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Degeneracy and ordering of the noncoplanar phase of the classical bilinear-biquadratic Heisenberg
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We investigate the zero-temperature behavior of the classical Heisenberg model on the triangular lattice in which
the competition between exchange interactions of different orders favors a relative angle between neighboring
spins � ∈ (0,2π/3). In this situation, the ground states are noncoplanar and have an infinite discrete degeneracy.
In the generic case, i.e., when � �= π/2, arccos(−1/3), the ground-state manifold is in one-to-one correspondence
(up to a global rotation) with the set of noncrossing loop coverings of the three equivalent honeycomb sublattices
into which the bonds of the triangular lattice can be partitioned. This allows one to identify the order parameter
space as an infinite Cayley tree with coordination number 3. Building on the duality between a similar loop model
and the ferromagnetic O(3) model on the honeycomb lattice, we argue that a typical ground state should have
long-range order in terms of spin orientation. This conclusion is further supported by the comparison with the
four-state antiferromagnetic Potts model [describing the � = arccos(−1/3) case], which at zero temperature is
critical and in terms of the solid-on-solid representation is located exactly at the point of roughening transition.
At � �= arccos(−1/3), an additional constraint appears, whose presence drives the system into an ordered phase
(unless � = π/2, when another constraint is removed and the model becomes trivially exactly solvable).
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I. INTRODUCTION

The recent discovery of the compound NiGaS4 and the
suggestion that it might be a spin liquid or a spin nematic,1 has
revived the interest in the Heisenberg model with bilinear and
biquadratic interactions defined by the Hamiltonian

H =
∑
(jj ′)

J1Sj · Sj ′ + J2(Sj · Sj ′ )2, (1)

where (jj ′) stands for the nearest-neighbor pairs on a lattice.
In one dimension, the spin-1 case has been very thoroughly
investigated following Haldane’s prediction that the pure
Heisenberg model is gapped,2 and a rather complete picture
of its properties has emerged both in zero (see, e.g., Refs. 3–5
and references therein) and in finite magnetic field.6–9

In two dimensions, most of the attention has also been
devoted to the spin-1 case, and some trends have emerged
from the investigation of this model on the triangular and
square lattices.10–13 With the standard notation J1 = J cos θ ,
J2 = J sin θ , the phase diagram as a function of θ consists
of four main phases: an antiferromagnetic phase (with two
sublattices on the square lattice and three sublattices on the
triangular lattice) around θ = 0, followed counterclockwise by
a three-sublattice antiferroquadrupolar phase up to θ = π/2,
a ferromagnetic phase around θ = π , and finally, a ferro-
quadrupolar phase that persists until the antiferromagnetic
order sets in.

In comparison, little attention has been paid to the classical
limit, where spins are classical vectors of length 1. The
main reason lies in the fact that, in contrast to the spin-1/2
case, for spin-1 systems the classical limit is not equivalent
to the Hartree approximation (in which the ground state is
approximated by a product of local wave functions) since local

wave functions are not necessarily purely magnetic but can also
describe quadrupolar states.

In the classical limit, the most unusual feature introduced by
the presence of the biquadratic exchange is the possibility (re-
alized in the parameter range −2J2 < J1 < 2J2 with J2 > 0)
to have the minimum of the interaction of two spins in a
noncollinear configuration in which they make an angle

� = arccos

(
− J1

2J2

)
∈ (0,π ) (2)

with respect to each other, while the overall orientation of
the spins is arbitrary.14,15 Such an interaction may be called a
rotationally invariant spin-canting interaction. It should not be
confused with the Dzyaloshinskii-Moriya interaction, which
also induces a canting between a pair of spins but forces them
to lie in a specific plane.

Note that the physics will be essentially the same for any
rotationally invariant canting interaction between pairs of spins
that leads to the same angle �, for instance interactions that
include higher powers of Sj · Sj ′ , in which case the relation
(2) would have to be replaced by a more complex one. For
this reason, we prefer below to characterize the interaction in
terms of the angle � and not in terms of the parameter θ . The
classical XY model with rotationally invariant spin-canting
interaction on the square lattice has been investigated by Lee
et al.14 and the classical Heisenberg model on the triangular
lattice by Kawamura and Yamamoto.15

According to Ref. 15, the zero-temperature phase diagram
of the classical version of model (1) on the triangular lattice
includes four phases (see Fig. 1): a ferromagnetic phase
for π − arctan(1/2) < θ < 3π/2, a nematic-like phase with
collinear orientation of spins for −π/2 < θ < − arctan(2/9),
a three-sublattice antiferromagnetic phase for
− arctan(2/9) < θ < π/4, and a phase with noncoplanar
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orientations of spins for π/4 < θ < π − arctan(1/2).
This phase diagram is reminiscent of the spin-1
phase diagram,12 but the nondegenerate ferro- and
antiferroquadrupolar phases of the spin-1 case are
replaced by highly degenerate magnetic phases.
The nematic-like phase is thoroughly discussed in Ref. 15,
with the conclusion that it has the same degeneracy and
correlations as the antiferromagnetic Ising model on the
triangular lattice.

