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We present a theoretical analysis of the temperature magnetic field concentration phase diagram of the
multiferroic Mn1−xMxWO4 (M = Fe, Zn, Mg), which exhibits three ordered phases, with collinear and
noncollinear incommensurate and with a commensurate magnetic order. The middle phase is also ferroelectric.
The analysis uses a semiphenomenological Landau theory based on a Heisenberg Hamiltonian with a single-ion
anisotropy. With a small number of adjustable parameters, the Landau theory gives an excellent fit to all three
transition lines as well as the magnetic and the ferroelectric order parameters. The fit of the magnetic and
ferroelectric order parameters is further improved by including the effect of fluctuations near the transitions. We
demonstrate the highly frustrated nature of these materials and suggest a simple explanation for the dramatic
effects of doping with different magnetic ions at the Mn sites. The model enables an examination of different
sets of exchange couplings that were proposed by a number of groups. Small discrepancies are probably a
consequence of small errors in the experimental magnetic parameters. In addition, using the Ginzburg criterion,
we estimate the temperature range in which fluctuations of the order parameters become important.
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I. INTRODUCTION

Type-II magnetoelectric multiferroics are materials which
exhibit coexistence between certain types of long-range
magnetic order and a ferroelectric order. These materials are
usually characterized by a strong magnetoelectric coupling
between their electric and magnetic degrees of freedom. The
magnetoelectric effect enables the control of the electric polar-
ization by a magnetic field, or the control of the magnetization
by an electric field. The study of magnetoelectric multiferroics
is thus of great interest in condensed matter physics, both
from basic research and technological applications points of
view.1–4 In recent years, the interest in this field has grown after
the discovery of new materials with a large magnetoelectric
effect, such as TbMnO3,5 TbMn2O5,6 Ni3V2O8,7 CuFeO2,8

and CoCr2O4.9 In those oxides, ferroelectricity appears in
conjunction with a noncollinear spiral magnetic phase, which
breaks spatial inversion symmetry, and therefore allows the
appearance of an electric polarization.

There are two different approaches to the theoretical
treatment of such noncollinear magnetoelectric multiferroics.
One approach is based on first-principles calculations us-
ing the density functional theory (DFT).10 The second ap-
proach constructs a model Hamiltonian dictated by symmetry
considerations.7,11,12 Different mechanisms for the magneto-
electric coupling can then be suggested.1,13–15 In this paper,
we develop a semiphenomenological model for describing
the magnetic phase transitions of Mn1−xMxWO4 (M = Fe,
Zn, Mg) and the induced ferroelectric polarization. The
model is semiphenomenological in the sense that some of
the parameters can be deduced from existing experimental
data, while the others are purely phenomenological. The
multiferroic MnWO4 is a natural choice for such an approach,
due to the vast experimental data that exists in the literature.

MnWO4 crystallizes in the wolframite structure, which
belongs to the monoclinic space group P 2/c with β ≈ 91◦.
The unit cell includes two magnetic Mn2+ ions with spin
S = 5/2 and orbital angular momentum L = 0 at positions

τ 1 = (0.5,y,0.25) and τ 2 = (0.5,1 − y,0.75) (in units of
the primitive lattice vectors) with y = 0.685.16 In zero
magnetic field, MnWO4 undergoes three successive phase
transitions at temperatures TN3 ≈ 13.5 K, TN2 ≈ 12.3–12.7 K,
and TN1 ≈ 7–8 K to phases which are called AF3, AF2,
and AF1, respectively.16–18 According to neutron diffrac-
tion experiments,16 AF3 is an incommensurate (IC) anti-
ferromagnetic phase with a collinear sinusoidal structure,
AF2 is an incommensurate antiferromagnetic phase with an
elliptical-spiral structure, and AF1 is a commensurate (C)
antiferromagnetic phase with a collinear ↑↑↓↓ structure. The
propagation vectors are qIC = (−0.214,0.5,0.457) (in units
of the primitive reciprocal lattice vectors) for AF2 and AF3,
and qC1,2 = (±0.25,0.5,0.5) for AF1. In AF3 and AF1, the
magnetic moments of the Mn2+ ions align along the easy axis
of magnetization, which lies in the ac plane and forms an angle
of ≈35◦–37◦ with the a axis. Different studies17,18 reveal that
a ferroelectric polarization, which is oriented along the b axis,
develops in the AF2 phase.

As opposed to MnWO4, other isomorphic wolframite
structures such as FeWO4, CoWO4, and NiWO4 show only
a single magnetic phase transition to a simple commen-
surate antiferromagnetic phase with the propagation vector
q = (0.5,0,0).19 Those observations suggest that unlike the
isomorphic structures, MnWO4 constitutes a highly frustrated
system with complex competing interactions. The competition
between the different interactions manifests itself in the
sensitivity of the phase diagram to doping with different
transition-metal ions at the Mn sites. It turns out that a small
Fe concentration suppresses the ferroelectric phase AF2 and
expands the stabilization range of AF3 and AF1.20–22 In
contrast to Fe doping, it has been reported23 that a small
Co concentration stabilizes the ferroelectric phase at the
expense of the AF1 phase. A quantitative and microscopic
understanding of the effect of Fe and Co doping on the
multiferroic properties and the phase diagram of MnWO4 is
quite complicated since the exchange couplings of the M-M
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and M-Mn (M = Fe, Co) interactions as well as the anisotropy
parameters are not known. In order to overcome some of these
problems, a much simpler magnetic system has been achieved
by the partial substitution of Mn ions by the nonmagnetic ions
Zn2+ and Mg2+.24,25 Those studies reveal that the AF1 phase
is strongly suppressed as a result of magnetic ions dilution by
nonmagnetic substituents.

