x0 and we can average over x1 and x2:

m(x0) = 1

L2

∑
x1,x2

〈sx〉. (19)

Since the film is symmetric for ++ boundary conditions and
antisymmetric for +− boundary conditions under reflections
at the middle of the film, m(x0) = m(L0 − x0 + 1) for ++
boundary conditions and m(x0) = −m(L0 − x0 + 1) for +−
boundary conditions.

D. The correlation length

The exponential correlation length ξ of the bulk system is
defined by the decay of the slice-slice correlation function

G(r) � c exp(−r/ξ ) (20)

for large distances r . The slice-slice correlation function is
defined as

G(r) = 〈S(x0)S(x0 + r)〉, (21)

where

S(x0) = 1√
L1L2

∑
x1,x2

(
sx0,x1,x2 − 〈m〉) , (22)

where 〈m〉 is the bulk magnetization that vanishes in the high-
temperature phase for a vanishing external field. For a detailed
discussion of the second-moment correlation length defined
for films, see Sec. III C of Ref. 28.

E. Monte Carlo algorithms

In the case of the Ising model, we simulated films with
L0 � 68 using a local Metropolis algorithm and a multispin
coding implementation. We used the same program, up to
small modifications, to implement the boundary conditions, as
discussed in Sec. 3 in Ref. 35. On one core of an Intel(tm)
Xeon(tm) E5520 CPU running at 2.27 GHz the program
achieves 1.9 × 109 spin updates per second. This is about
100 times faster than on the fastest workstation that was
available to us in 1993. Most simulations were performed on
Quad-Core AMD Opteron(tm) 2378 CPUs running at 2.4 GHz.
Here, the program achieves 1.4 × 109 spin updates per second
on one core. In relation with Sec. V, we simulated films with
++ boundary conditions with L0 > 68. These were simulated
by using a special version of the cluster algorithm as discussed
in Ref. 28. In the case of the Blume-Capel model, we simulated
the films using the same algorithms as discussed in Sec. V of
Ref. 28.

Mostly we simulated lattices with periodic boundary
conditions in all directions with the single-cluster algorithm36

in the case of the Ising model and a hybrid37 of the local

heat-bath and the single-cluster algorithm in the case of the
Blume-Capel model.

In all our simulations, we used the Mersenne twister
algorithm38 as a pseudorandom number generator. In total, our
simulations took the equivalent of about 50 years of CPU time
on a single core of a Quad-Core AMD Opteron(tm) Processor
2378 running at 2.4 GHz.

III. FINITE SIZE SCALING AND CORRECTIONS
TO SCALING

The reduced excess free energy per area of a film is
given by

fex(L0,β) = f (L0,β) − L0fbulk(β). (23)

In the reduced excess free energy, the analytic bulk contribu-
tion cancels. Therefore it can be written as

fex(L0,β) = fex,s(L0,β) + 2fr (β), (24)

where fex,s is the singular part and fr is an analytic contribution
due to the boundaries. In the absence of an external field, this
contribution is the same for a boundary where all spins are
fixed to +1 and one where all spins are fixed to −1. The free
energy of a system is conserved under renormalization group
transformations. Therefore the singular part of the reduced
excess free energy behaves as

fex,s(L0,β) = L−2
0 H [t(L0/ξ0)yt ,bL

y1
0 , . . . ], (25)

where yt = 1/ν and y1 = −ω are the thermal and the leading
irrelevant renormalization group exponents, respectively. Ex-
panding the universal scaling function H (x,u, . . . ) in u around
u = 0, we arrive at

fex,s(L0,β) = L−2
0 h(x)

[
1 + b p(x)L−ω

0 + . . .
]
, (26)

where x = t(L0/ξ0)1/ν and the leading correction is char-
acterized by the universal function p(x). Taking minus the
derivative with respect to L0, we get the thermodynamic
Casimir force

1

kbT
FCasimir

= L−3
0 θ (x)

(
1 + b

{
p(x) + h(x)

θ (x)

[
ωp(x)

−x

ν
p′(x)

]}
L−ω

0 + . . .

)
, (27)

where

θ (x) = 2h(x) − x

ν
h′(x). (28)

Note that at the critical point θ (0) = 2h(0). In the literature,
h(0) is called Casimir amplitude and is denoted by �. Also
note that

θ ′(0) =
(

2 − 1

ν

)
h′(0). (29)
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Taking minus the derivative with respect to β, we get

Eex(L0,β)

= L−2
0 [L0/ξ0]1/νh′(x)

×
{
1 + b

[
p(x) + h(x)p′(x)

h′(x)

]
L−ω

0 + . . .

}
− 2f ′

r (β).

(30)

IV. FINITE SIZE SCALING AT THE CRITICAL POINT

First, we study finite size scaling at the critical point,
i.e., x = t(L0/ξ0)1/ν = 0. To this end, we analyze data for
the free energy difference between films with +− and ++
boundary conditions, the energy density and the magnetization
profile for both types of boundary conditions. Finally, we
also consider the second moment correlation length for +−
boundary conditions.

For a given quantity, at a given value of x, it is a trivial
recast to express corrections to scaling in the form (8). The
nontrivial question that we investigate here is whether leading
corrections in different quantities can be expressed by the same
or at least similar effective thicknesses L0,eff .

In the Ansätze below, we shall use in addition to Eq. (8),

L0,eff = L0 + Ls + c(L0 + Ls)
−ω + d(L0 + Ls)

−ε (31)

in order to probe for the effect of subleading corrections. As
discussed in Intoduction, there are infinitely many subleading
corrections starting with ε = 2ω ≈ ω′, 1 + ω, and ω′′ ≈ 2.
Given the accuracy of our data, it is only possible to put
one subleading correction in the Ansätze. In the following,
we shall take either ε = 1.664 or ε = 2. Fitting with Ansätze
that only approximate the behavior of the data, one has to
be aware of systematic errors. In the literature, it is often
implicitly assumed that an acceptable χ2/d.o.f. means that
such systematic errors are small and of a similar size or
even smaller than the statistical errors of the fit parameters.
However, this is definitely not the case. The severity of the
problem depends of course on the type of the approximation
and the range of the data that are available. Below, we shall
see that the differences between results of fits with Eq. (8) and
ones with Eq. (31) are, e.g., five times larger than the statistical
error. The error that we quote for final results is chosen such
that both the results of fits with Eqs. (8) and (31) are covered.

A. The difference of free energies per area between +− and ++
boundary conditions

First, we studied the difference

Df,+−,++(L0,β) = f+−(L0,β) − f++(L0,β), (32)

where f+− and f++ are the reduced free energies for +− and
++ boundary conditions, respectively. In this difference, the
surface and the bulk contributions exactly cancel and therefore
at the critical point,

Df,+−,++(L0,βc) � (�+− − �++) L−2
0 , (33)

where �+− and �++ are the Casimir amplitudes for +− and
++ boundary conditions, respectively. Similar to the case of
periodic and antiperiodic boundary conditions,39,40 the ratio
Z+−/Z++ of partition functions can be directly computed by

using the cluster algorithm. To this end, one determines for ++
boundary conditions the fraction of cluster decompositions
where the two boundaries do not belong to the same cluster.
These cluster decompositions would allow to update to +−
boundary conditions. Since for +− boundary conditions the
update to ++ boundary conditions is always allowed, the
fraction discussed above is an estimate of Z+−/Z++.

Unfortunately, at the critical point, for L � L0, the ratio
Z+−/Z++ is far too small to allow for an efficient sampling.
Therefore we simulated in the high-temperature phase at β =
β0 such that L0/ξ (β0) ≈ 6, where ξ is the bulk correlation
length. Here, for L = 4L0, which we used in our simulations,
the value of Z+−/Z++ is a few percent. In order to get f+− −
f++ at larger values of β, in particular, at the critical point, we
performed an integration of energy differences:

Df,+−,++(L0,β) = Df,+−,++(L0,β0)

−
∫ β

β0

dβ̃ DE,+−,++(L0,β̃), (34)

where DE,+−,++ = E+− − E++. We performed this integra-
tion numerically, using the trapezoidal rule. To this end,
we used at least 36 values of β between β0 and βc as
nodes. For a detailed discussion of the corresponding Monte
Carlo simulations, see Sec. VI below. In most cases, we
used the same data as discussed in Sec. VI. Only for the
Ising model at the thicknesses L0 = 24 and 48 and the
Blume-Capel model at the thickness L0 = 68, we performed
additional simulations. For an analytic integrand, the estimate
obtained by using the trapezoidal rule behaves as I (h) =
I (0) + ah2 + O(h4), where I (0) is the integral to be computed
and h is the step size. We estimated the systematic error by
computing I (2h), i.e., performing the integration (34) with
half of the available data points. The systematic error is
then estimated by ε = [I (2h) − I (h)]/3. It turned out that
the systematic error ε is considerably larger than the rather
small statistical error. Therefore we extrapolated our result
as I (0) = I (h) − [I (2h) − I (h)]/3 + O(h4). In the case of
the Blume-Capel model and L0 = 34, where we simulated
at 116 values of β between β0 and βc, we checked the
efficiency of the extrapolation by computing I (h), I (2h), and
I (4h). We found agreement between I (h) − [I (2h) − I (h)]/3
and I (2h) − [I (4h) − I (2h)]/3 within the statistical error. In
Table I, we summarized our numerical results for the critical
point.

We fitted the data obtained for the Ising model with the
Ansätze

Df,+−,++ = � [L0 + Ls + c(L0 + Ls)
1−ω]−2 (35)

and

Df,+−,++
= � [L0 + Ls + c(L0 + Ls)

1−ω + d(L0 + Ls)
1−ε]−2,

(36)

where we set either ε = 1.664 or ε = 2.
Fitting with the Ansatz (35), setting ω = 0.832, we get

for L0,min = 16 the result � = 3.1987(9), c = 1.429(12),
Ls = 1.043(12), and χ2/d.o.f.= 1.20. Note that all data
with L0 � L0,min are taken into account in the fit. Instead,
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TABLE I. We give the difference Df,+−,+− of the reduced free
energies per area between +− and ++ boundary conditions at our
estimates of the inverse critical temperature, i.e., β = 0.22165462 for
the Ising model and β = 0.387721735 for the Blume-Capel model at
D = 0.655.