The discussion of the noncoplanar phase is much more
sketchy however. The authors of Ref. 15 point out that there
is a degeneracy due to the two possible chiralities of a
local umbrella [formed on each triangular plaquette when
� ∈ (0,2π/3)], but no attempt has been made to identify
the structure of the ground-state manifold or to study the
consequences of the degeneracy on the spin correlations in
a typical ground state. In the present paper, we construct the
complete classification of the ground states that allows us to
conclude that the noncoplanar phase is a nontrivial one even
at zero temperature because the total number of ground states
grows exponentially with the area of the system, as in various
versions of the antiferromagnetic (AF) Potts model and other
frustrated models with a finite residual entropy per site.16–21

In situations like this, it is not evident a priori whether the
degeneracy leads at zero temperature to the disordering of the
system or to an algebraic decay of correlations, or whether
long-range order is nevertheless present.

Interestingly enough, in the two-dimensional antiferromag-
nets known to have an extensive residual entropy, all three
scenarios are realized. In particular, both the AF Ising model
on the kagome lattice16 and the three-state AF Potts model on
the square lattice17 at zero temperature are disordered, the AF
Ising model on the triangular lattice,18 and the three-state AF
Potts model on the kagome lattice19,20 are critical, whereas the
three-state AF Potts model on the dice lattice has a genuine
long-range order.21 The main aim of our paper is to establish
which of the three scenarios is realized in the present case.

The paper is organized as follows. Section II is devoted to
a complete classification of the ground states of the model in
terms of the nonintersecting closed loops living on the bonds of
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3/2
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FIG. 1. Phase diagram of the classical bilinear-biquadratic
Heisenberg model on the triangular lattice.

the triangular lattice, which allows us to redefine the problem
as a loop model. In Sec. III, we show that the order-parameter
manifold of this loop model has the same topology as that of the
O(n) model with n = 3, which suggests that they belong to the
same universality class and, therefore, that both of them are in
the ordered phase. In Sec. IV, the same conclusion is confirmed
by establishing a relation with the four-state AF Potts model
on the same lattice and by relying on some known properties of
this Potts model. For completeness, Sec. V briefly discusses the
case � = π/2, where the model is trivially exactly solvable,
and Sec. VI summarizes the results. The Appendix is devoted
to the analysis of a simplified problem corresponding to
freezing the spins on one of the three sublattices in a perfectly
ordered state. It also includes estimates from below and from
above of the residual entropy of the full problem.

II. GROUND-STATE CLASSIFICATION AND LOOP
MODEL

We assume that classical spins Sj (three-dimensional
vectors of unit length) are located at the sites j of the triangular
lattice and that the energy of the interaction of two neighboring
spins E(S,S′) depends only on the angle between S and S′ and
is minimal when this angle is equal to � ∈ (0,2π/3). In terms
of the coupling constants J1 and J2 introduced in Eq. (1)
this corresponds to −2J2 < J1 < J2 [see Eq. (2)]. For such
values of �, it turns out to be possible to minimize E(Sj ,Sj ′ )
simultaneously for all pairs of neighboring spins (jj ′), which
means that the system is not frustrated. However, as we shall
see, it is very highly degenerate.

The simplest ground states of the model can be constructed
by choosing three unit vectors SA, SB , and SC , which form
angles � with respect to each other. After that, one can partition
the triangular lattice into three triangular sublattices (denoted
below A, B, and C) and set all spins on sublattice A to SA, on
sublattice B to SB , and on the third one to SC . In such a way,
one obtains a periodic ground state that has a three-sublattice
structure.15 Below, we call such ground states regular states.

The family of regular states is characterized by an
SO(3) × Z2 degeneracy, where the group SO(3) is related
to the possibility of simultaneously rotating all spins and
the group Z2 to the possibility of choosing the sign of the
mixed product of the three spins located in the corners of a
given plaquette to be either positive or negative. However, it
is clear that the family of ground states is much wider than
the set of regular states, and that, in addition to these two
symmetry-induced degeneracies, it possesses also an infinite
set of discrete degeneracies not related to global symmetries.
Indeed, for any pair of spins SA and SB forming an angle
� ∈ (0,2π/3) with respect to each other, there are always two
possibilities to choose the orientation of the third spin in such
a way that it forms the same angle � both with SA and with
SB . These two orientations are mirror images of each other
with respect to the plane formed by SA and SB . Since in a
regular state all plaquettes contain the same triad of spins (SA,
SB , and SC), it is clear that in such a state one can always flip
an arbitrary spin into its mirror image without increasing the
energy of the system.

Flipping one spin leads to a new ground state in which
six neighboring triangular plaquettes (surrounding the flipped
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spin) form a domain of a different regular state. In order to
obtain a larger domain, one has to flip other spins belonging
to the same sublattice. As soon as a domain of another regular
state is sufficiently large, a new domain can be formed inside
it by flipping spins belonging to another sublattice, and so on.