The frustrated nature of MnWO4 was demonstrated by
Ehrenberg et al.26 Using inelastic neutron scattering, they ex-
tracted nine exchange couplings J1 − J9 for the superexchange
interactions among the Mn ions. Later, Tian et al.27 proposed
different values for the nine exchange couplings based on
DFT calculations. Those values depend on an unknown onsite
repulsion energy. Moreover, the authors have noted that
generally DFT calculations tend to overestimate the magnitude
of exchange interactions.27 Recently, the experimental data
have been expanded.28 In that study, Ye et al. suggested some
corrections for the values of the exchange couplings, and
included two additional ones, J10 and J11. The two sets of
experimental exchange couplings are summarized in Table I.
Since we suspect that in the definitions of the exchange term
in Ref. 26 each term was counted twice, we also added another
line with the exchange couplings of that work multiplied by
a factor of 2.29 The model we describe may help to compare
these different sets of exchange couplings by examining their
consistency with different experimental observations.

The outline of the paper is as follows: In Sec. II, we define
the model. In Sec. III, the results of the model are derived.
In Sec. IV, the model parameters are fitted by comparing
their results with different experimental observations. Here,
we compare the two sets of experimental exchange couplings
with the fitted parameters. In Sec. V, the Ginzburg criterion
is applied to the specific case of the multiferroic MnWO4 in
order to examine whether the mean-field-theory approach is
valid. We conclude in Sec. VI with a brief summary.

II. THE MODEL

In this section, we develop the semiphenomenological
model. The spin Hamiltonian consists of a Heisenberg term
with a single-ion anisotropy, which favors an easy axis in the
ac plane. According to experiments, the spin component along
the hard axis in the ac plane does not order in any of the phases.
Furthermore, the transitions are almost not influenced by an
external magnetic field along the hard axis. Hence, we omit the
hard axis component from the calculations and write the spin as
S(R + τ ) = Sx(R + τ )x̂ + Sb(R + τ )b̂, where x denotes the
easy axis in the ac plane and b denotes the axis perpendicular
to the ac plane. Here, S(R + τ ) is the thermal average of the
dimensionless classical spin at position R + τ , where R is a
lattice vector and τ is one of the two basis vectors τ 1, τ 2 in the
unit cell, indicating the locations of the Mn2+ ions. We study
the following Hamiltonian:

Hmag = −1

2

∑
R,R′

∑
τ ,τ ′=τ 1,τ 2

J (R + τ ,R′ + τ ′)
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Here, J (R + τ ,R′ + τ ′) is the superexchange interaction
energy which couples the spins at R + τ and R′ + τ ′, and D is
a positive single-ion anisotropy energy. To find an expression
for the magnetic free energy of the system, we expand the
entropy in the spin components up to the fourth order

T S = −1

2
aT

∑
R

∑
τ=τ 1,τ 2

S2(R + τ )

− b
∑

R

∑
τ=τ 1,τ 2

S4(R + τ ), (2)

where a and b are positive parameters, and T is the
temperature. Equation (2) gives the entropy relative to the
high-temperature paramagnetic phase (denoted by P) and thus
the expression is negative. Combining Eqs. (1) and (2), we
obtain the magnetic free energy

Fmag = 1

2

∑
R,R′

∑
τ ,τ ′=τ 1,τ 2

2∑
α,β=1

χ−1
αβ (R + τ ,R′ + τ ′)

× Sα(R + τ )Sβ(R′ + τ ′) + b
∑

R

∑
τ=τ 1,τ 2

S4(R + τ ),

(3)

where the 4 × 4 inverse susceptibility matrix is block diagonal:

χ−1
αβ (R + τ ,R′ + τ ′) = [(aT − Dα)δR,R′δτ,τ ′

− J (R + τ ,R′ + τ ′)]δα,β, (4)

with D1 = Dx = D and D2 = Db = 0. In the following, we
exploit the Fourier transforms of the spin components

Sα(q,τ ) = 1

N

∑
R

Sα(R + τ )eiq·(R+τ ),

(5)
Sα(R + τ ) =

∑
q

Sα(q,τ )e−iq·(R+τ ).

Here, q is in the first Brillouin zone and N is the number of
unit cells. In terms of the Fourier transform, the magnetic free
energy per unit cell, fmag ≡ Fmag/N , is

fmag = 1

2

∑
τ ,τ ′=τ 1,τ 2

2∑
α,β=1

∑
q

χ−1
αβ (q; τ ,τ ′)Sα

∗(q,τ )Sβ(q,τ ′) + b
∑

G

∑
τ=τ 1,τ 2

∑
q1,q2,q3,q4

e−iG·τ [Sx(q1,τ )Sx(q2,τ )Sx(q3,τ )Sx(q4,τ )

+ Sb(q1,τ )Sb(q2,τ )Sb(q3,τ )Sb(q4,τ ) + 2Sx(q1,τ )Sx(q2,τ )Sb(q3,τ )Sb(q4,τ )]δ(q1 + q2 + q3 + q4 − G), (6)

where G is a reciprocal lattice vector and the Fourier transform
of the inverse susceptibility matrix is given by the block-
diagonal Hermitian matrix

χ−1
αβ (q; τ ,τ ′) = [(aT − Dα)δτ ,τ ′ − J (q; τ ,τ ′)]δα,β, (7)

with J (q; τ ,τ ′) being the Fourier transform of the 2 × 2 matrix
J (R + τ ,R′ + τ ′)

J (q; τ ,τ ′) =
∑

R

J (τ ,R + τ ′)e−iq·(R+τ ′−τ ). (8)

In the last expression, the sum is over all lattice vectors R. The
four eigenvalues of the matrix (7) are

ζ±,x(q,T ) = aT − D − λ±(q),
(9)

ζ±,b(q,T ) = aT − λ±(q),

and the corresponding eigenvectors are

S±,x(q) = 1√
2

⎛⎜⎜⎜⎝
1

±e−iφ(q)

0

0

⎞⎟⎟⎟⎠, S±,b(q) = 1√
2

⎛⎜⎜⎜⎝
0

0

1

±e−iφ(q)

⎞⎟⎟⎟⎠.