L0 Model Df,+−,+−

14 I 0.01069953(37)
15 I 0.00953606(25)
16 I 0.00855417(15)
17 I 0.00771682(12)
24 I 0.00423239(15)
32 I 0.002522796(50)
34 I 0.002258418(55)
48 I 0.00119288(10)
64 I 0.000693495(64)
68 I 0.000617863(63)
16 BC 0.00999910(67)
17 BC 0.00897065(65)
32 BC 0.00279016(11)
34 BC 0.00248788(11)
68 BC 0.00065641(11)

taking ω = 0.826, we get � = 3.1995(9), c = 1.367(11),
Ls = 1.100(15), and χ2/d.o.f.= 1.20. This means that the
estimate of � depends little on the value of ω, while c and
Ls are quite sensitive to it. We redid these fits for Df,+−,++
evaluated at β = 0.2216546. The results change only by little.

Next, we fitted all data, i.e., L0,min = 14, with the Ansatz
(36). We get, fixing ω = 0.832 and ε = 1.664, the results � =
3.2025(21), c = 1.57(6), Ls = 0.78(11), d = 0.35(14), and
χ2/d.o.f.= 1.47. Instead, for ε = 2, we get � = 3.2016(19),
c = 1.52(4), Ls = 0.88(7), d = 1.52(4), and χ2/d.o.f.= 1.45.
We see that by adding a subleading correction, the estimate of
� changes little, while the results for c and Ls are considerably
shifted. Note that the estimates of c and Ls are highly
anticorrelated. The resulting L0,eff , Eq. (8), for the thicknesses
analyzed here, depend much less on the Ansatz that is used.
Taking all fits discussed above into account, we conclude

�+− − �++ = 3.200(5). (37)

Next, we fitted our data for the Blume-Capel model with
the Ansätze

Df,+−,++ = � (L0 + Ls)
−2 (38)

and

Df,+−,++ = � [L0 + Ls + d(L0 + Ls)
−1]−2. (39)

Fitting all data with the Ansatz (38), we get � = 3.20901(25),
Ls = 1.9140(11), and χ2/d.o.f. = 1.12. Fitting all data with
the Ansatz (39), we get D = 3.2071(5), Ls = 1.898(4), d =
0.20(6), and χ2/d.o.f. = 0.72, instead. We redid these fits for
Df,+−,++ evaluated at β = 0.38772176 in order to estimate the
error due to the uncertainty of βc. Finally, in order to check for
the possible effect of residual corrections to scaling ∝L−ω

0 , we
fitted our data with the Ansätze (35) and (36), where we fixed
the amplitude of the leading correction to c = 1.5/30. Note
that in Ref. 7, we found that the amplitudes of the leading
correction are at least suppressed by the factor 1/30 in the

Blume-Capel model at D = 0.655 compared with the spin-1/2
Ising model.

Taking these fits into account, we arrive at

�+− − �++ = 3.208(5), (40)

which is consistent with the estimate (37) obtained above.
Furthermore, these results are fully consistent with �+− −
�++ = [θ+−(0)− θ++(0)]/2 = [5.613(20) + 0.820(15)]/2 =
3.217(18) obtained in Sec. VI C in Ref. 28. Our result is slightly
larger than �+− − �++ = 2.71(2) − 0.376(29) = 3.09(5),
which the authors obtained by fitting their data for the
thermodynamic Casimir force per area with Ansatz (26)
in Ref. 24. In Ref. 30, the authors used different Ansätze.
Equations (17), (18), and (19) coincide at the critical point
with our Ansatz (7). The authors argue that corrections ∝L−ω

0

are effectively taken into account by the ∝L−1
0 correction

that is present in the Ansatz. In Fig. 6(a) in Ref. 30, we see
that their strong symmetry breaking results, i.e., h̃1 = −100
and h̃1 = 100 clearly deviate from ours.28 To understand
this discrepancy, we fitted our data for the Ising model with
Ansatz (39). Fitting all our data we get � = 3.1467(4),
Ls = 3.480(4), d = −5.83(5), and χ2/d.o.f.= 76.35. Fitting
only the data with L0 � 34 and assuming a statistical error
that is 3 times larger than the one that we actually achieved,
we get � = 3.136(2), Ls = 3.39(2), d = −4.7(2), and
χ2/d.o.f.= 1.03. While χ2/d.o.f.≈ 1, this is completely
incompatible with our final result (37), which substantiates
our statements above on fitting with approximate Ansätze.

Finally, note that our results for Ls of the Blume-Capel
model at D = 0.655 are fully consistent with Ls = 1.9(1),28

Ls = 2lex = 1.92(4), and Ls = 1.90(5).31 In Sec. VI below,
we shall assume Ls = 1.91(5).

B. Simulations at the critical point

In order to compute the energy per area and the mag-
netization profile at the critical point of the Ising model,
we performed high statistics simulations at β = 0.2216546,
which was our estimate of βc when we started the simulations.
In order to obtain the observables at β = 0.22165462, we
computed the derivative of the observables with respect to β

from finite differences. In Table II, we summarize the lattice
sizes and the statistics of our first set of simulations. In a
second set of simulations with +− boundary conditions, we
measured the second moment correlation length in addition.
We simulated lattices of the thicknesses L0 = 24, 32, 48, 64,
and 96. The number of measurements is 51.2 × 107, 51.9 ×
107, 49.1 × 107, 34.6 × 107, and 7.8 × 107, respectively. Also
here, we performed 16 sweeps with the Metropolis algorithm
for each measurement. For this second set of simulations,
L = 4L0. For L0 = 6, we simulated L = 12, 14, 16, 18,
20, 24, 36, 48, and 60 performing 6.4 × 108 measurements
throughout. From the analysis of these runs, we conclude that
for +− boundary conditions, at the critical point, L = 4L0

is fully sufficient to keep deviations from the L → ∞ limit
at a negligible level. In our simulations, we wrote averages
over 64 000 measurements on disk to keep the amount of
data tractable. In order to estimate autocorrelation times, we

174421-6



THERMODYNAMIC CASIMIR EFFECT: UNIVERSALITY . . . PHYSICAL REVIEW B 85, 174421 (2012)

TABLE II. Number of measurements (stat) in our simulations
of the Ising model at β = 0.2216546. For each measurement, 16
sweeps with the Metropolis algorithm were performed. In these
simulations, L = 6L0 and L = 10L0 for ++ and +− boundary
conditions, respectively.

L0 stat ++ stat +−
6 64.0 × 108 64.0 × 107

7 57.2 × 108 64.0 × 107

8 45.3 × 108 64.0 × 107

9 47.9 × 108 64.0 × 107

10 39.4 × 108 51.5 × 107

11 31.4 × 108 46.1 × 107

12 24.0 × 108 44.8 × 107

13 15.1 × 108 37.9 × 107

14 15.5 × 108 32.4 × 107

15 15.3 × 108 27.8 × 107

16 14.2 × 108 25.6 × 107

17 10.4 × 108 21.5 × 107

18 10.9 × 108 19.5 × 107

19 11.8 × 108 18.9 × 107

20 10.4 × 108 18.8 × 107

22 10.4 × 108 28.7 × 107

24 67.1 × 107 20.4 × 107

26 64.3 × 107 22.7 × 107

28 62.0 × 107 25.8 × 107

32 62.9 × 107 22.5 × 107

36 31.5 × 107 22.7 × 107

48 14.4 × 107 2.9 × 107

64 9.9 × 107 2.7 × 107

did a few additional simulations, where every measurement
was stored. For example, we performed 105 measurements
for +− boundary conditions, L0 = 96 and L = 384. From
this run, we got the integrated autocorrelation times τint =
3.3(2), 15.2(1.0), and 28.(3.) in units of measurements for
the energy per area, the magnetic susceptibility, and the
magnetisation in the middle of the film. The autocorrelation
times of a local algorithm grow like τ ∝ Lz

0 at the critical
point, where z ≈ 2. Therefore despite the efficient multispin
coding implementation of the Metropolis algorithm, the cluster
algorithm should become more efficient starting from a certain
thickness L0. Since τint enters into the statistical error, this
thickness depends to some extend on the observable one is
interested in. For lack of human time, we did not systematically
investigate these questions.

C. The energy per area

Taking Eq. (30) at x = 0 and ignoring corrections to scaling,
we arrive at

Eex(L0,βc) = B + aL
−2+1/ν

0 , (41)

where B = 2fr (βc) and a = ξ
−1/ν

0 h′(0).
In order to compute the excess energy, we used the estimate

of Ebulk(βc), Eq. (A4), obtained in Appendix A 1. Replacing
L0 by L0,eff in Eq. (41), we arrive at the Ansätze

Eex(L0,βc) = B + a[L0 + Ls + c(L0 + Ls)
1−ω]−2+1/ν (42)

and

Eex(L0,βc) = B + a[L0 + Ls + c(L0 + Ls)
1−ω

+d(L0 + Ls)
1−ε]−2+1/ν, (43)

where we set either ε = 1.664 or ε = 2. In our fits, B, a,
c, Ls , and d are free parameters. We fixed ν = 0.63002 and
ω = 0.832.

First, we analyzed our data for +− boundary conditions.
Fitting with the Ansatz (42), we get an acceptable χ2/d.o.f.
starting from L0,min = 18. For L0,min = 20, we get B =
7.8010(7), a = −15.455(7), c = 1.472(35), Ls = 1.413(44),
and χ2/d.o.f. = 0.62. Using the Ansatz (43), we get an
acceptable χ2/d.o.f. already for L0,min = 7 both for ε =
1.664 and ε = 2. For example, for L0,min = 8 and ε = 1.664,
we get B = 7.80405(23), a = −15.4946(19), c = 2.028(8),
Ls = 0.476(10), d = −0.27(4), and χ2/d.o.f. = 0.93. In-
stead, for L0,min = 8 and ε = 2, we get B = 7.80279(25), a =
−15.4790(20), c = 1.794(9), Ls = 0.903(11), d = 0.13(4),
and χ2/d.o.f. = 1.13. We see that the results depend strongly
on the Ansätze that is used. This holds, in particular, for the
estimates of c and Ls . We redid the fits using shifted values
of the input parameters to estimate the error of our results due
to the uncertainty of these parameters. Taking into account the
results of all these fits, we arrive at B = 7.803(5) and

aI,+− = −15.48(5) − 130(ν − 0.63002), (44)

where for a+−, we give the dependence on the value of ν

explicitly. The error induced by the uncertainty of the other
input parameters is included into the number given in ().