A convenient method of describing the full set of ground
states is based on the notion of a zero-energy domain wall.22

In the system under consideration, a zero-energy domain wall
can be defined as a line passing through the bonds of the
triangular lattice in such a way that each segment of this line
separates two plaquettes corresponding to different regular
states. This means that each segment of such a wall separates
two unparallel spins that on the original triangular lattice are
the next-to-nearest neighbors and therefore belong to the same
sublattice. Then it is clear that the spin configuration in a
ground state is uniquely defined as soon as one specifies the
orientations of three spins on an arbitrary plaquette and the
positions of all zero-energy domain walls. For brevity, in
the following, we simply call these objects domain walls.

By definition, a regular state contains no domain walls,
whereas flipping of a single spin leads to the formation of
the simplest closed domain wall consisting of six segments
joining each other at angle 2π/3, i.e., a hexagon. By flipping
a larger number of spins belonging to the same sublattice one
can construct more complex domain walls. However, it is clear
that any wall has to be closed (or end at the boundary) and its
neighboring segments always have to form angles of ±2π/3
with respect to each other, as in Fig. 2(b).

Since each domain wall can be associated with spin flipping
on a particular sublattice of the triangular lattice, all domain
walls can be partitioned into three classes (which below are
called colors). The domain walls of a given color live on one
of the three equivalent honeycomb sublattices into which the
bonds of the triangular lattice can be partitioned. Therefore just
by construction, walls of the same color have no possibility of
crossing or touching each other.

A less evident property is that for a generic value of �

walls of different colors are also unable to cross each other.
This is so because when going around an intersection of two
walls [see Fig. 2(e)] one has to perform successive spin flips on
sublattice α (where α = A,B,C), then on another sublattice β

and once again on α and then on β, and return after that to the

FIG. 2. (Color online) The loop representation: (a)–(c) allowed
configurations of loops, (d) additional vertex allowed only at
� = arccos(−1/3), and (e) the vertex corresponding to an inter-
section of loops (allowed only at � = π/2). The domain walls on
different sublattices are shown with lines of different types.

FIG. 3. (Color online) From left to right, configurations obtained
after successive flips of spins A, B, A, B. In the final configuration,
the triad of spins is rotated around C by an angle 4�(�) with respect
to the original one.

same configuration. At a formal level, this corresponds to the
fulfillment of the condition

(R̂βR̂α)2 = 1 , (3)

where R̂α denotes the operation of spin-flipping on sublattice
α (R̂2

α ≡ 1). However, since each of the operators R̂α and R̂β

involves a rotation of a spin around the third spin of the triad
by the angle 2�(�), where

�(�) = arccos

(
cos �

1 + cos �

)
∈ (π/3,π ) , (4)

the application of (R̂βR̂α)2 rotates the whole configuration
by 4�(�). It is easy to check that one returns to the initial
configuration only for � = π/2 (when � is also equal to
π/2), whereas for all other values of � the operator (R̂βR̂α)2

brings a triad of spins into a configuration rotated with respect
to the original one, as illustrated in Fig. 3.

Condition (3) can be also rewritten as R̂αR̂β = R̂βR̂α ,
which means that the zero-energy domain walls can cross
each other only when operators R̂α commute with each other.
However, walls of different colors can touch each other, as
shown in Fig. 2(c).

As a consequence of the rules discussed above, for each
site of the triangular lattice there are only three possibilities:
(i) the absence of any domain wall passing through this site
[see Fig. 2(a)], (ii) the presence of a single domain wall whose
segments form an angle 2π/3 with each other [see Fig. 2(b)],
and (iii) the presence of two domain walls touching each other
[see Fig. 2(c)]. Therefore, to understand the zero-temperature
properties of the system, one has to study a loop model
on the triangular lattice in which on each site only the
configurations shown in Figs. 2(a)–2(c) are allowed (as well
of course as those that can be obtained from them by rotation),
whereas all other configurations are prohibited [for example,
the intersection of two domain walls shown in Fig. 2(e)].
The two exceptions where other configurations of zero-energy
domain walls are allowed are the cases � = arccos(−1/3) and
� = π/2, discussed respectively in Secs. IV and V.

One can introduce on each triangular plaquette k a binary
variable χk = ±1 defined in such a way that it is perfectly
ordered in any regular ground state and changes its sign
on crossing each domain wall. In terms of the original spin
variables Sj , the value of χk is given by the sign of the mixed
product SjA(k) · [SjB (k) × SjC (k)], where the three sites jA(k),
jB(k), and jC(k) belonging to plaquette k are labeled after the
sublattice to which they belong. Below, for simplicity, we call
variable χk chirality of plaquette k, although more accurately
it should be called staggered chirality.
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III. ORDER-PARAMETER MANIFOLD

Let us define neighboring regular states as the regular states
that can be transformed into each other by flipping the spins
of one of the three sublattices. From the definition of a domain
wall it is clear that in any ground state the domains lying on
both sides of any domain wall belong to neighboring regular
states. Since each regular state has exactly three neighboring
states, at zero temperature, the order-parameter manifold of our
system has the topology of an infinite Cayley tree (also known
as Bethe lattice) with coordination number n = 3. Each node
of this tree represents a regular ground state, while the links
connect neighboring states. If one ascribes to each link on the
tree the color of the corresponding domain wall, the three links
connecting any node with its neighbors will all be of different
colors.