(10)

Here, λ± are the two eigenvalues of the matrix (8) and φ(q) is
the phase of J (q; 1,2). Assuming 11 exchange couplings as in
Ref. 28, these two eigenvalues are given by

λ±(q) = ±2
√


2
2(q) + 
3

2(q) + 2 cos(2πqb)
2(q)
3(q)

+ 2
1(q), (11)

with the following definitions:


1(q) = J3 cos(2πqa) + J4 cos(2πqc)

+ J5 cos(2πqb) + J10 cos[2π (qa + qc)]

+ J11 cos[2π (qa − qc)],


2(q) = J1 cos(πqc) + J6 cos

[
2π

(
qa + qc

2

)]
+ J7 cos

[
2π

(
qa − qc

2

)]
,


3(q) = J2 cos(πqc) + J8 cos

[
2π

(
qa + qc

2

)]
+ J9 cos

[
2π

(
qa − qc

2

)]
. (12)

Now let us transform to magnetic normal coordinates

⎛⎜⎜⎜⎝
Sx(q,1)

Sx(q,2)

Sb(q,1)

Sb(q,2)

⎞⎟⎟⎟⎠ = σ+,x(q)S+,x(q) + σ−,x(q)S−,x(q)

+ σ+,b(q)S+,b(q) + σ−,b(q)S−,b(q). (13)

Here, σ+,x(q), σ−,x(q), σ+,b(q), and σ−,b(q) are the magnetic
order parameters for a magnetic structure with wave vector
q. The diagonal form of the magnetic free energy (6) is
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therefore

fmag = 1

2

∑
q

[ζ+,x(q,T )|σ+,x(q)|2 + ζ−,x(q,T )|σ−,x(q)|2

+ ζ+,b(q,T )|σ+,b(q)|2 + ζ−,b(q,T )|σ−,b(q)|2]

+O(σ 4). (14)

At high enough temperatures, the eigenvalues (9) are all
positive and therefore the stable phase is the paramagnetic one.
As we lower the temperature, we reach a critical temperature
for which one of the eigenvalues vanishes. We denote the wave
vector for which one of the eigenvalues vanishes first as qIC.
Since λ+(q) > λ−(q) and D > 0, the first eigenvalue which
reaches zero is ζ+,x . At the temperature T

(0)
N3 at which ζ+,x = 0,

there is a phase transition from the paramagnetic phase to
the AF3 phase, in which σ+,x(qIC) 
= 0, but all other order
parameters remain zero. At the second transition AF3→AF2,
the order parameter σ+,b(qIC) orders as well. This is true
provided that

λ+(qIC) − λ−(qIC) > D. (15)

The last condition ensures that ζ+,b(qIC,T ) vanishes before
ζ−,x(qIC,T ) as the temperature is lowered. Henceforth, we
will omit the plus sign in the order parameter’s subscript.

To describe the electric polarization, we need to add an
electric free energy and a magnetoelectric coupling term to the
magnetic free energy. Assuming a homogeneous polarization,
the expression for the electric free energy to lowest order is

fel = Vcell

3∑
α=1

Pα
2

2χ0
E,α

, (16)

where Vcell is the volume of the unit cell, P is the ferro-
electric order parameter, and χ0

E,α is the high-temperature

electric susceptibility along the α direction. By symmetry
considerations,12 the allowed magnetoelectric coupling term
of the lowest order in the incommensurate phases is

fint = r|σx(qIC)||σb(qIC)| sin(ϕx − ϕb)Pb, (17)

where ϕx and ϕb are the phases of σx(qIC) and σb(qIC), respec-
tively, and r is a small real magnetoelectric coupling parameter.
We emphasize that the form (17) of the magnetoelectric cou-
pling follows from general symmetry considerations and does
not necessarily follow from any specific microscopic model.
Thus, it is not necessarily described by the spin-current14 or
by the inverse Dzyaloshinskii-Moriya15 mechanisms. In fact,
it has been shown in Ref. 31 that the ferroelectric polarization
in MnWO4 may be a result of purely symmetric exchange
interactions. A similar conclusion has been derived in the
context of the multiferroic Ni3V2O8.13 In the following, we
examine the results of the model.

III. PHASE BOUNDARIES AND ORDER PARAMETERS

A. MnWO4 without magnetic fields

The wave vector qIC that characterizes the AF3 and AF2
phases is determined by maximizing the eigenvalue λ+(q)
for a given set of coupling energies {Ji}. After carrying out
the maximization procedure, we can find the first transition
temperature by equating ζ+,x to zero for q = qIC:

T
(0)
N3 = λ+(qIC) + D

a
. (18)

The index 0 indicates that this is the transition temperature
in the absence of external magnetic fields. By transforming
to normal magnetic coordinates, the free energy of the
incommensurate phases up to the fourth order in the magnetic
order parameters is

f = [aT − D − λ+(qIC)]|σx(qIC)|2 + 3b|σx(qIC)|4 + [aT − λ+(qIC)]|σb(qIC)|2 + 3b|σb(qIC)|4

+ 2b|σx(qIC)|2|σb(qIC)|2[2 + cos(2ϕx − 2ϕb)] + Vcell

3∑
α=1

Pα
2

2χ0
E,α

+ r|σx(qIC)||σb(qIC)| sin(ϕx − ϕb)Pb. (19)

This expression is obtained by keeping the Fourier components q = ±qIC in the total free energy f = fmag + fel + fint.
Minimizing with respect to the polarization components, we find the induced polarization

Px = Pz = 0, Pb = −χ0
E,br

Vcell

|σx(qIC)||σb(qIC)| sin(ϕx − ϕb). (20)

By inserting Eqs. (20) into (19), we get

f = [aT − D − λ+(qIC)]|σx(qIC)|2 + 3b|σx(qIC)|4 + [aT − λ+(qIC)]|σb(qIC)|2 + 3b|σb(qIC)|4
+ 2b|σx(qIC)|2|σb(qIC)|2[2 + cos(2ϕx − 2ϕb) − 2γ sin2(ϕx − ϕb)], (21)

where γ is a dimensionless parameter given by

γ = χ0
E,br

2

8Vcellb
. (22)