For ++ boundary conditions fitting with, the Ansätze (42)
gives acceptable values of χ2/d.o.f. already for L0,min = 7.
For example, for L0,min = 8, we get B = 7.80168(22),
a = −10.2105(16), c = 1.462(7), Ls = 1.16(7), and
χ2/d.o.f. = 1.23. Instead, fitting with the Ansatz (43), we
get for ε = 1.664 and L0,min = 8 the result B = 7.8054(7),
a = −10.248(6), c = 2.02(4), Ls = 0.27(5), d = 2.3(4),
and χ2/d.o.f. = 1.02. Fixing ε = 2, we get results that lie
between those of the two fits discussed before. Also in the
case of ++ boundary conditions, we redid the fits with shifted
values of the input parameters. As our final result, we quote
B = 7.804(5) and

aI,++ = −10.23(5) − 70(ν − 0.63002). (45)

Note that the results obtained for B with +− and ++
boundary conditions agree as theoretically expected.

Assuming ν = 0.63002, we get h′
+−(0) = −15.48(5) ×

0.1962(1)1/0.63002 = −1.167(5) and h′
++(0) = −10.23(5) ×

0.1962(1)1/0.63002 = −0.771(5) from the analysis of
the Ising model. In Ref. 28, we found for the
Blume-Capel model at D = 0.655 the results aBC,++ =
−8.04(1) and aBC,+− = −12.18(3). Hence h′

+−(0) =
−12.18(3) × 0.2283(1)1/0.63002 = 1.168(4) and h′

++(0) =
−8.04(1) × 0.2283(1)1/0.63002 = −0.771(2). We see that
the results obtained for the universal quantities h′

+−(0) and
h′

++(0) are in perfect agreement. Using Eq. (29), we arrive at

θ ′
+−(0) = −0.482(2), θ ′

++(0) = −0.318(2) (46)

taking into account the results obtained from both models.
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Finally, we analyzed the difference DE,+−,++ at the critical
point. The advantage of this quantity is that the bulk energy
and the surface contributions exactly cancel. We fitted our data
with the Ansätze

Eex(L0,βc) = Da[L0 + Ls + c(L0 + Ls)
1−ω]−2+1/ν (47)

and

Eex(L0,βc) = Da[L0 + Ls + c(L0 + Ls)
1−ω

+ d(L0 + Ls)
1−ε]−2+1/ν . (48)

Fitting with the Ansatz (47), we get an acceptable χ2/d.o.f.
only for rather large values of L0,min. For example, for L0,min =
26, we get Da = −5.2548(19), c = 1.80(10), Ls = 1.49(14),
and χ2/d.o.f. = 1.26. Fitting with the Ansatz (48) and ε =
1.644, we get for L0,min = 12, the results Da = −5.2570(8),
c = 2.15(4), Ls = 0.81(5), d = −3.56(18), and χ2/d.o.f. =
1.04. Instead, for ε = 2, we get Da = −5.2548(7), c =
1.92(3), Ls = 1.25(4), d = −3.71(16), and χ2/d.o.f. = 1.09.
Also here, we redid the fits with shifted values of the input
parameters. We arrive at the final result

aI,+− − aI,++ = −5.256(4) − 75(ν − 0.63002). (49)

D. The magnetization profile

For simplicity, we shall not study the complete magnetiza-
tion profile, but we shall restrict ourselves on the magnetization
in the middle of the film and the slope of the magnetization in
the middle of the film for ++ and +− boundary conditions,
respectively. Let us first discuss the case of ++ boundary
conditions. The magnetisation in the middle of the film at the
critical point behaves as

mmid = CmL
−β/ν

0 . (50)

The amplitude Cm is not universal, but one can construct
universal amplitude ratios that combine Cm with the amplitude
of the bulk correlation length and the bulk magnetization or
the magnetic susceptibility. Here, we only intend to compare
our result for Cm,I for the Ising model with Cm,BC obtained
previously for the Blume-Capel model at D = 0.655.28 To
this end, it is sufficient to determine the relative normalization
of the magnetization between these two models. To this end,
we compare the magnetic susceptibility of systems with the
extension L0 = L1 = L2 and periodic boundary conditions in
all three directions that we computed in relation with Ref. 7.
In particular, we fitted the data for the magnetic susceptibility
at Za/Zp = 0.5425 with the Ansatz

χ̄ = CχL2−η(1 + cL−ω) + b, (51)

where we fixed η = 0.03627(10) and ω = 0.832(6). We
arrive at √

Cχ,I

Cχ,BC
= 1.2811(2), (52)

where statistical and systematical errors as well as the
uncertainty of η and ω are taken into account.

In order to define the magnetization in the middle of the
film for even values of the thickness L0, we quadratically
extrapolated the magnetizations of the slice that is next to the

middle and the one that is next to next. We fitted these data
with the Ansätze

mmid = Cm[L0 + Ls + c(L0 + Ls)
1−ω]−β/ν (53)

and

mmid = Cm[L0 + Ls + c(L0 + Ls)
1−ω

+ d(L0 + Ls)
1−ε]−β/ν, (54)

where we fixed β/ν = (1 + η) = 0.5018135, ω = 0.832, and
ε = 1.664 or ε = 2. In the following, we only take into
account data for even values of L0. Using Ansatz (53), we get
for L0,min = 24 the results Cm = 1.71799(18), c = 1.63(2),
Ls = 1.31(3), and χ2/d.o.f.= 0.21. Using Ansatz (54), we
get with ε = 2 an acceptable χ2/d.o.f. already for L0,min =
6. For L0,min = 8, we get Cm = 1.71880(7), c = 1.844(8),
Ls = 0.922(11), d = 1.289(14), and χ2/d.o.f.= 0.78. For
ε = 1.664 and L0,min = 10, we get Cm = 1.71929(11), c =
2.016(17), Ls = 0.563(29), d = 1.172(27), and χ2/d.o.f.=
0.59.

We redid these fits using shifted values of βc, η, and ω. As
final results, we quote

Cm,I = 1.7187(10) + 4.8(η − 0.03627), (55)

where we give explicitly the dependence of our result on the
value of η.

In Ref. 28, we analyzed mmid for the Blume-Capel model at
D = 0.655 for thicknesses up to L0 = 32. Later,31 we added
data for L0 = 48, 64, and 96. Taking into account also these
data, we arrive at

Cm,BC = 1.3421(8) + 2.8(η − 0.03627). (56)

We get

Cm,I

Cm,BC
= 1.2806(16), (57)

which is fully consistent with Eq. (52).
In the case of +− boundary conditions, we consider the

slope of the magnetization profile in the middle of the film. It
scales as

Smid = CsL
−1−β/ν

0 . (58)

We fitted our data for the Ising model with the Ansätze

Smid = Cs[L0 + Ls + c(L0 + Ls)
1−ω]−1−β/ν (59)

and

Smid = Cs[L0 + Ls + c(L0 + Ls)
1−ω

+ d(L0 + Ls)
1−ε]−1−β/ν, (60)

where we fixed η = 0.03627, ω = 0.832, and ε = 1.664 or
ε = 2. Also here, we fitted only the data for even values
of L0. Fitting with the Ansatz (59), we find small values
of χ2/d.o.f. already for L0,min = 8. For L0,min = 10, we
get Cs,I = 7.2013(4), c = 1.4603(25), Ls = 0.7023(31), and
χ2/d.o.f.= 0.39. Fitting with the Ansatz (60), we find that the
parameter d vanishes within the error bars. Taking into account
the error due to the uncertainty of the input parameters ω and
η, we arrive at the

Cs,I = 7.201(3) + 19(η − 0.03627). (61)

174421-8



THERMODYNAMIC CASIMIR EFFECT: UNIVERSALITY . . . PHYSICAL REVIEW B 85, 174421 (2012)

TABLE III. In the second column, we give the second moment correlation length obtained from simulations of lattices with L = 4L0 for
+− boundary conditions at the critical point of the Ising model. In the third column, we give Lex = L0,eff − L0. For the definition of L0,eff see
the text. In the fourth, fifth, sixth, and seventh column, we give Lex = L0,eff − L0 derived from Df,+−,++, DE,+−,++, mmid, and Smid, respectively.

L0 ξ2nd Lex, ξ2nd Lex, Df,+−,++ Lex, DE,+−,++ Lex, mmid Lex, Smid

24 5.6881(24) 2.89[10] 3.51[2] 4.61[10] 4.14[3] 3.20[1]
32 7.4025(42) 3.00[13] 3.64[3] 4.76[12] 4.27[4] 3.32[1]
48 10.807(10) 3.10[19] 3.83[4] 4.99[16] 4.49[6] 3.51[1]
64 14.204(20) 3.16[25] 3.97[5] 5.16[20] 4.65[8] 3.64[2]
96 20.99(10) 3.2[4] · · · · · · · · · 3.85[3]

Fitting data obtained in relation with Ref. 28 for the Blume-
Capel model, we get

Cs,BC = 5.625(10) + 10(η − 0.03627). (62)

We get

Cs,I

Cs,BC
= 1.280(3), (63)

which is fully consistent with Eq. (52).

E. The correlation length

Finally, we discuss the second-moment correlation length
of films with +− boundary conditions at the critical point.
Our numerical results are summarized in Table III. Since here
we generated less data than for the quantities discussed above,
we abstain from fitting the data for the correlation length. In
Ref. 28, we found ξ2nd = 0.2115(8)(L0 + Ls). Based on this
result, we define

L0,eff = ξ2nd/0.2115(8). (64)

In the third column of Table III, we quote L0,eff − L0. In the
square brakets, we give the error due to the uncertainty of the
amplitude of the correlation length of the film. For comparison,
we give analogous results derived from the difference of free
energies Df,+−,++, the difference of energies DE,+−,++, the
magnetization in the middle of the film for ++ boundary
conditions and the slope of the magnetisation in the middle of
the film for +− boundary conditions.