Figure 4 illustrates the correspondence between the do-
mains of various regular states and the nodes of the Cayley tree
whose links are colored in such a way. On the top panel, the
domains corresponding to the same regular state are marked
by the same number (the numbering being arbitrary). On the
bottom panel, the same set of numbers is used to mark the
nodes of the Cayley tree. The distance on the tree corresponds
to the minimal number of spin flips one has to make (in other
terms, the minimal number of domain walls one has to cross)
to get from one regular state to another.
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FIG. 4. (Color online) (Top) Example of loop covering. The
numbers refer to the positions of different domains on the Cayley
tree shown in the lower panel. The numbering is arbitrary and has
been included to keep track of the relative positions on the tree.

The treelike topology of the order-parameter manifold (that
is, the absence of closed loops) is ensured by the impossibility
(for a generic value of �) to return to the same state after
crossing a sequence of domain walls corresponding to a
product of operators R̂α , which cannot be reduced to unity by
application of the identity R̂2

α = 1. This property follows from
the fact that intersections of domain walls are not allowed.

Another model with the same structure of the order-
parameter manifold is obtained when one considers a loop
model on the honeycomb lattice23,24 in which each closed
loop of length L is ascribed a factor

w(L) = nKL . (5)

In this model, the loops cannot intersect or touch each other
simply because the geometry of the honeycomb lattice does
not allow for this. The number n can then be interpreted
as the number of different colors the loops can have. This
allows one to interpret these colored loops as domain walls23

separating the states on a Cayley tree with coordination number
n by following the same rule that the states separated by a
domain wall of a given color correspond to neighboring nodes
connected by a link of the same color.

For n = 3, the only difference between the two models is
that in our model the loops of different colors are living on
three different (interpenetrating) honeycomb lattices, whereas
in the loop model of Ref. 23, they are living on the same
honeycomb lattice. However, in both models, the loops cannot
cross each other or have an overlap, which ensures that the two
models have the same order-parameter manifold and therefore
can be expected to belong to the same universality class.

In Ref. 23, it has been shown that the loop model defined
by Eq. (5) is a dual representation of a ferromagnetic O(n)
model whose partition function can be written as

ZO(n) = Tr

[ ∏
(kk′)

(1 + Ksksk′)

]
, (6)

where sk are n-dimensional unit vectors defined at the sites k of
the honeycomb lattice, the product is taken over all bonds (kk′)
of this lattice and the trace implies the unweighted integration
over all variables sk . On the other hand, it is also well known
that in O(n) models with n > 2, the long-range order in sk is
always destroyed by small continuous fluctuations of the order
parameter (the spin waves),25 which leads to an exponential
decay of the correlation functions 〈sk1 sk2〉 with the distance
between k1 and k2.

It follows from the analysis of Refs. 26 and 27 that in terms
of the loop representation, the exponential decay of 〈sk1 sk2〉
means that the insertion into the system of a string (an open
loop) going from k1 to k2 leads to the suppression of the
partition function of the system by a factor that exponentially
depends on the distance between k1 and k2. This suggests that
long loops have large effective free energy and accordingly
the probability of finding a sufficiently large loop also decays
exponentially with the size of this loop. As a consequence, the
typical number of irreducible loops separating the two points
cannot experience an unrestricted growth with the increase of
the distance between these points and has to saturate at some
finite value.
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This means that in terms of the order parameter defined
on a Cayley tree, the system is in the ordered phase, that is,
it remains localized in some region of the order parameter
manifold even when its size tends to infinity. From the
universality, we expect the loop model constructed in the
previous section (which has the same symmetry of the order-
parameter manifold) to be also in the ordered phase. In terms
of original spin variables Sj , such a situation corresponds to
the existence of a genuine long-range order. This is especially
evident for � � 1. It is clear that if in a typical ground state, the
system is localized on the tree within the region of diameter
Dtyp, then for � � 1/Dtyp, the distant spins will be almost
parallel to each other.

To support the hypothesis that there should be no qualitative
difference between the system in which the loops of different
colors live on different sublattices and the one where they
live on the same sublattice, we analyze in the Appendix
a reduced problem with n = 2. In particular, we explicitly
demonstrate that the system in which the nonintersecting loops
of two different colors live on two interpenetrating honeycomb
lattices can be in an exact way transformed into the system
in which the loops of two different colors live on the same
honeycomb lattice.

IV. COMPARISON WITH THE FOUR-STATE
ANTIFERROMAGNETIC POTTS MODEL

When � = arccos(−1/3), different spins Sj can have only
four different orientations in any ground state, which means
that at zero temperature, the system is equivalent to the four-
state AF Potts model. It has been shown in Refs. 19 and 28 that
the set of ground states of the four-state AF Potts model on
the triangular lattice allows a mapping onto the set of ground
states of the three-state AF Potts model on a kagome lattice,
whose exact solution at zero temperature was constructed by
Baxter in 1970.19 His results imply that the four-state AF Potts
model has a finite extensive entropy per site whose numerical
value is approximately equal to 0.379.