In order to minimize the free energy (21), the phase difference ϕx − ϕb should be ±π/2. In addition, we show in the following
that γ is of order 10−5. Hence, the last factor in the square brackets of Eq. (21) will be neglected in the description of the magnetic
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phase transitions. The minimization of the free energy (21) with respect to |σx(qIC)| and |σb(qIC)| yields

∣∣σ 0
x (qIC)

∣∣ =
√

a
(
T

(0)
N3 − T

)
6b

,
∣∣σ 0

b (qIC)
∣∣ = 0, T

(0)
N2 < T < T

(0)
N3 ,

∣∣σ 0
x (qIC)

∣∣ =
√

a
(
4T

(0)
N3 − T

(0)
N2 − 3T

)
24b

,
∣∣σ 0

b (qIC)
∣∣ =

√
a
(
T

(0)
N2 − T

)
8b

, T < T
(0)
N2 , (23)

and the corresponding free energies are

f
(0)
AF3 = −a2

(
T

(0)
N3 − T

)2

12b
, T

(0)
N2 < T < T

(0)
N3 ,

f
(0)
AF2 = −a2

[
4
(
T

(0)
N3 − T

)2 + 8
3

(
T − T

(0)
N3

)(
T

(0)
N3 − T

(0)
N2

) + 4
3

(
T

(0)
N3 − T

(0)
N2

)2]
32b

, T < T
(0)
N2 , (24)

with the transition temperature T
(0)
N2 given by

T
(0)
N2 = T

(0)
N3 − 3D

2a
. (25)

By calculating the phase φ(qIC) of J (qIC; τ 1,τ 2), we can find the magnetic structure of the phases AF3 and AF2. Using the
experimental incommensurate wave vector qIC = (−0.214,0.5,0.457), this phase is found to be φ(qIC) = 2πy for the two sets
of exchange couplings. Using this relation and ϕx − ϕb = ±π/2 in Eqs. (5) and (13), the spins of the two Mn2+ ions in the AF3
and AF2 phases are

S(R + τ 1) =
√

2
∣∣σ 0

x (qIC)
∣∣ cos(qIC · R + ψ)x̂ ∓

√
2
∣∣σ 0

b (qIC)
∣∣ sin(qIC · R + ψ)b̂, (26)

S(R + τ 2) = −
√

2
∣∣σ 0

x (qIC)
∣∣ cos(qIC · R + ψ + �φ)x̂ ±

√
2
∣∣σ 0

b (qIC)
∣∣ sin(qIC · R + ψ + �φ)b̂. (27)

Here, ψ is an arbitrary phase and �φ ≡ qIC · (τ 2 − τ 1) +
φ(qIC) − π = πqIC,c, with qIC,c being the c component of qIC.
Using the experimental value qIC,c = 0.457,16 this phase is
�φ = 0.457π . This is exactly the magnetic structure observed
in neutron scattering studies.16 We emphasize that while
group theoretical analysis yields several magnetic structures
consistent with the crystal symmetries, the magnetic structure
described by Eqs. (26) is the actual structure observed
in experiments. The two possible signs correspond to the
phase difference ϕx − ϕb = ±π/2 and represent spirals with
opposite chirality:

S(R + τ 1) × S(R + τ 2)

= ±2
∣∣σ 0

x (qIC)
∣∣∣∣σ 0

b (qIC)
∣∣ sin(�φ)ẑ. (28)

Here, ẑ is a unit vector perpendicular to the spiral plane.
Various studies reveal that the spin chirality is strongly
correlated with the electric polarization and can be controlled
by poling the polarization with an external electric field.32,33

This observation is in agreement with the form (20) of the
electric polarization, in which ϕx − ϕb changes sign together
with P .

Taking into account the magnetoelectric coupling in the
description of the magnetic phase transitions will introduce
small corrections to the transition temperature T

(0)
N2 and to the

order parameters in the AF2 phase. As mentioned above, these
corrections are governed by the dimensionless parameter γ

[see Eq. (22)]. By using these corrections to the first order in

γ , we find that the electric susceptibility takes the form

χE,b(T ) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

χ0
E,b T > T

(0)
N3 ,

χ0
E,b

(
1 + T̃

(0)
N2 −T

(0)
N2

T −T̃
(0)
N2

)
T̃

(0)
N2 < T < T

(0)
N3 ,

χ0
E,b

(
1 + g(T ) T̃

(0)
N2 −T

(0)
N2

T̃
(0)
N2 −T

)
T

(0)
N1 < T < T̃

(0)
N2 ,

χ0
E,b T < T

(0)
N1 ,

(29)

where T̃
(0)
N2 is the shifted transition temperature:

T̃
(0)
N2 ≈ T

(0)
N2 + γ

(
T

(0)
N3 − T

(0)
N2

)
. (30)

The function g(T ) is

g(T ) = f2(T )

f1(T )
(
T

(0)
N3 − T

(0)
N2

) − 1, (31)

where

f1(T ) = −8T + 32

3
T

(0)
N3 − 8

3
T

(0)
N2 ,

(32)
f2(T ) = 14T 2 + ν1T + ν2,

with ν1 = − 1
6 (95T

(0)
N3 + 73T

(0)
N2 ) and ν2 = 16(T (0)

N3 )2 −
97
6 T

(0)
N2T

(0)
N3 + 85

6 (T (0)
N2 )2.