We see that the values of L0,eff − L0 computed from
different observables are of a similar size. However, the
differences are considerably larger than the sum of the errors.
Therefore it is quite clear that L0,eff − L0 is not exactly the
same for all quantities.

V. THERMODYNAMIC CASIMIR FORCE AND THE
TRANSFER MATRIX

First, let us briefly recall the discussion given in Sec. IV of
Ref. 28. The partition function of a system with fixed boundary
conditions can be expressed in terms of the eigenvalues of
the transfer matrix and the overlap of the eigenvectors with
the boundary states. Let us consider a lattice of the size
L0 × L2, where L is large compared with the bulk correlation
length but still finite. We consider the transfer matrix T that
acts on vectors that are build on the configurations living on
L2 slices. We denote the eigenvalues of T by λα and the
corresponding eigenvector by |α〉, where α = 0,1,2, . . . ,αmax.

The eigenvalues are ordered such that λα � λβ for α < β. In
particular, λ0 is the largest eigenvalue. The partition function
of the system with fixed boundaries is given by

Zb1,b2 =
∑

α

λl
α 〈b1|α〉〈b2|α〉, (65)

where l = L0 + 1 for our definition of the thickness L0. The
boundary states b1,2 are either + or − here. It follows that

L2

kBT
FCasimir = ∂

∂l

(
ln Zb1,b2 − l ln λ0

)
=

∑
α ln(λα/λ0) (λα/λ0)l 〈b1|α〉〈b2|α〉∑

α(λα/λ0)l〈b1|α〉〈b2|α〉

= −
∑

α mα exp(−mαl) 〈b1|α〉〈b2|α〉∑
α exp(−mαl) 〈b1|α〉〈b2|α〉 , (66)

where 1/ξα = mα = − ln(λα/λ0) are inverse correlation
lengths. In the high-temperature phase for ξ1 = ξ � L0, the
force is dominated by the contribution from α = 1. Hence

θ̃(ml) ≈ l3

kBT
FCasimir

≈ −m3l3 exp(−ml)
1

m2L2

〈b1|1〉〈b2|1〉
〈b1|0〉〈b2|0〉 . (67)

The finite size scaling behavior of the thermodynamic Casimir
force implies that

Cb = 1

mL

〈b|1〉
〈b|0〉 (68)

has a finite scaling limit. The state |0〉 is symmetric under the
global transformation sx → −sx for all x in a slice, while |1〉
is antisymmetric and therefore C = C+ = −C−. Hence

θ̃++(ml) = −θ̃+−(ml) = −C2 m3l3 exp(−ml) (69)

for sufficiently large values of ml. Since x = t(l/ξ0)1/ν �
(ml)1/ν , it follows that

θ++(x) = −θ+−(x) � −C2x3ν exp(−xν) (70)

for sufficiently large values of x.

A. C and the magnetisation profile

In the following, we shall discuss how the overlap amplitude
C2 can be computed from the magnetisation profile of a
semi-infinite system with + boundary conditions and the
correlation function of slice magnetizations. In terms of the
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transfer matrix, the magnetization at position x0 in a film of
thickness L0 is given by

〈M(x0)〉 =
〈∑

x1,x2

sx0,x1,x2

〉

=
∑

α,β λx0
α λ

l−x0
β 〈b1|α〉〈α|M̂|β〉〈β|b2〉∑
α λl

α〈b1|α〉〈α|b2〉 . (71)

In the basis of slice configurations, M̂ is a diagonal matrix,
where the elements give the magnetization of the corre-
sponding configuration. For l � ξ and ξ2 � x0 � l, Eq. (71)
reduces to

〈M(x0)〉 = λ
x0
1 λ

l−x0
0 〈b1|1〉〈1|M̂|0〉〈0|b2〉

λl
0〈b1|0〉〈0|b2〉

= 〈b1|1〉
〈b1|0〉 〈1|M̂|0〉

(
λ1

λ0

)x0

= mL Cb1 〈1|M̂|0〉 exp(−mx0). (72)

The quantity OM = 〈1|M̂|0〉/L is finite in the limit L → ∞,
since 〈M(x0)〉/L2 is finite in this limit.

The slice-slice correlation function for a lattice of linear
size L0 and periodic boundary conditions is given by

G(r) = 1

L2
〈M(x0)M(x0 + r)〉

= 1

L2

∑
α,β〈β|M̂|α〉〈α|M̂|β〉λr

αλ
L0−r
β∑

α λ
L0
α

. (73)

Since M̂ is antisymmetric under sx → −sx for all x in the
slice, 〈0|M̂|0〉 vanishes. For ξ2 � x0 � L0, we get

G(r) = 1

L2
〈0|M̂|1〉〈1|M̂|0〉 exp(−mr)

= O2
M exp(−mr). (74)

Taking into account the periodicity of the lattice, we arrive at

G(r) = O2
M

exp(−mr) + exp[−m(L0 − r)]

1 + exp(−mL0)
, (75)

which we shall use in our numerical analysis below.

B. Numerical implementation

In order to compute G(r), we simulated lattices with
L0 = L1 = L2 = L and periodic boundary conditions. In the
case of the Blume-Capel model, we simulated the model
by using a hybrid37 of the local heat-bath and single-cluster
algorithms.36 In the case of the Ising model, we only used the
single-cluster algorithm. We measured the correlation function
G(r) by using its cluster-improved estimator. In order to keep
deviations from the thermodynamic limit negligible, we chose
L > 10ξ throughout. For a discussion of this point see Sec. III
or Ref. 33. In order to compute ξ and O2

M from Eq. (75),
we took the correlation function at the distance r − 1 and r .
For Eq. (74), one gets ξ = 1/ ln[G(r)/G(r − 1)] and O2

M =
G(r) exp(r/ξ ). For Eq. (75), we solved the system of two
equations numerically. We computed the statistical errors of ξ

and O2
M and their covariance by using the Jackknife method.

We checked which distance r is needed to keep corrections

due to eigenstates of the transfer matrix with α > 1 negligible.
As a result, we took r ≈ 2ξ throughout.

In the case of the Blume-Capel model at D = 0.655,
we simulated at 11 values of β between β = 0.34, where
ξ = 1.50420(13), and β = 0.3872, where ξ = 26.7102(16).
For β = 0.3872, we performed about 107 update cycles. Each
cycle consists of two sweeps of the local heat-bath algorithm
and 104 single-cluster updates. Note that the average cluster
size at β = 0.3872 is 1645.58(17), and hence the lattice of
the size 2703 is covered on average 0.84 times by these 104

clusters. The simulation at β = 0.3872 took the equivalent of
about 13 month of CPU-time on a single core of a Quad-Core
AMD Opteron(tm) Processor 2378 running at 2.4 GHz. In the
case of the Ising model, we simulated at 59 values of β between
β = 0.125, where ξ = 0.667308(53), and β = 0.2208, where
ξ = 16.6711(12).

Next, we analyzed the magnetization profile of films with
++ boundary conditions. Also, here we required that Li >

10ξ . When possible, we used the results obtained from the
simulations that we performed to compute the thermodynamic
Casimir force. For values of β where this is not the case,
we performed extra simulations using the cluster algorithm.
Taking O2

M and ξ obtained above from the simulations of
the lattices with periodic boundary conditions as input, one
gets an estimate of C(ξ ) from Eq. (72) for each distance x0

from the boundary. Throughout, we took our final result from
x0 ≈ 3ξ .

In Fig. 1, we plot our results for C(ξ ) as a function of
m = 1/ξ for the Ising model and the Blume-Capel model at
D = 0.655. Note that the error bars are much smaller than
the size of the symbols. For example, for the Blume-Capel
model at β = 0.3872, we obtain C(ξ ) = 1.2241(4) and for
the Ising model at β = 0.2208, we get C(ξ ) = 1.1500(3). The
data for the Blume-Capel model essentially fall on a straight
line, confirming that corrections ∝ξ−ω are eliminated and
those ∝ξ−1 caused by the boundary dominate. In contrast,
for the Ising model, we see a clear bending of the curve. It is
conceivable that in the limit ξ → ∞, the two curves converge
to a unique value.

0 0.2 0.4 0.6
1/ξ

0.8

1

1.2

C
( 

 )ξ

Ising
Blume-Capel

FIG. 1. (Color online) The amplitude C(ξ ) for the Ising and the
Blume-Capel models at D = 0.655 as a function of 1/ξ .
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In order to substantiate these qualitative observations, we
fitted our data with the Ansätze

C(ξ ) = C exp(−c/ξ ) (76)

and

C(ξ ) = C exp(−c/ξ ) + aξ−ε, (77)

where C, c and a are the parameters of the fit. First, we
analyzed our data for the Blume-Capel model. Fitting with
the Ansatz (76), we get χ2/d.o.f. = 0.67, for fitting all data
except the smallest value of β. The results for the parameters
of the fit are C = 1.24568(21) and c = 0.4572(7). Next,
we fitted all data with the Ansatz (77). Fixing ε = 0.832,
we get C = 1.2462(5), c = 0.442(9), a = −0.017(11), and
χ2/d.o.f. = 1.06. For ε = 2, we get C = 1.24588(27), c =
0.4591(15), a = 0.0043(23), and χ2/d.o.f. = 0.64. As our
final estimate, we give

C = 1.2459(7), (78)

where the error bar covers the results of the three fits given
above. The estimate C2 = 1.5(1) given in Ref. 28 is consistent
with, but much less precise than our present estimate C2 =
1.552(2). Note that the result c ≈ 0.46 is fully consistent with
lex = 0.96(2) obtained in Ref. 31. Note that for our definition
of the thickness one expects c = lex − 1/2.

Next, we fitted our data for the Ising model with the Ansätze
(77) using ε = 0.832. Fitting all data with β � 0.202, we
get C = 1.24653(23), a = −1.3750(29), c = −0.479(2), and
χ2/d.o.f. = 1.17. Taking into account smaller values of β,
χ2/d.o.f. rapidly increases. We redid the fit using ε = 0.826
and we also fitted with Ansätze that include subleading
corrections. Taking into account the results of these fits, we
arrive at C = 1.247(3), which is fully consistent with the result
(78) that we obtained from the data for the Blume-Capel model.