Much later Huse and Rutenberg20 have demonstrated that
Baxter’s solution corresponds to an algebraic decay of spin
correlations on the same triangular sublattice of a kagome
lattice: 〈Sj1 · Sj2〉 ∝ 1/r

η

12 with η = 4/3, r12 being the distance
between j1 and j2 (the application of the same approach
shows that in terms of the four-state AF Potts model on
the triangular lattice η = 1/3). This conclusion was reached
by constructing another mapping20,29 that puts each ground
state of the three-state AF Potts model on the kagome lattice
into correspondence with a ground state of a solid-on-solid
(SOS) model describing fluctuations of a two-dimensional
interface in a four-dimensional space. In this SOS model,
height variables uj (defined on the sites j of the original
triangular lattice T ) are points on an auxiliary triangular lattice
T∗ defined in the transverse (height) space. The only restriction
on possible configurations of u is that if j and j ′ are nearest
neighbors on T , then uj and uj ′ have to be nearest neighbors
on T∗.

To make the description of the system more transparent, it
is convenient to introduce the locally coarse-grained heights
hk ≡ 1

3 [ujA(k) + ujB (k) + ujC (k)], that is the averages of vari-
ables u over the three sites belonging to a given triangular

plaquette of T .29,31 These variables can be considered as
defined at the sites k of the honeycomb latticeH dual to T , and
their values belong to the honeycomb lattice H∗ dual to T∗.
Variables hk are more convenient than variables uj because,
in any regular state, all variables hk are equal (in contrast to
variables uj ). On the other hand, each domain wall separates
hk and hk′ which are nearest neighbors on H∗. Therefore, if k

and k′ are nearest neighbors on H, then hk and hk′ have to be
either equal or nearest neighbors on H∗.

Thus, for � = arccos(−1/3), different regular states can
be associated with different points of H∗, which means that
the order-parameter manifold instead of being a Cayley tree
with coordination number n = 3 (as for generic values of
�) has the topology of a periodic lattice with the same
coordination number, namely, of the honeycomb lattice.29,30

On a formal level, this follows from the existence of the
identity (R̂βR̂α)3 ≡ 1. This difference in the topology of the
order-parameter manifold leads to a change of the universality
class, and, instead of being long-ranged, the correlations are
algebraic. In terms of the loop representation introduced in
Sec. II, a special feature of the case � = arccos(−1/3) is that
in addition to vertices a, b, and c (see Fig. 2), the vertex
d shown in the same figure is also allowed (with the same
unitary weight as all other vertices).

It is known from the analysis of Ref. 20 that the (2 + 2)-
dimensional SOS model corresponding to the Potts model
under consideration is in the rough phase, where the large
scale fluctuations of h can be described by a free field effective
Hamiltonian,

Heff = J

2

∫
d2r(∇h)2 , (7)

however, the value of the dimensionless rigidity modulus J is
such that the perturbation responsible for the discreteness of h
is marginal. In other terms, the model is located exactly at the
point of the roughening transition. Therefore any additional
suppression of height fluctuations should drive the system
into the ordered phase. In particular, we argue below that
this happens when one suppresses the formation of vertices
d (which for a generic value of � are not allowed).

In terms of height variables hk the main property of the loop
model defined by vertices a, b, and c is that its order-parameter
manifold does not allow for the existence of closed loops in
the height space. As a consequence, when going around any
of these vertices, the vector h makes in the height space just a
trivial loop that can be contracted to a point and has zero area.
In contrast to that, when going around vertex d, the vector h
sweeps a loop whose area is equal to that of the elementary
hexagon cell of H∗. Accordingly, in terms of height variables
hk , an interaction that keeps the weights of vertices a, b, and c

unchanged but leads to the partial or complete suppression of
vertices d can be written as

Vd = Jd

2

∑
j


2
j , (8)

where Jd > 0,


j = 1

2

6∑
p=1

hkp(j ) × hkp+1(j ) (9)
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is the area of a loop swept by h when going counterclockwise
around the hexagonal plaquette of the dual lattice surrounding
site j of the original lattice, and p numbers (in the same
direction) the six sites of the dual lattice belonging to this
plaquette. Naturally, complete suppression corresponds to
Jd → +∞ .

In the framework of a continuous description, Eq. (8) should
be replaced by

Vd = Jd

2

∫
d2r

(
∂h
∂r1

× ∂h
∂r2

)2

, (10)

where r1 and r2 are the two components of the vector r and the
quantity in brackets is the Jacobian of the mapping r → h. It
seems natural to expect that the addition of such an interaction
with Jd > 0 to the large-scale Hamiltonian (7) would lead
to the suppression of the fluctuations of h and, indeed, the
perturbative treatment demonstrates that already in the first
order of the expansion in powers of Jd , one obtains a correction
to J . For Jd > 0, this correction is positive and therefore has
to shift the system into the ordered phase. This provides one
more argument in favor of the conclusion that for a generic
value of �, the system has to be in the ordered phase, which
corresponds to the existence of a genuine long-range order in
terms of the original spin variables Sj .