The first-order phase transition AF2→AF1 can be treated
in the following way. Since the AF1 phase is characterized
by the commensurate wave vectors qC1,2 = (± 1

4 , 1
2 , 1

2 ), we

calculate the free energy f
(0)
AF1 for this phase and then look for a

temperature below which f
(0)
AF1 < f

(0)
AF2. Since qC2 = −qC1 +

(0,1,1), we need to consider only the Fourier components
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q = ±qC = ±( 1
4 , 1

2 , 1
2 ) in Eq. (6). After some algebra, we find

the free energy

f = [aT − D − λ+(qC)]|σx(qC)|2
+ b|σx(qC)|4[3 + cos(4ϕ − 4πy)]. (33)

Here, ϕ is the phase of σx(qC), determined to be π (y + 1
4 )

in order to minimize the free energy. Therefore, the equi-
librium order parameter and the corresponding free energy
are

|σx(qC)| =
√

λ+(qC) + D − aT

4b
, (34)

f
(0)
AF1 = − [λ+(qC) + D − aT ]2

8b
. (35)

For the commensurate wave vector qC = ( 1
4 , 1

2 , 1
2 ), we find

the phase φ(qC) = 2πy − π of J (qC; τ 1,τ 2) for both sets of
exchange couplings. Using this relation and ϕ = π (y + 1

4 ) in
Eqs. (5) and (13), the spins of the two Mn2+ ions in the AF1
phase are

S(R + τ 1) =
√

2
∣∣σ 0

x (qC)
∣∣ cos

(
qC · R + π

4

)
x̂,

(36)

S(R + τ 2) = −
√

2
∣∣σ 0

x (qC)
∣∣ cos

(
qC · R − π

4

)
x̂.

Equations (36) describe a magnetic structure of the type ↑↑↓↓
along both the a and c axes, in agreement with the structure
observed in experiments.16 We note again that this is the
observed structure out of the two possible structures suggested
by group theory.

The solution of the inequality f
(0)
AF1 < f

(0)
AF2 is of the form

T < T
(0)
N1 provided that

ε > max

{
2(1 − η),

2

3
(1 −

√
3η2 − 2)

}
, (37)

where ε ≡ D
λ+(qIC) and η ≡ λ+(qC)

λ+(qIC) . In this case, the transition

temperature T
(0)
N1 is given by

T
(0)
N1 =

[
4(η2 − 1) + 4ε − 3ε2

4[2(η − 1) + ε]
+ ε

]
λ+(qIC)

a
. (38)

We study below the effects of magnetic field on the transition
temperatures.

B. Effect of an external magnetic field

The formalism presented above can be generalized to take
into account the effect of a uniform external magnetic field
h. This can be accomplished by adding to the free energy
the Zeeman term FZ = gμB

∑
R

∑
τ=τ 1,τ 2

S(R + τ ) · h, or,

equivalently,34

fZ ≡ FZ

N
= gμB

∑
τ=τ 1,τ 2

S(0,τ ) · h. (39)

By minimizing the free energy with respect to Sα(0,τ ) at
the paramagnetic phase, we find the response to the external
magnetic field

Sα(0,τ ) = −χα(T )

gμB

hα (α = x,b), (40)

with the magnetic susceptibility following a Curie-Weiss law

χα(T ) = (gμB)2

aT − Dα − 2
∑11

i=1 Ji

. (41)

By comparing Eq. (41) with the general Curie-Weiss law35

χα(T ) =
(gμB )2J (J+1)

3kB

T − θα

, (42)

we identify the parameter a introduced in the expansion of the
entropy [see Eq. (2)] as

a = 3kB

J (J + 1)
. (43)

For Mn2+ ions with J = S = 5/2, this parameter is aMn =
0.343kB . The Curie-Weiss temperature is related to the
exchange couplings and the anisotropy energy by

θα = J (J + 1)

3kB

(
Dα + 2

11∑
i=1

Ji

)
. (44)

In the incommensurate phases AF3 and AF2, Eq. (40) is
replaced by

Sα(0,τ ) = −χα(T )hα

gμB

[
1 + d1α |σ 0

x (qIC)|2+d2α |σ 0
b (qIC)|2

a(T −θα )

] , (45)

where d1x = d2b = 12b and d2x = d1b = 4b. The correspond-
ing form in the AF1 phase is

Sα(0,τ ) = −χα(T )hα

gμB

[
1 + eα |σ 0

x (qC)|2
a(T −θα )

] , (46)

with ex = 12b and eb = 4b. The ferromagnetic Fourier com-
ponent at q = 0 couples to the incommensurate and commen-
surate wave vectors through the fourth-order term in Eq. (6).
This coupling modifies the coefficients of the free-energy ex-
pansion and, consequently, the transition temperatures. In the
presence of an external magnetic field, the first two transition
temperatures are (to second order in the magnetic field)

TN3(hx) = T
(0)
N3

[
1 − 12

bχ2
x

(
T

(0)
N3

)
aT

(0)
N3 (gμB)2

h2
x

]
, h = hx x̂, TN3(hb) = T

(0)
N3

[
1 − 4

bχ2
b

(
T

(0)
N3

)
aT

(0)
N3 (gμB)2

h2
b

]
, h = hbb̂, (47)

TN2(hx) = T
(0)
N2 , h = hx x̂, TN2(hb) = T

(0)
N2

[
1 − 16κ

bχ2
b

(
T

(0)
N2

)
a(gμB)2

h2
b

]
, h = hbb̂, (48)
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with κ = ( 1
T

(0)
N2

+ 8
3(T (0)

N2 −θb)
). For an external magnetic field along the easy-axis direction, the inequality which determines the

stability range of the AF1 phase is

T < T
(0)
N1 + 8b

2[λ+(qC) − λ+(qIC)] + D

{
T − 3

λ+(qC) + D

a
+ 2T

(0)
N3

+ 1

T − θx

[
18

(
T − λ+(qC) + D

a

)2

− 8
(
T

(0)
N3 − T

)2
]}(

χx(T )

gμB

)2

h2
x, (49)

while for a magnetic field along the b direction it is

T < T
(0)
N1 − 8b

2[λ+(qC) − λ+(qIC)] + D

{
T + λ+(qC) + D

a
− 2

3

(
2T

(0)
N2 + 2T

(0)
N2

)
− 1

T − θb

[
2

(
T − λ+(qC) + D

a

)2

− 8

(
T

(0)
N3 + 2T

(0)
N2

3
− T

)2]}(
χx(T )

gμB

)2

h2
b. (50)

Equations (47)–(50) describe the T -H phase diagrams up to
second order in h.