We performed a similar study to determine the behavior of
the thermodynamic Casimir force for ++ boundary conditions
for x → −∞ in the low-temperature phase. However, here we
can not reach the same precision as above, since there is no
efficient improved estimator for the correlation function in the
low-temperature phase, and contributions due to subleading
states of the transfer matix are more important than in the
high-temperature phase. In the case of the Blume-Capel
model- we computed C̄ for 16 values of β in the range
from β = 0.39, where ξ = 5.584(40), up to β = 0.405, where
ξ = 1.5697(49), and in the case of the Ising model, in the range
from β = 0.223, where ξ = 6.6028(20), up to β = 0.227,
where ξ = 2.7321(42).

Analyzing the data for the Blume-Capel model, fixing c =
0.46(2), we arrive at C̄ = 0.428(10) and hence C̄2 = 0.183(9),
which is consistent with but more precise than C̄2 = 0.20(5)
given in Ref. 28. Analyzing the data for the Ising model, we
get a consistent result.

C. The correction function

Plugging in C2(t) = C2(1 + act
θ ) and ξ = ξ0t

−ν(1 + aξ t
θ )

into Eq. (69) we get, e.g., for +− boundary conditions:

0 10 20 30 40 50
x

1.6

1.8

2

2.2

2.4

g(
x)

 x
−ν

~

FIG. 2. We plot q̃(x)x−ν as a function of the scaling variable x in
the range that is relevant for our problem. For the definition of q̃(x)
and a discussion, see the text.

−∂fex

∂L0
= L−3

0 C2 L0

ξ0
tν exp

(
−L0

ξ0
tν

)

×
{

1 +
[
ac +

(
L0

ξ0
tν − 3

)
aξ

]
t θ + O(t2θ )

}
= L−3

0 θ (x)
[
1 + bq̃(x)L−ω

0 + O
(
L−2ω

0

)]
(79)

with

bq̃(x) = ξω
0 [ac + (xν − 3)aξ ]xθ , (80)

which is not consistent with

bq(x) = −cxν (81)

that one derives by plugging Eq. (70) into Eq. (10). In Fig. 2,
we plot q̃(x)x−ν as a function of x. To this end, we take the
numerical values ξ0 = 0.1962, aξ = −0.32, Eq. (A11), and
aC = 2 × 0.1962−0.832(−1.375/1.247) = −8.55. It turns out
that the curve is very flat in the range of x we are interested
in. Also the value is rather close to the values of c that we
obtained from the analysis of data directly at the critical point.

VI. THE SCALING FUNCTION OF THE
THERMODYNAMIC CASIMIR FORCE FOR

++ AND +− BOUNDARY CONDITIONS

We computed the thermodynamic Casimir force using the
method discussed by Hucht.23 Starting from the energy per
area, we computed

�Eex(L0,β)

= [E(L0 + d/2,β) − E(L0 − d/2,β)]/d − Ebulk(β).

(82)

The value of the energy density of the bulk system Ebulk(β)
is obtained from an analysis of the high-temperature series
given in Ref. 41 and the low-temperature series given in
Ref. 42 combined with Monte Carlo simulations. For details,
see Appendix A 3.
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In order to obtain −�fex, we numerically integrated �Eex

using the trapezoidal rule:

−�fex(βn) ≈ −�fex(β0) +
n−1∑
i=0

1

2
(βi+1 − βi)

× [�Eex(βi+1) + �Eex(βi)] , (83)

where βi are the values of β we simulated at. They are
ordered such that βi+1 > βi for all i. In previous work, β0

had been chosen such that �Eex(β0) ≈ 0 and therefore also
−�fex(β0) ≈ 0. Here, instead, we chose a somewhat larger
value of β0 such that the approximation discussed in the
previous section is still valid. In particular, we set

�fex(β0) = ±C2(β0)

ξ 2(β0)

exp[−(L0 + 1 + d/2)/ξ (β0)] − exp[−(L0 + 1 − d/2)/ξ (β0)]

d
, (84)

where we have the + sign for ++ boundary conditions and
the − sign for +− boundary conditions. By comparing results
obtained with different choices of β0, we found that the
approximation (84) is accurate at the level of our statistical
error up to L0/ξ (β0) � 8. To be on the safe side, we used
L0/ξ (β0) > 10 in the following.

We simulated the Ising model with ++ boundary condi-
tions for the thicknesses L0 = 8, 9, 14, 15, 16, 17, 18, 19,
32, 34, 64, and 68. Using the resulting data, we computed the
thermodynamic Casimir force for the thicknesses L0 = 8.5
and 16.5 using the difference d = 1. In order to check for the
effect of using a finite difference to compute ∂/∂L0, we redid
the calculation for L0 = 16.5 using d = 3 and 5 in addition to
1. We conclude that d/L0 ≈ 0.06 is sufficient at the level of
our accuracy. Therefore for L0 = 33 and 66, we used d = 2
and 4, respectively. Throughout, we used L > 5L0, which is
clearly sufficient to neglect deviations from the limit L → ∞;
see Ref. 28. We chose β0 = 0.15, 0.19, 0.21, and 0.218 for
L0 = 8.5, 16.5, 33, and 66, respectively. We simulated at 163,
122, 117, and 41 values of β for these thicknesses, respectively.
Note that in the case of L0 = 66, we simulated only up to βc,
since these simulation are rather expensive.

For L0 = 16 and 17, we performed 6.4 × 108 measure-
ments for each value of β that we simulated at. For each
measurement, we performed 16 sweeps with the Metropolis
algorithm. In total, these simulations took the equivalent of
about 8 years of CPU time on one core of a Quad-Core AMD
Opteron(tm) Processor 2378 running at 2.4 GHz. For L0 = 15
and 18, we performed 1.3 × 108 measurements and for L0 =
14 and 19, only 6.4 × 107 measurements. For L0 = 32, we
performed between 2.6 × 107 and 6.4 × 107 measurements
and for L0 = 34, we measured 2.6 × 107 or 3.2 × 107 times
for each value of β. These simulations took the equivalent of
about 5 years of CPU time on one core of a Quad-Core AMD
Opteron(tm) Processor 2378 running at 2.4 GHz. For L0 = 64
and 68, we performed 6.4 × 106 measurements for each value
of β. In total, these simulations took the equivalent of about
2.5 years of CPU time on one core of a Quad-Core AMD
Opteron(tm) Processor 2378 running at 2.4 GHz.

We improved the numerical results obtained in Ref. 28
for the Blume-Capel model. To this end, we simulated at
additional values of β. This way both the statistical error of
our result as well as the systematical error of the numerical in-
tegration are reduced. In Ref. 28, we simulated the thicknesses

L0 = 8, 9, 16, 17, 32, and 33. Here, we simulated L0 = 34 in
addition.

In Fig. 3, we plot θ+−, −θ++ and the approximation (84)
computed by using the data obtained for the Blume-Capel
model at D = 0.655 for L0 = 33 and d = 2. As discussed at
the end of Sec. IV A, we used the value Ls = 1.91 to compute
the effective thickness L0,eff = L0 + Ls . The deviation of θ+−
and −θ++ from the approximation (84) is smaller than 5%
for x >∼ 16 and smaller than 1% for x >∼ 22.5. The average
(θ+− − θ++)/2 deviates from the approximation (84) by less
than 5% for x >∼ 8.6 and by less than 1% for x >∼ 12.7.

Next, we extracted the value and the location of the
minimum of −�f++. In the case of the Blume-Capel
model, we get βmin = 0.382185(15) and −�f++,min =
−0.0002808(6) for L0 = 16.5 and βmin = 0.385716(6) and
−�f++,min = −0.00004117(5) for L0 = 33. This corre-
sponds to tmin(L0,eff/ξ0)1/ν = 5.88(5) and −L3

0,eff�f++,min =
−1.752(18) for L0 = 16.5 and tmin(L0,eff/ξ0)1/ν = 5.88(4)
and −L3

0,eff�f++,min = −1.752(10) for L0 = 33. The quoted
error bars include the error of βmin, −�f++,min and errors
induced by the uncertainties of Ls , ξ0, ν, and βc. The values
obtained from L0 = 16.5 and 33 agree nicely. Our results
are also consistent with those of Ref. 28: xmin = 5.82(10)
and θ++,min = −1.76(3). Our results obtained for the Ising

0 5 10 15 20 25
 t (L       /     )   0,eff 0ξ 1/ν

0

1

2

3

- 
L

   
   

   
  fΔ

0,
ef

f
ex

3

+  +-
approx
-  ++

FIG. 3. We plot θ+−, −θ++ and the approximation (84). The data
are taken for the Blume-Capel model at D = 0.655 and the finite
difference is computed from L0 = 32 and 34.
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TABLE IV. Results for the minimum of θ++ obtained for the Ising model.

L0 − d/2 L0 + d/2 βmin −�fmin L0,eff tmin(L0,eff/ξ0)1/ν

8 9 0.2123025(16) –1.1605(1) ×10−3 11.471 5.96(1)
14 19 0.2176215(5) –2.347(1) ×10−4

15 18 0.2176744(19) –2.306(1) ×10−4

16 17 0.2176975(30) –2.2869(15) ×10−4 19.712 5.96(1)
32 34 0.2201704(30) –3.5996(26) ×10−5 36.509 5.94(2)
64 68 0.2211284(25) –5.121(18) ×10−6 69.936 5.91(3)

model are summarized in Table IV. Here, we computed L0,eff

by requiring −L3
0,eff�fmin = −1.75169 . . . , which is our

estimate obtained for the Blume-Capel model and L0 = 33.
We see that the values of L0,eff are similar to those obtained
in Sec. IV from the analysis of the free energy differences at
the critical point. In the last column, we give tmin(L0,eff/ξ0)1/ν

using these values of L0,eff . We see that these estimates of xmin

are essentially consistent with that obtained above from the
analysis of the Blume-Capel model.

For L0 = 16.5, we checked the effect of the discretization
error on the position and the value of the minimum. The error
behaves as ε = ad2 + O(d4). The results obtained for d = 1,
3, and 5 are consistent with a quadratic behavior. For d = 1,
the relative error is about one permille for both −�fmin and
tmin.