However, the existence of such a long-range order does
not necessarily imply the presence of the long range-order
in chirality. Even if in a typical configuration the system is
localized in some region of the order-parameter manifold,
its distribution does not have to be centered on a particular
node of the order-parameter tree, but can also be, for example,
symmetric with respect to the center of a link connecting two
neighboring nodes. In such a case, there will be no long-range
order in chirality, although the original spin variables Sj will
be ordered on all three sublattices.

V. THE CASE � = π/2

In the case � = π/2, the spins on neighboring sites always
have to be perpendicular to each other (where “always”
means “in any ground state”). As a consequence, each spin
always remains flippable independently of the flips made by
other spins. In such a situation, it is natural to describe the
ground states of the system in terms of Ising pseudospins
σj = ±1 such that Sj = Sα(j )σj , where α(j ) = A,B,C de-
notes the sublattice to which site j belongs and SA, SB , SC

are three unit vectors perpendicular to each other. Since all
possible sets of σj are allowed, the residual entropy per site
is equal to ln 2 ≈ 0.693 and the zero-temperature spin-spin
correlation function 〈Si · Sj 〉 vanishes as soon as i �= j .

However, the system has long-range order in terms of
the spin-nematic order parameter, SaSb − δab/3,32 with three
different easy axes (which are perpendicular to each other)
for the three sublattices. In Refs. 11 and 12, devoted to the
investigation of model (1) with S = 1, the phase with such a
structure of the order parameter (realized for π/4 � θ � π/2)
was called the antiferroquadrupolar phase. The difference
between the quantum system with S = 1 and the classical
limit S → ∞ is that for S = 1, the order parameter on each
sublattice is like in an easy-plane spin nematic, whereas for
S → ∞, it is like in an easy-axis spin nematic.

As it was already mentioned in Sec. II, in terms of the
loop representation, the case � = π/2 corresponds to the
situation where the intersections of loops [see Fig. 2(e)] are
not prohibited. In such a case, the three subsystems of loops
(on different sublattices) are completely decoupled from each
other.

VI. CONCLUSION

We have investigated the classical Heisenberg model on
the triangular lattice with a spin-canting interaction, i.e., an
interaction such that the energy of a pair of spins is minimized
when the angle between them is equal to � ∈ (0,π ). In
particular, the interaction of two spins has this property if
the antiferromagnetic biquadratic exchange is of comparable
strength with the bilinear exchange.15 Our analysis is
focused on the case � ∈ (0,2π/3), where the energy can
be minimized simultaneously for all bonds. The family of
ground states is then characterized by a well developed
degeneracy corresponding to an extensive residual entropy,
which makes the question whether at zero temperature the
system is ordered, disordered or critical a nontrivial one.

After constructing a complete classification of the ground
states of the model, we have demonstrated that at zero
temperature, its order-parameter manifold has the structure
of an infinite Cayley tree with coordination number n = 3
and therefore is isomorphic to that of the O(n) model with
n = 3. This suggests that the two models belong to the same
universality class and therefore the system under consideration
should be, like the O(n = 3) model, in the ordered phase,
which means long-range order in terms of the original spin
variables Sj . This conclusion has been confirmed by showing
that our model can be constructed by imposing an additional
restriction onto the four-state AF Potts model on the triangular
lattice, which leads to the suppression of the fluctuations of the
free field describing the large-scale fluctuations of this Potts
model and therefore pushes it from the point of roughening
transition into the ordered phase.

Numerical simulations of the classical bilinear-biquadrartic
Heisenberg model on the triangular lattice demonstrate15 that
at J2/J1 = −3 and very low temperatures, the spins in a typical
configuration form a noncollinear structure analogous to what
can be expected from a typical ground state in the presence of
weak continuous fluctuations. However, the authors of Ref. 15
have not studied how the spin-spin correlation functions
behave in the T → 0 limit (at any finite temperature, the
long-range order in spin orientation in any case has to be
destroyed by the spin waves),25,33 so their results cannot be
used for checking our conclusions. Moreover, it still remains
to be elucidated if the behavior of the system at very low
temperatures is determined mostly by its zero-temperature
properties, or whether the removal of the accidental degeneracy
by continuous fluctuations (spin waves) can play an important
role, as in the case of a triangular-lattice Heisenberg or XY

antiferromagnet in the presence of an external magnetic field.34

Note that the only possibility for the noncollinear phase
considered in this paper to have a genuine long-range order
at finite temperatures consists in having a long-range order in
chirality, and our conclusions allow for the realization of such
a scenario.
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The two exceptions from the generic behavior described
above are the cases � = π/2 and � = arccos(−1/3) for
which the model at zero temperature is exactly solvable. For
� = π/2, the fluctuations of any pair of spins are uncorrelated,
〈Si · Sj 〉 = 0, but the system has long-range order in terms of
the spin-nematic order parameter with three different easy axes
for the three sublattices (the antiferroquadrupolar phase).11,12