C. Effect of doping

We can gain insight on the effect of small concentrations
of magnetic Fe2+ or nonmagnetic Zn2+ and Mg2+ ions at
the Mn sites in the following way. Assuming that the orbital
angular momentum is quenched, we set J = S = 2 in Eq. (43)
and identify the parameter a [see Eq. (2)] for the Fe2+ ion as
aFe = 0.5kB . Using this value, we get

a(x) = aMnx + aFe(1 − x), (51)

where x is the Fe concentration. Since the exchange couplings
of Fe-Fe and Fe-Mn pairs as well as the anisotropy energy
for the Fe ion are not known, we assume a linear dependence
of the quantities λ+(qIC), D, and η = λ+(qC)

λ+(qIC) for small values
of x:

λ+[qIC(x),x] = λ+,IC(0) + c1x, D(x) = D(0) + c2x,
(52)

η(x) = η(0) + c3x.

We use the relations (52) in order to modify the expressions
(18), (25), and (38) for the transition temperatures. Then, by
expanding these expressions to first order in x and fitting to
the slopes measured in experiments,20 we are able to extract
the values of c1, c2, and c3. We neglect any changes in the
parameter b.

For the case of the nonmagnetic Zn2+ ion, we set aZn =
DZn = 0 as well as J Zn−Mn

i = J Zn−Zn
i = 0, and find the x

dependence of the different parameters

λ+(q,x) = λ+(q)(1 − x)2, a(x) = a(0)(1 − x),
(53)

D(x) = D(0)(1 − x), η(x) = η(0).

Using these relations, the first two transition temperatures are
given by

TN3(x) = T
(0)
N3 − λ+(qIC)

a
x,

(54)

TN2(x) = T
(0)
N2 − λ+(qIC)

a
x.

These results explain the linear decrease of TN3 and of TN2
as a function of x observed in experiments.24,25 The treatment
of the AF2→AF1 transition is much more subtle and will
be discussed below. We note that all the results above do
not depend on the type of the nonmagnetic ion. This is in
agreement with the observed similarities of the transition
temperatures in Zn2+ and Mg2+ doping.24,25

IV. COMPARISON WITH EXPERIMENTS

In this section, we compare the results of the preceding
section with different experimental observations and examine
the consistency of the phase diagrams with the experimental
sets of exchange couplings of Ehrenberg et al. and Ye et al.
The results of the preceding section can be used to fit the
parameters of the model within the Landau theory. We use
Eqs. (18) and (25) with aMn = 0.343kB [see Eq. (43)] and
the experimental transition temperatures T

(0)
N3 and T

(0)
N2 in

order to extract the values of the parameters λ+(qIC) and D

for MnWO4. Using the experimental values T
(0)
N3 ≈ 13.5 K

and T
(0)
N2 ≈ 12.3−12.7 K, these parameters are found to be

λ+(qIC) ≈ 4.36−4.45 K and D = 0.27−0.18kB K. The ratio

η = λ+(qC)
λ+(qIC) is then chosen to be η ≈ 0.97−0.98 in order to fit

Eq. (38) to the experimental transition temperature T
(0)
N1 ≈ 7−

8 K. These values are consistent with the condition (37).
Next we use Eqs. (42) and (47)–(50), with the experimental

Curie-Weiss temperature θx ≈ θb ≈ −75 K,17,36 and calculate
the T −H phase diagrams by fitting the parameter b. In order to
get the best fit to the experimental phase diagram of Arkenbout
et al.,17 the parameter b was chosen to be 0.095kB K. Figure 1
shows the results. The calculated and the experimental phase
diagrams are in good agreement. Discrepancies at low temper-
atures or at high fields are expected due to the finite expansion
of the free energy, which is terminated at fourth order. This
means that the quantitative value of the ratio η = λ+(qC)

λ+(qIC) ,

determined by the transition temperature T
(0)
N1 is less certain

than the values of the parameters λ+(qIC) and D, determined
by the transition temperatures T

(0)
N3 and T

(0)
N2 .
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FIG. 1. (Color online) Magnetoelectric phase diagrams of
MnWO4 with magnetic fields parallel to the (a) easy and (b) b axes.
The solid lines are the calculated transition temperatures and the dots
describe the experimental points of Arkenbout et al. (Ref. 17). The
calculated phase diagrams were obtained by setting b = 0.095kB K.

The development of the magnetic order parameters with
decreasing temperature has been studied by polarized-neutron
diffractions.32 Generally, the magnetic moment at site τ

belonging to the unit cell at the lattice point R can be written
as

m(R + τ ) = mx cos(q · R + φτ )x̂

+mb sin(q · R + φτ )b̂. (55)

The cross sections for polarized-neutron scattering, where the
neutrons are polarized parallel and antiparallel to the scattering
vector, are given by32

I = I 0(mx ± mb)2, (56)

with I0 being a constant. Using Eqs. (26) and (36), we
see that these cross sections are proportional to (|σ 0

x (qIC)| ±
|σ 0

b (qIC)|)2 + |σ 0
x (qC)|2. Then, from the second of Eqs. (23),

the magnetic order parameters in the AF2 phase can be written

as

∣∣σ 0
x (qIC)

∣∣ =
√

a
[

4
3

(
T

(0)
N3 − T

(0)
N2

) + T
(0)
N2 − T

]
8b

,

(57)∣∣σ 0
b (qIC)

∣∣ =
√

a
(
T

(0)
N2 − T

)
8b

.

Tolédano et al.31 assumed that |σ 0
x (qIC)| is fixed below T

(0)
N2 .