In Fig. 4, we plot our numerical results for the scaling
function θ++ that are given by −L3

0,eff�f++ as a function of
t(L0,eff/ξ0)1/ν where ν = 0.63002 is set. In the case of the
Blume-Capel model, we use L0,eff = L0 + 1.91 as effective
thickness of the film. We give our results for L0 = 16.5 and 33.
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FIG. 4. We plot −�f L3
0,eff as a function of t(L0,eff/ξ0)1/ν for

++ boundary conditions. The thick lines give the result obtained
for the Blume-Capel model at D = 0.655 and the two thicknesses
L0 = 16.5 and 33. In the case of the Blume-Capel model, we used
L0,eff = L0 + 1.91 as the effective thickness of the film. Our results
for the Ising model are given by thin lines. In the case of the Ising
model, we used the effective thicknesses L0,eff = 19.712, 36.509,
and 69.936 for L0 = 16.5, 33, and 66, respectively. These effective
thicknesses are chosen such that at the minima the curves fall on top
of the one for the Blume-Capel model and L0 = 33. At the resolution
of the plot, all five curves fall on top of each other almost everywhere.
Only for 20 <∼ x <∼ 40, the curve for the Ising model and L0 = 16.5
can be distinguished from the other four.

The data for L0 = 33 are attached as Supplemental Material.43

For the Ising model, we take the effective thicknesses given in
the sixth column of Table IV. We plot our results for L0 = 16.5,
d = 1, L0 = 33 and L0 = 66. The error bars are too small to
be visible in the plot. At the resolution of the plot, all five
curves fall on top of each other almost everywhere. Only for
20 <∼ x <∼ 40, the curve for the Ising model and L0 = 16.5 can
be distinguished from the other four.

Next, we discuss our numerical results for the scaling
function θ+−. In Fig. 5, we plot −�f L3

0,eff as a function of
t(L0,eff/ξ0)1/ν for the Blume-Capel model at the thicknesses
L0 = 16.5 and 33 and the Ising model at L0 = 16.5, 33, and 66.
In the case of the Blume-Capel model, we use L0,eff = L0 + Ls

with Ls = 1.91. For the Ising model, we take the same values
for L0,eff as above for ++ boundary conditions.
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FIG. 5. We plot −�f L3
0,eff as a function of t[L0,eff/ξ0]1/ν for

+− boundary conditions. The thick lines give the result obtained
for the Blume-Capel model at D = 0.655 and the two thicknesses
L0 = 16.5 and 33. In the case of the Blume-Capel model, we used
L0,eff = L0 + 1.91 as the effective thickness of the film. The data for
L0 = 33 are attached as Supplemental Material.43 Our results for the
Ising model are given by thin lines. In the case of the Ising model, we
used the effective thicknesses L0,eff = 19.712, 36.509, and 69.936,
for L0 = 16.5, 33, and 66, respectively. These values are taken from
the analysis of ++ boundary conditions above. At the resolution of
the plot, all five curves fall on top of each other almost everywhere.
Near the maximum, the curve for the Ising model and L0 = 16.5
stays slightly below the other ones. For x <∼ −30 the curves slightly
fork. Note that in this range, the difference between the Blume-Capel
results for L0 = 16.5 and 33 is of a similar size as the one between
the Ising results for L0 = 16.5 and 33 and between Blume-Capel and
Ising models.
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TABLE V. Results for the maximum of θ+− obtained for Blume Capel (BC) model and the Ising (I) model. In the second and third columns,
we give the thicknesses that have been considered. In the fourth column, we give the value of −�f at the maximum and in the fifth column,
we give the location of the maximum. In the sixth and seventh columns, we give estimates of θ+−,max and xmax derived from these results.

Model L0 − d/2 L0 + d/2 βmax −�fmax −L3
0,eff�fmax tmax(L0,eff/ξ0)1/ν

BC 16 17 0.39257(3) 0.0010501(7) 6.552(5)[54] –5.15(3)[3]
BC 32 34 0.389474(5) 0.00015426(5) 6.563(2)[28] –5.139(15)[15]
I 16 17 0.224948(4) 0.00085044(30) 6.514(2) –4.959(6)
I 32 34 0.2229119(3) 0.000134650(35) 6.552(2) –5.035(12)

We find that the different curves fall quite nicely on top
of each other. In the neighbourhood of the maximum, the
curve for the Ising model at L0 = 16.5 lies slightly below
the other ones and for x <∼ −30 the curves slightly fork.
The discrepancies discussed for ++ boundary conditions in
the range 20 <∼ x <∼ 40 are also present for +− boundary
conditions. They can not be seen in Fig. 5 since the range
of values for +− boundary conditions is larger than that for
++ boundary conditions.

In Table V, we summarize results for the maximum of θ+−.
Using Ls = 1.91 in the case of the Blume-Capel model, we
get nicely consistent results for xmax and θ+−,max from the two
thicknesses L0 = 16.5 and 33. These results improve those of
Ref. 28: x+−,max = −5.17(7) and θ+−,max = 6.56(10). In the
case of the Ising model, we use the values of L0,eff obtained
above for films with ++ boundary conditions. The resulting
estimates for xmax and θ+−,max are close to those obtained from
the Blume-Capel model. In particular, the results obtained
for L0 = 33 are closer to the Blume-Capel ones than those
obtained for L0 = 16.5.

We conclude that our numerical results for the scaling
functions of the thermodynamic Casimir force for ++ and +−
boundary conditions are fully consistent with the universality
hypothesis. Furthermore, our Ansätze (8) provides a good
approximation of the universal correction function.

VII. SUMMARY AND CONCLUSIONS

We studied the spin-1/2 Ising model and the improved
Blume-Capel model on the simple cubic lattice with film
geometry. In particular, we considered strongly symmetry
breaking ++ and +− boundary conditions. We focused on the
thermodynamic Casimir force. At the critical point, we studied
the behavior of the free energy per area, the energy per area,
the magnetization profile, and the second-moment correlation
length of the film. The main subject of the present work is about
corrections to scaling. Previously, it has been demonstrated
at the example of improved models that corrections ∝L−1

0
that are due to the boundaries can be expressed by an
effective thickness L0,eff = L0 + Ls , where Ls is the same
for all quantities. Note that Ls depends on the model and, in
particular, on the details of the boundary conditions. Here, we
probed the hypothesis that the leading bulk corrections can be
expressed in an analogous way:

L0,eff = L0 + Ls + c(L0 + Ls)
1−ω. (85)

Fitting various quantities at the critical point of the Ising model
we find similar, but likely not identical values of the amplitude
c. Also the study of the thermodynamic Casimir force for large

values of the scaling variable x shows that Eq. (85) can not
be exact. Nevertheless, it turns out to be a surprisingly good
approximation in the range of x that is of experimental interest.
In Sec. VI, we investigate the thermodynamic Casimir force
for ++ and +− boundary conditions. We find for −�f L3

0,eff

plotted as a function of t(L0,eff/ξ0)1/ν , a good collapse of
the data for both the spin-1/2 Ising and the Blume-Capel
models. In the case of the Blume-Capel model, we used
L0,eff = L0 + Ls with Ls = 1.91(5). We demonstrated that in
the case of the spin-1/2 Ising model approximately the same
L0,eff can be used for ++ and +− boundary conditions. The
values of L0,eff that we obtained in Sec. VI for L0 = 16.5,
33, and 66 are similar to those obtained from the analysis of
Df,+−,++ in Sec. IV A. The estimates of Ls and c obtained
from this analysis are highly anticorrelated. From the analysis
of Df,+−,++, we get Ls = 0.9 and c = 1.5 as central estimates.
The range of possible values is given by Ls = 1.1, c = 1.4
one side and Ls = 0.8, c = 1.6 at the other. Note that the
value of Ls depends on the definition of the thickness. In
particular, when comparing with the Refs. 24, 25, and 30
by Vasilyev, Gambassi, Maciołek, and Dietrich (VGMD) one
should take into account that L0,VGMD = L0,ours + 2 and hence
Ls,VGMD = Ls,ours − 2. Since the correction function q(x) is
universal, also for experimental data or data obtained from
the numerical study of other models, an effective thickness
(85) should parametrize leading corrections quite well. Note
again that Ls should depend on the microscopic details of the
system. In the case of the amplitude c, universal ratios can be
constructed. For example,

c

aξ,+ξω
0

= −8(2), (86)

where we used the numerical values of aξ,+ and ξ0 obtained
in Appendix. In Introduction, we argued that Eq. (8) provides
a good approximation for the corrections to scaling function
since fluctuations are strongly suppressed near the boundaries
of the film. Therefore Eq. (8) should not work for periodic and
antiperiodic boundary conditions. Furthermore, the amplitude
of leading corrections should be smaller in these cases, which
is indeed confirmed by the numerical results44 for periodic
boundary conditions.

Furthermore, we improved the numerical accuracy of the
estimates of the universal scaling functions θ++ and θ+−.
Writing the partition function in terms of eigenvalues and
eigenstates of the transfer matrix and boundary states, one
finds for large values of x,

θ++(x) = −θ+−(x) = −C2x3ν exp(−xν). (87)
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Here, we demonstrated how C2 can be accurately computed
by analyzing the magnetization profile of films and the bulk
correlation function. We find

C2 = 1.552(2). (88)

This result can be compared with C2 = 1.5(1) obtained in
Ref. 28.