On the other hand, for � = arccos(−1/3), the model is
equivalent to the four-state AF Potts model in which the
chirality and spin correlations are algebraic, 〈χk1χkk2

〉 ∝ 1/r4
12

(see Ref. 20), 〈Sj1 · Sj2〉 ∝ 1/r
1/3
12 .
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APPENDIX: REDUCED PROBLEM

Let us consider a “reduced” loop problem that differs
from the one formulated in Sec. II by the suppression of the
formation of loops on one of the three honeycomb sublattices.
This is equivalent to saying that the spins on one of the three
triangular sublattices are not allowed to flip and remain aligned
in the same direction (below this sublattice is denoted TC

and two other sublattices TA and TB). In such a situation,
the formation of loops on the honeycomb lattice HAB formed
by the sites of TA and TB is impossible and the loop system
consists of only two types of loops (on honeycomb lattices
HAC and HBC).

When all spins on TC point in the same direction, SC
j = SC ,

the orientation of spins on the two other sublattices (TA and
TB) can be described by a single variable ψ , the angle between
the projection of Sj on the plane perpendicular to SC and
some reference direction in this plane. Since the angle between
neighboring spins is always equal to �, the difference between
the values of ψ on neighboring sites of HAB has to be equal
(modulo 2π ) to ±�(�), where �(�) is given by Eq. (4). For
� ∈ (0,2π/3), �(�) belongs to the interval (π/3,π ) and is a
monotonically increasing function of �.

For �(�) �= π/2 (that is, � �= π/2), the existence of such
a relation between the orientations of neighboring spins allows
one to introduce integer variables uj defined on the sites of
honeycomb lattice HAB in such a way that on neighboring
sites of HAB (belonging to different sublattices) they always
differ by ±1. In particular, one can choose variables uj to be
even on TA and odd on TB . Then on neighboring sites of the
same triangular sublattice these variables either differ by ±2
(when these sites are separated by a domain wall) or are equal
to each other (in the absence of such a wall).

Accordingly, the system of AC and BC loops can be
discussed in terms of a (2 + 1)-dimensional solid-on-solid
(SOS) model defined on HAB . In the SOS representation,
variables uj have the meaning of surface heights, whereas
each domain wall plays the role of a step between the regions
in which the values of either uA or of uB differ by ±2.
The SOS model defined in such a way can be considered

as a generalization of the BCSOS model (introduced by van
Beijeren35 on the square lattice) to the honeycomb lattice.
In particular, the representation of the model in terms of
Ising-type pseudospins σj = ±1 can be constructed with the
help of the same relations as for the BCSOS model,36

σA
j = cos

[
(π/2)uA

j

]
, (A1a)

σB
j = sin

[
(π/2)uB

j

]
, (A1b)

where we still follow the convention that variables uj are even
on TA and odd on TB . The pseudospin variables σj are defined
in such a way that each flip of the original spin Sj leads to
a change of sign of σj . Accordingly, pseudospins of opposite
signs belonging to the same sublattice are separated by domain
walls.

All configurations allowed in this SOS model enter the
partition function of the reduced problem with the same weight
(like in the infinite temperature limit of the BCSOS model).
The existence of the mapping to a SOS model confirms that the
suppression of spin flips on one of the three sublattices reduces
the order parameter manifold of the system from a tree with
coordination number n = 3 to a trivial tree with coordination
number n = 2.

The SOS model on HAB introduced above can be further
mapped onto the 20-vertex model on the triangular lattice
introduced by Baxter.37 In order to perform the mapping, one
should put on each bond of TC an arrow directed in such a way
that the larger of the two heights at the ends of the AB bond
crossed by this arrow is always to the right of the arrow. Then
on each site of TC , one will have three incoming and three
outcoming arrows (the ice rule), which precisely corresponds
to the selection of the allowed vertices in the 20-vertex model.

The exact solution of the 20-vertex model on the triangular
lattice found by Baxter37 demonstrates that when all vertices
have the same weight (as in our case), the dimensionless free
energy per vertex is equal to − 1

2 ln 27
4 . In terms of the current

discussion, this means that the residual entropy of the reduced
problem (per site of the original triangular lattice T ) is equal to
1
6 ln 27

4 ≈ 0.318. The residual entropy of the full loop problem
should be larger than this value but lower than that of the
four-state AF Potts model (approximately equal to 0.379, see
Ref. 19).

Let us now compare the contributions to the partition
function of the reduced problem that can be associated with
different configurations of the BC loops (in other terms,
with different allowed configurations of variables uA

j ). The
contribution from the configuration in which the BC steps
are completely absent (that is, all variables uA

j are equal to
each other, uA

j = uA) can be found very easily. In such a
situation, all variables uB

j can acquire two values uB = uA ± 1
independently of each other. Therefore the corresponding
contribution is equal to 2N0 , where N0 is the number of sites
on each of the three sublattices.