According to the first of Eqs. (57), such an assumption is valid
only for T

(0)
N2 − T  4

3 (T (0)
N3 − T

(0)
N2 ). At lower temperatures,

this assumption is inconsistent with the evolution of the
observed integrated intensities reported in Ref. 32, which show
that both |σ 0

x (qIC)| and |σ 0
b (qIC)| continue to grow below TN2,

with the ellipticity p ≡ mb

mx
= |σ 0

b (qIC)|
|σ 0

x (qIC)| approaching 1 (so that
the spiral is almost circular) as the temperature decreases.
Therefore, we preferred to use the explicit dependence of
|σ 0

x (qIC)| on the temperature. Using Eqs. (57), the ellipticity
below TN2 can be written as

p = 1√
1 + ω

, (58)

where ω ≡ 4(T 0
N3−T 0

N2)
3(T 0

N2−T )
. Since the difference T 0

N3 − T 0
N2 ≈

0.8 K is very small in the case of MnWO4, the ellipticity
rapidly approaches 1 with decreasing temperature in the spiral
phase AF2. The small difference T 0

N3 − T 0
N2 for MnWO4 is a

consequence of the small single-ion anisotropy of Mn2+ ions.
This should be compared with the case of TbMnO3, for which
TN3 ≈ 42 K and TN2 ≈ 27 K. In this multiferroic, the ellipticity
grows much more slowly with decreasing temperature37 due to
the large difference T 0

N3 − T 0
N2 ≈ 15 K, which is in turn a result

of the larger single-ion anisotropy of Mn3+ ions.38 In Fig. 2,
we sketch the quantities (|σ 0

x (qIC)| ± |σ 0
b (qIC)|)2 + |σ 0

x (qC)|2
from Eqs. (57) and (34) together with the experimental data
points of Ref. 32.

The development of the calculated order parameters is in
a qualitative agreement with the temperature dependence of
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FIG. 2. (Color online) The temperature dependence of
(|σ 0

x (qIC)| ± |σ 0
b (qIC)|)2 + |σ 0

x (qC)|2. The red (thick) line corresponds
to the plus sign and the blue (thin) one to the minus sign. The
integrated intensities of the polarized-neutron diffraction (scaled by
0.002) from Ref. 32 are the red dots and the blue empty squares.
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FIG. 3. (Color online) The temperature dependence of
(|σ 0

x (qIC)| ± |σ 0
b (qIC)|)2 + |σ 0

x (qC)|2 with the critical exponent β ≈
1/3. The red (thick) line corresponds to the plus sign and the
blue (thin) one to the minus sign. The integrated intensities of the
polarized-neutron diffraction (scaled by 0.0014) from Ref. 32 are the
red dots and the blue empty squares.

the integrated intensities. However, for T
(0)
N2 − T � 4

3 (T (0)
N3 −

T
(0)
N2 ) in the AF2 phase, the quantity (|σ 0

x (qIC)| + |σ 0
b (qIC)|)2 is

linear in T , in contradiction with the temperature dependence
of the integrated intensity, as can be seen in Fig. 2. A
possible explanation for this apparent discrepancy is related
to fluctuations near the transitions, which are not taken into
account by the mean-field Landau theory.39 As pointed out in
Ref. 40, the transition P→AF3 belongs to the universality class
of the XY model, while the transition AF3→AF2 belongs to
the Ising universality class. Hence, we present in Fig. 3 the
same quantities as in Fig. 2, but replacing the square roots of
Eqs. (57) and (34) by the critical exponent β = 1/3, roughly
appropriate for these two models. As seen from the figure, these
revised expressions are in good agreement with the observed
integrated intensities. This behavior illustrates the possible
importance of fluctuations in MnWO4. Further consequences
of fluctuations near the transitions will be discussed below in
the context of the Ginzburg criterion.

The magnetoelectric coupling r is determined by fitting
Eq. (20) to the experimental data of the induced ferroelectric
polarization.18 The ferroelectric polarization is plotted in
Fig. 4(a). The best fit to the experimental data is obtained

for the value
χ0

E,b|r|
Vcell

= 21μC/m2. In addition, the electric sus-

ceptibility for T > T
(0)
N3 (in the paraelectric and paramagnetic

phases) is experimentally found to be χ0
E,b = 11.3ε0.18 The

dimensionless parameter γ [see Eq. (22)] is then γ = 5.9 ×
10−5. This value supports the assumption that the magnetic
transitions are almost unaffected by the magnetoelectric

coupling. The dielectric constant εb = 1 + χ0
E,b

ε0
is shown in

Fig. 4(b). This result is in good agreement with the exper-
imental measurements of Ref. 18. The narrow width of the
divergence region is a consequence of the small difference
between T̃

(0)
N2 and T

(0)
N2 . Once again, the discrepancy between

the linear behavior of the calculated polarization and the
observed one may be reconciled by assuming a critical
exponent β ≈ 1

3 for the magnetic order parameters. The
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FIG. 4. (Color online) (a) The ferroelectric polarization and (b)
the dielectric constant εb. The solid lines are the calculated quantities
and the dots are the data points of Taniguchi et al. (Ref. 18). The

calculated polarization was obtained by setting
χ0

E,b
|r|

Vcell
= 21μC/m2.

behavior of the calculated polarization in this case is given
in Fig. 5.

To examine the effect of Fe doping, we use the relations (51)
and (52) in the expressions for the transition temperatures and
fit the slope to the experimental value according to the x−T

phase diagram of Chaudhury et al.20 This procedure yields the
values c1 ≈ −3.26kB K, c2 ≈ 13.03kB K, and c3 ≈ −1.3. The
anisotropy energy increases with increasing Fe concentration,
as expected, since as opposed to the Mn2+ ion, the Fe2+ ion
possesses a nonvanishing angular momentum.41

Calculating the different parameters for a small Fe concen-
tration x and repeating the calculations of the T −H phase
diagram, we can check the consistency of the above results.
The resulting phase diagram for x = 0.035 is shown in Fig. 6.
Except for high fields or low temperatures, the result is in fine
agreement with the measurement of Ye et al.21 The reentrant
ferroelectric phase observed at low temperatures20,42 may be
explained by higher-order terms in the free-energy expansion.