At the critical point, we find by studying the difference of
free energies per area,

�+− − �++ = [θ+−(0) − θ++(0)]/2 = 3.204(5), (89)

where we average the results obtained from the analysis of the
spin-1/2 Ising and the improved Blume-Capel model. For the
slope of the scaling function at the critical point, we find

θ ′
+−(0) = −0.482(2), θ ′

++(0) = −0.318(2). (90)

The minimum of θ++ is located at xmin = 5.88(4) and takes
the value θ++,min = −1.752(10). For the maximum of θ+−, we
get xmax = −5.14(3) and θ+−,max = 6.56(3). The reduction of
the error compared with Ref. 28 is mainly due to the fact that
here we assume Ls = 1.91(5) instead of Ls = 1.9(1) as in
Ref. 28.
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APPENDIX: NUMERICAL RESULTS FOR THE SPIN-1/2
ISING BULK SYSTEM

1. The critical point

We extended the study of Ref. 7 by simulating the Ising
model on the simple cubic lattice on a system of the size L3

with L = 400 and periodic boundary conditions in all three
directions at β = 0.2216546. As in Ref. 7, we simulated the
model by using a hybrid of the local Metropolis, the single
cluster,36 and the wall cluster algorithms.45 For details, see
Sec. IV of Ref. 7. We performed 2.3 × 107 measurements. In
total, this simulation took the equivalent of about four years of
CPU time on a single core of a Quad-Core AMD Opteron(tm)
Processor 2378 running at 2.4 GHz. In the first step of the
analysis, we determined βc by analyzing the behavior of the
renormalization group invariant quantities Za/Zp, ξ2nd/L, U4,
and U6. For the definition of these quantities see Sec. II of
Ref. 7. We fitted our data for the Ising model with the Ansätze

R(βc,L) = R∗ + aL−ω + bL−2, (A1)

where R denotes one of the renormalization group invariant
quantities. Performing these fits, we used the results for R∗
given in Table V of Ref. 7 as input. Furthermore, we fixed ω =
0.832. We get acceptable χ2/d.o.f. for fits with Lmin � 16. The
statistical error of βc increases only slowly with increasing
Lmin. Based on fits with Lmin � 24 for Za/Zp and ξ2nd/L,
we arrive at βc = 0.22165462(2). Instead, analyzing U4 and
U6, we arrive at βc = 0.22165463(2). In Ref. 46, the authors
computed the Binder cumulant U4 on lattices of a linear size
up to L = 1536. Fitting their data, taking the value U ∗

4 =

1.6036(1)7 as input, we arrive at βc = 0.221654615(10). In
this work, we shall use

βc = 0.22165462(2). (A2)

This estimate can be compared, e.g., with the previous
estimates βc = 0.22165463(8) obtained in Ref. 7 using a linear
lattice size up to L = 96 and βc = 0.22165455(3) given in
Table X in Ref. 47.

At the critical point, the energy density behaves as

Ebulk(L) = Ens + aL3−1/ν(1 + bL−ω + . . . ). (A3)

Performing various fits based on Eq. (A3), using the data of
Ref. 7, and our result for L = 400, we arrive at

Ens = 0.9906065(15) + 85(βc − 0.22165462). (A4)

The specific heat behaves as

Cbulk(L) = Cns + aL3−2/ν(1 + bL−ω + . . . ) (A5)

performing various fits based on Eq. (A3), using the data of
Ref. 7, and our result for L = 400, we arrive at

Cns = −29.1(3) − 7 700 000(βc − 0.22165462)

−3300(ν − 0.63002). (A6)

2. Amplitudes and amplitude ratios

We simulated the three-dimensional Ising model for a large
number of β values in the high- and the low-temperature phase
on L3 lattices with periodic boundary conditions in all three
directions. We have chosen the linear lattice size such that L >

10ξ2nd(β) in order to keep deviations from the thermodynamic
limit sufficiently small to be ignored in the analysis of the
data. For the precise definition of the observables, see Sec. II
in Ref. 33. In the high-temperature phase, we simulated at
68 values of β in the range 0.125 � β � 0.2213. To give the
reader an impression of the quality of the data, we give the
results for the five largest values of β in Table VI. Analogous
results for the low-temperature phase are given in Table VII.

First, we fitted our data for the second-moment correlation
length in the high-temperature phase using the Ansätze

ξ2nd = ξ2nd,0,+t−ν(1 + aξ,+t θ ), (A7)

ξ2nd = ξ2nd,0,+t−ν(1 + aξ,+t θ + bt), (A8)

and

ξ2nd = ξ2nd,0,+t−ν(1 + aξ,+t θ + bt + ct2ν), (A9)

TABLE VI. The second moment correlation length ξ2nd, the
magnetic susceptibility χ , and the energy density Ebulk for the five
largest values of the inverse temperature β that we simulated in the
high-temperature phase of the Ising model. We simulated L3 systems
with periodic boundary conditions in all three directions.

β L ξ2nd χ Ebulk

0.2206 200 14.57699(31) 831.162(32) 0.96369936(90)
0.2207 200 15.5321(10) 940.79(11) 0.9656874(29)
0.2208 200 16.6644(11) 1079.27(14) 0.9677195(31)
0.2210 300 19.73548(63) 1501.960(86) 0.97198710(87)
0.2213 400 29.1058(11) 3212.44(23) 0.97909806(69)
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TABLE VII. The second moment correlation length ξ2nd, the magnetic susceptibility χ , the magnetisation m, and the energy density Ebulk

for the five smallest values of the inverse temperature β that we simulated in the low-temperature phase of the Ising model. We simulated L3

systems with periodic boundary conditions in all three directions.

β L ξ2nd χ m Ebulk

0.2219 300 18.930(40) 1058.49(66) 0.1815607(39) 1.0126483(10)
0.2220 200 15.294(24) 690.78(38) 0.2027298(54) 1.0200656(17)
0.2221 200 12.976(28) 501.95(30) 0.2200006(48) 1.0271260(16)
0.2222 170 11.418(17) 389.43(17) 0.2347800(43) 1.0339257(16)
0.2223 170 10.278(13) 315.26(12) 0.2477779(38) 1.0405068(16)

where t = βc − β. We fixed βc = 0.22165462, ν = 0.63002,
and ω = 0.832. Based on a large number of fits using these
Ansätze, we conclude

ξ2nd,0,+ = 0.1962(1) + 540(βc − 0.22165462)

−1.8(ν − 0.63002) − 0.002(ω − 0.832) (A10)

and

aξ,+ = −0.32(3) − 120000(βc − 0.22165462)

+130(ν − 0.63002) − 1.1(ω − 0.832). (A11)

Our result is in nice agreement with that of Ref. 48 obtained by
analyzing the high-temperature series of ξ2nd. In Table VII in
Ref. 48, the authors quote ξ0,+ = 0.5070(5) for the definition
t̃ = (βc − β)/βc of the reduced temperature. Converting to our
convention one gets ξ0,+ = 0.5070(5) × 0.221654620.63002 =
0.1962(2).

In a similar way, we analyzed the second-moment correla-
tion length in the low-temperature phase and the magnetic
susceptibility in both phases. Let us summarize the final
results:

ξ2nd,0,− = 0.1015(2) − 200(βc − 0.22165462)

−0.9(ν − 0.63002) − 0.001(ω − 0.832) (A12)

and

aξ,− = −0.55(15) + 70000(βc − 0.22165462)

+ 100(ν − 0.63002) − 2.2(ω − 0.832). (A13)

Using the results (A10) and (A12), we get for the universal ratio
ξ2nd,0,+/ξ2nd,0,− = 1.933(5), which is fully consistent with
ξ2nd,0,+/ξ2nd,0,− = 1.939(5) obtained in Ref. 33 by analyzing
Monte Carlo data obtained for the Blume-Capel model at
D = 0.655.

Analyzing the data for the magnetic susceptibility in the
high-temperature phase, we arrive at

C+ = 0.1739(1) + 800(βc − 0.22165462)

− 1.6(γ − 1.2372) − 0.0013(ω − 0.832) (A14)

and

aχ,+ = −0.33(5) − 150 000(βc − 0.22165462)

+ 100(γ − 1.2372) − 1.3(ω − 0.832). (A15)

The corresponding results for the low-temperature phase
are

C− = 0.03695(2) − 200(βc − 0.22165462)

− 0.35(γ − 1.2372) − 0.001(ω − 0.832) (A16)

and

aχ,− = −1.6(2) + 20 000(βc − 0.22165462)

+120(γ − 1.2372) − 7(ω − 0.832). (A17)

The ratio C+/C− = 4.706(8) is consistent with C+/C− =
4.713(7) obtained in Ref. 33 by analyzing Monte Carlo data
obtained for the Blume-Capel model at D = 0.655. Note
that our estimates are slightly smaller than C+/C− = 4.78(3)
obtained from series expansions.48

3. The energy density

In order to compute the thermodynamic Casimir force, we
need the energy density of the bulk system for a large number
of β values. To this end, the authors of Ref. 44 used the results
of Ref. 49 in combination with a naive evaluation of the
high-41 and low-temperature50 series. Here, instead, we
combined the analysis of the high-41 and low-temperature42

series with the results of our Monte Carlo simulations
discussed above. The analysis of the high-temperature series
is simpler and the results are more accurate than that of
the low-temperature one. This is due to the fact that the
high-temperature series converges up to the critical point,
while this is not the case for the low-temperature series.

In the neighbourhood of the critical point, the energy
density behaves as

Ebulk = Ens − Cnst + · · · + a±|t |1−α

×(1 + b±|t |θ + . . . ) + . . . . (A18)

We analyzed both series using differential approximants. In
particular, we used the second-order differential equation given
in Eq. (6.16) of Ref. 51:

u2Q2(u)g′′(u) + uQ1(u)g′(u) + Q0(u)g(u) = R(u), (A19)

where Q2(u), Q1(u), Q0(u), and R(u) are polynomials in
the expansion variable u of the order J , K , L, and M ,
respectively. These polynomials are fixed by the requirement
that the function g(u) has the correct expansion in u up to the
highest known order. The differential Eq. (A19) is used, since
it is known that its solution behaves as

g(u) = gns(u) + a1(u)(uc − u)−x1 + a2(u)(uc − u)−x2 ,

(A20)

where gns(u), a1(u) and a2(u) are analytic functions.
Usually one sets Q2(0) = 1. Therefore J + K + L + M =

N − 2, where N is the order of the last known coefficient of
the series. We biased the analysis by using our estimate (A2)
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of the inverse critical temperature and our estimates of ν and
ω.7 This way, additional coefficients of the polynomials are
fixed and one gets J + K + L + M = N + 3. For a detailed
discussion, we refer the reader to Sec. 6 of Ref. 51. We
solved the differential equation (A19) numerically by using
the Runge-Kutta method.