If there is a closed BC loop of length L separating the
regions in which the values of the variables uA

j differ by
2, then on all L/2 sites from TB passed by this loop, the
variables uB

j cannot fluctuate and have to be equal to the
average between the values of uA on both sides of the loop.
This means that the presence of a loop of length L decreases
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the number of allowed configurations on sublattice TB from
2N0 to 2N0−L/2+1. The additional factor of 2 appears because
for each loop configuration this loop can represent two types
of steps (positive and negative).

After noting that an analogous reduction is induced by
every loop on HBC , one can conclude that after summation
over all allowed configurations of variables uB

j one obtains an
SOS model defined on the triangular lattice TA. In this model,
the values of height variables on neighboring sites of TA can
either be equal or differ by ±2, whereas each step is ascribed
a weightfactor exponentially decaying with its length. This
model can also be interpreted23,38 as the Ashkin-Teller model
on the triangular lattice39 with one of the weights equal to zero.

Thus we have reduced a model in which the loops of
two different types are living on different interpenetrating
honeycomb lattices to a model in which all loops are living
on the same honeycomb lattice. However, the weight factor
corresponding to each loop,

w(L) = 2(1/
√

2)L, (A2)

contains a factor 2 related to the existence of two types of
loops. The loop model defined by the weight factor (A2) is
just a particular case of the more general model23 with w(L)
given by Eq. (5). For −2 � n � 2 this model is known24 to
have a phase transition at Kc(n) = 1/

√
2 + √

2 − n.
This suggests that for n = 2 and K = 1/

√
2, the SOS

model on TA, defined two paragraphs above, is located exactly
at the point of the roughening transition, where large-scale
fluctuations of uA diverge logarithmically and can be described
by a (dimensionless) free-field effective Hamiltonian,

Heff = J

2

∫
d2r(∇uA)2 , (A3)

with dimensionless rigidity modulus J = π/8. This value
of J ensures the marginality of the operator − cos(πuA)
favoring even values of uA. It follows then from Eq. (A1a)
that the correlation function 〈σA

j1
σA

j2
〉 decays algebraically,

〈σA
j1

σA
j2

〉 ∝ 1/r
ησ

12 with ησ = 1, r12 being the distance between
j1 and j2.

It is clear already from symmetry that the analogous
correlation function on TB has to decay in exactly the same
way as on TA. The law of this decay can also be derived with
the help of another approach. It can be rigorously shown that
the correlation function of the two pseudospins on sublattice
TB is equal to the probability that they belong to the same BC

loop. In terms of SOS representation, such a loop corresponds
to a closed step at which variables uA

j jumps by ±2.

In the framework of the SOS model defined on sublattice
TA, the total statistical weight of configurations in which the
two given sites on TB belong to the same BC loop can be found
by reversing the sign of the step on one of the two segments into
which these two sites split the loop.29,40 This transforms the full
set of such configurations into the set of configurations allowed
in a system with a neutral pair of screw dislocations on going
around each of which uA

j changes by b = ±4. When the large-
scale fluctuations of uA can be described by the Hamiltonian
(A3), the dimensionless free energy associated with such a
dislocation pair will be given by F ≈ (Jb2/2π ) ln r12, which
shows that 〈σB

j1
σB

j2
〉 ∝ r−1

12 . The same value of the exponent
follows also from the possibility to unambiguously interpret
the steps in the considered model as the contours of equal
height.41 The consistency of the results produced by different
approaches supplies an additional confirmation that the value
of the rigidity modulus J in Eq. (A3) has been correctly
chosen.

In the framework of the reduced problem, the expression
for the chirality of a plaquette is reduced to the product of
two pseudospins on neighboring sites, χk = σjA(k)σjB (k). In
order to find how chirality correlations decay with distance,
it is convenient to express this product in terms of locally
coarse-grained height hk = 1

2 [ujA(k) + ujB (k)] as

χk = σjA(k)σjB (k) = sin(πhk) . (A4)

The variables hk are defined on AB bonds and acquire values
which are shifted from integers by 1/2. It follows from the
definition of hk that the values of these variables on adjacent
bonds can be either equal to each other or differ by ±1. In
particular, in any regular state, the values of hk are the same on
all AB bonds. Since the large-scale fluctuations of h have to be
described by the same Hamiltonian, Eq. (A3), as those of uA, it
follows from Eq. (A4) that chirality correlations have to decay
with exponent ηχ = 4 (as in the four-state antiferomagnetic
Potts model, see Sec. IV). This means that χ is a marginal
operator.

Note that the decay of 〈χkχk′ 〉 is much faster than that of
the product of 〈σjA(k)σjA(k′)〉 and 〈σjB (k)σjB (k′)〉. In terms of the
loop representation, the origin of this property is quite clear.
The presence of an AC loop passing through the sites jA(k)
and jA(k′) strongly decreases the number of configurations
with a BC loop passing through the sites jB(k) and jB(k′).
From the analogy with the case of a single loop (discussed
two paragraphs above), the fraction of configurations in which
two such loops are present simultaneously can be estimated by
considering a system with a neutral pair of screw dislocations
with b = ±8, which again gives ηχ = 4.
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