In the high-temperature phase, Arisue and Fujiwara41

computed the free energy density of the bulk system as a
series in v = tanh(β) up to O(v46). Note that the coefficients
of odd orders vanish and hence the free energy density can
be expressed as a series in u = v2 = tanh2(β). Since we are
aiming at the energy density, we actually analyzed

Ẽ = −∂f

∂u
. (A21)

The energy density is then given by

Ebulk = −∂f

∂β
= −∂f

∂u

∂u

∂β
= 2 tanh(β)[1 − tanh2(β)] Ẽ.

(A22)

The free energy density is given by

−f (β) = ln 2 + 3 ln[cosh(β)] +
46∑
i=0

aiv
i + O(v48),

(A23)

where the coefficients ai are given in Table I of the preprint
version of Ref. 41.

We computed χ2 = ∑
i{[Eseries(βi) − EMC(βi)]/e(βi)}2,

where Eseries(βi) and EMC(βi) are the estimates obtained from
the analysis of the series and from the Monte Carlo simulations,
respectively, and e(βi) is the statistical error of the Monte
Carlo result at the inverse temperature βi . We find that a large
fraction of the possible choices of J , K , L, and M result in
a χ2/d.o.f. ≈ 1.03. About 91% of the possible choices have
χ2/d.o.f. < 1.073 and about 92.5% have χ2/d.o.f. < 1.305.

We computed numerically Ens , Cns , a+, and a+b+ as
defined by Eq. (A18). Averaging over all choices of J , K ,
L, and M with χ2/d.o.f. < 1.073, we get

Ens = 0.9906058(8) + 32(βc − 0.22165462)

− 0.0069(ν − 0.63002) + 0.0000072(ω − 0.832),

(A24)

Cns = −29.07(3) − 234 000(βc − 0.22165462)

− 1960(ν − 0.63002) − 0.86(ω − 0.832),(A25)

a+ = −25.715(12) − 92 500(βc − 0.22165462)

− 1390(ν − 0.63002) − 0.244(ω − 0.832),(A26)
and

a+b+ = 3.87(28) − 1 300 000(βc − 0.22165462)

− 2900(ν − 0.63002) + 13(ω − 0.832). (A27)

The number given in parentheses is the variance over all
choices of J , K , L, and M with χ2/d.o.f. < 1.073. It might
serve as a lower bound of the systematic error of the analysis
of the series. Since the estimates for Ens and Cns obtained here
are in good agreement with those obtained from the finite size

analysis of Monte Carlo data given above, we are confident that
also in the case of a+ and a+b+ the variance over the choices
of J , K , L, and M is a realistic estimate of the systematical
error. Analyzing the series for the free energy density itself,
we get

−fns = ln 2 + 0.0847028611(4) + 0.99(βc − 0.22165462)

+ 0.000001(ν − 0.63002). (A28)

The estimate of fns strongly depends on the input value for βc.
The dependence on ν is small and that on ω can be ignored.

In order to calculate the energy density that is needed
as input to compute the thermodynamic Casimir force, we
picked, to some extend ad hoc, the approximant characterized
by J = 7, K = 7, L = 5, and M = 6, which is characterized
by the fact that the order of all four polynomials is similar,
χ2/d.o.f = 1.029 and Ens = 0.9906063 for βc = 0.22165462,
ν = 0.63002, and ω = 0.832 fixed. Comparing with other
acceptable choices for J , K , L, and M , we find that, e.g.,
for β = 0.2216, the differences are of the order 10−7 and for
β = 0.22 of the order 10−8. Compared with the statistical error
of [E(L0 + d/2,β) − E(L0 − d/2,β)]/d, see Eq. (82), errors
of this size are negligible.

In the low-temperature phase, Vohwinkel42 computed
the energy density as a series in u = exp(−4β) up to
O(u32). Unfortunately, in this case, there is no choice of
J , K , L, and M that allows to fit our Monte Carlo data
down to β = 0.2219. The best that we could find are the
two choices J = 9, K = 6, L = 7, and M = 13 and J =
20, K = 6, L = 3, and M = 6 that fit our Monte Carlo
data with an acceptable χ2/d.o.f. for β � 0.228 and β �
0.231, respectively. The linear combination 0.8155E9,6,7,13 +
0.1845E20,6,3,6 fits all of our data in the low-temperature phase
with χ2/d.o.f. = 1.25.

Since this result is not fully satisfying, we fitted our data
with various Ansätze based on Eq. (A18). In particular, the
Ansatz

E = Ens − Cnst + dnst
2 + a−(−t)1−α + a−b−(−t)1−α+θ

+b(−t)2−α + c(−t)2−α−θ (A29)

fits our data up to β = 0.246 with χ2/d.o.f. = 1.15, where
we fixed Ens = 0.9906065, Cns = −29.07, α = 0.10994, and
ω = 0.832. Fitting all 55 data points up to β = 0.241, we
get for the free parameters a− = 47.9436, a−b− = −16.336,
b = −363.5, dns = 269.2, and c = 287.3. In order to calculate
the bulk energy that is needed for the computation of
the thermodynamic Casimir force, we used for β � 0.228
the linear combination 0.8155E9,6,7,13 + 0.1845E20,6,3,6 of
approximants and for 0.228 > β � βc, we used Eq. (A29)
together with the results for the free parameters quoted above.
For a quite large range of β, the two approaches to represent the
bulk energy give consistent results. For 0.2219 � β � 0.2394,
the difference between the two is less than 3 × 10−6. The
deviation of our result from that of Ref. 49 is typically of the
order 10−5.

Taking into account various fits and, in particular, comput-
ing the dependence of the result on the values of the input
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parameters, we arrive at

a− = 47.96(1) + 2 350 000(βc − 0.22165462)

+ 2500(ν − 0.63002) − 0.16(ω − 0.832)

−0.44(Cns − 29.1) − 3700(Ens − 0.9906065),

(A30)

and hence

A+
A−

= −a+
a−

= 0.5362(20), (A31)

which is fully consistent with the estimate A+/A− = 0.536(2)
obtained by studying the Blume-Capel model at D = 0.655.33

Note that the error of our estimate of A+/A− is dominated
by the uncertainty of Cns that we use as input for our fits
in the low-temperature phase. Here, we took the error of the
estimate obtained from the finite size scaling analysis at the
critical point, Eq. (A6). The systematic error of the estimate
obtained from the analysis of the high-temperature series is
likely smaller, but difficult to estimate. The authors of Ref. 48
quote A+/A− = 0.530(3), which is slightly smaller than our
results. For a summary of estimates presented in the literature,
see Table IV or Ref. 48.

*Martin.Hasenbusch@physik.hu-berlin.de
1K. G. Wilson and J. Kogut, Phys. Rep. C 12, 75 (1974).
2M. E. Fisher, Rev. Mod. Phys. 46, 597 (1974).
3M. E. Fisher, Rev. Mod. Phys. 70, 653 (1998).
4A. Pelissetto and E. Vicari, Phys. Rep. 368, 549 (2002).
5F. J. Wegner, J. Math. Phys. 10, 2259 (1971).
6F. J. Wegner, in Phase Transitions and Critical Phenomena, edited
by C. Domb and M. S. Green (Academic Press, New York, 1976),
Vol. 6.

7M. Hasenbusch, Phys. Rev. B 82, 174433 (2010).
8K. E. Newman and E. K. Riedel, Phys. Rev. B 30, 6615 (1984).
9M. Campostrini, A. Pelissetto, P. Rossi and E. Vicari, Phys. Rev. E
57, 184 (1998).

10M. N. Barber, Finite-size Scaling in Phase Transitions and Critical
Phenomena Vol. 8, edited C. Domb and J. L. Lebowitz, (Academic
Press, 1983).

11K. Binder, Critical Behaviour at Surfaces in Phase Transitions and
Critical Phenomena Vol. 8, edited C. Domb and J. L. Lebowitz,
(Academic Press, 1983).

12H. W. Diehl, Field-theoretical Approach to Critical Behaviour at
Surfaces in Phase Transitions and Critical Phenomena Vol. 10,
edited by C. Domb and J. L. Lebowitz (Academic, London 1986),
p. 76.

13H. W. Diehl, Int. J. Mod. Phys. B 11, 3503 (1997).
14M. E. Fisher and P.-G. de Gennes, C. R. Acad. Sci., Ser. B 287, 207

(1978).
15M. Krech, The Casimir Effect in Critical Systems (World Scientific,

Singapore, 1994).
16Daniel Dantchev, Michael Krech, and S. Dietrich, Phys. Rev. E 67,

066120 (2003).
17Daniel Dantchev, Frank Schlesener, and S. Dietrich, Phys. Rev. E

76, 011121 (2007).
18R. Garcia and M. H. W. Chan, Phys. Rev. Lett. 83, 1187 (1999).
19A. Ganshin, S. Scheidemantel, R. Garcia, and M. H. W. Chan, Phys.

Rev. Lett. 97, 075301 (2006).
20M. Fukuto, Y. F. Yano, and P. S. Pershan, Phys. Rev. Lett. 94,

135702 (2005).
21C. Hertlein, L. Helden, A. Gambassi, S. Dietrich, and C. Bechinger,

Nature (London) 451, 172 (2008).
22A. Gambassi, A. Macioł ek, C. Hertlein, U. Nellen, L. Helden,

C. Bechinger, and S. Dietrich, Phys. Rev. E 80, 061143
(2009).

23A. Hucht, Phys. Rev. Lett. 99, 185301 (2007).

24O. Vasilyev, A. Gambassi, A. Maciołek, and S. Dietrich, Phys. Rev.
E 79, 041142 (2009).

25O. Vasilyev, A. Gambassi, A. Maciołek, and S. Dietrich, Europhys.
Lett. 80, 60009 (2007).

26A. Gambassi, J. Phys. Conf. Series 161, 012037 (2009).
27M. Hasenbusch, J. Stat. Mech. (2009) P07031.
28M. Hasenbusch, Phys. Rev. B 82, 104425 (2010).
29M. Campostrini, M. Hasenbusch, A. Pelissetto, and E. Vicari, Phys.

Rev. B 74, 144506 (2006).
30O. Vasilyev, A. Maciołek, and S. Dietrich, Phys. Rev. E 84, 041605

(2011).
31M. Hasenbusch, Phys. Rev. B 83, 134425 (2011).
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