The effect of nonmagnetic ions on the transition temper-
atures TN3(x) and TN2(x) is given by Eq. (54). These results
are drawn in Fig. 7 together with the experimental data of
Chaudhury et al.24 of Mn1−xZnxWO4. Similar results have
been observed in Mn1−xMgxWO4.25 We stress that unlike the
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FIG. 5. (Color online) The ferroelectric polarization calculated
with the critical exponent β ≈ 1

3 . The solid lines are the calculated
quantities and the dots are the experimental points of Taniguchi
et al. (Ref. 18). The calculated polarization was obtained by setting
χ0

E,b
|r|

Vcell
= 27.5μC/m2.

case of Fe doping, the results for the transition temperatures
TN3(x) and TN2(x) in the case of nonmagnetic ions doping do
not require additional phenomenological parameters.

As opposed to TN3(x) and TN2(x), the calculated transition
temperature TN1(x) does not coincide with the experimentally
measured one.24 The discrepancy may be explained by
allowing small changes in the exchange couplings J Mn−Mn

i

due to spin-lattice coupling (or exchange striction). In other
words, if we assume that J Mn−Mn

i (x) = J Mn−Mn
i (1 + ξix) with

ξix  1, then TN1(x) changes dramatically while TN3(x) and
TN2(x) are almost not influenced. The reason for this behavior
is that the transition temperature TN1 [see Eq. (38)] is much
more sensitive to small changes in the exchange couplings than
the transition temperatures TN3 and TN2 [see Eqs. (18) and
(25)]. A significant spin-lattice coupling in the multiferroic
MnWO4 has been demonstrated43 by the appearance of an
incommensurate lattice modulation in the AF3 and AF2
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FIG. 6. (Color online) Magnetoelectric phase diagram of
Mn0.965Fe0.035WO4 with the magnetic field parallel to the easy axis.
The solid lines are the calculated transition temperatures and the dots
are the experimental points of Ye et al. (Ref. 21).
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FIG. 7. (Color online) Transition temperatures TN3(x) and TN2(x)
of Mn1−xZnxWO4. The solid lines are the calculated transition
temperatures and the dots are the data points of Chaudhury et al.
(Ref. 24).

phases, with a lattice propagation vector equal to twice the
magnetic propagation vector. In addition, thermal expansion
measurements reveal considerable discontinuities in the lattice
parameters at the AF2→AF1 first-order phase transition.44

Another indication for a dependence of the Mn-Mn exchange
couplings on the nonmagnetic dopant concentration is pro-
vided by the small change of the incommensurate propagation
vector from qIC = (−0.214,0.5,0.457) in MnWO4 to qIC =
(−0.209,0.5,0.453) in Mn0.85Zn0.15WO4.25

The next step is to compare the above fitted parameters with
the parameters calculated directly from the experimental sets
of exchange couplings of Ehrenberg et al. and Ye et al. The
calculated exchange couplings of Ref. 27 yield much higher
transition temperatures than the observed ones and thus will
not be discussed here. Indeed, the problem of overestimation of
exchange interactions by DFT calculations has been indicated
by the authors.27

The first step is to maximize λ+(q) [see Eq. (11)] in
order to find the incommensurate wave vector qIC and the
corresponding eigenvalue λ+(qIC). The maximization process
yields qIC = (−0.28,0.5,0.44) and λ+(qIC) = 3.82kB K for
the J1 − J9 values of Ehrenberg et al.,26 while for the J1 − J11
values of Ye et al.,28 we find qIC = (−0.3,0.5,0.49) and
λ+(qIC) = 3.85kB K. For the exchange couplings of Ehrenberg
et al. multiplied by a factor of 2 (second line in Table I),
the wave vector qIC remains qIC = (−0.28,0.5,0.44) but
now λ+(qIC) = 7.64kB K. These results are in qualitative
agreement with the incommensurate wave vector qIC =
(−0.214, 1

2 ,0.457) observed in experiments. However, the
differences are not negligible, suggesting possible errors
in the experimental sets of exchange couplings. We note
that completely two different sets of exchange couplings
yield almost the same wave vector qIC and eigenvalue
λ+(qIC). This is a consequence of the form of λ+(q) [see
Eqs. (11) and (12)] being a combination of 9 or 11 exchange
couplings. This fact allows wide freedom in determining
the exchange-couplings values, so that the same qIC and
λ+(qIC) may be obtained from completely different sets. In
addition, the transition temperatures T

(0)
N3 and T

(0)
N2 calculated
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TABLE II. Comparison between the model parameters calculated
from the experimental sets of Refs. 26 and 28 and those fitted to the
experimental transition temperatures. The third column, denoted as
Ref. 26*, refers to the couplings of Ref. 26 multiplied by a factor
of 2.

Parameter Ref. 26 Ref. 26* Ref. 28 This work

λ+(qIC)(kB K) 3.82 7.64 3.85 4.36–4.45
D(kB K) 0.568 0.568 0.83 0.27–0.18
η 0.974 0.974 0.97 0.97–0.98

from Eqs. (18) and (25) with aMn = 0.343kB [see Eq. (43)]
are found to be T

(0)
N3 = 12.79 K, T

(0)
N2 = 10.3 K for the set

of Ehrenberg et al. and T
(0)
N3 = 13.67 K, T

(0)
N2 = 10 K for

the set of Ye et al. These values slightly differ from the
observed transition temperatures, especially the second one.
However, for the set of Ehrenberg et al. multiplied by a factor
of 2, the transition temperatures are T

(0)
N3 = 23.93 K, T

(0)
N2 =

21.45 K, both far above the observed transition temperatures.
The ratio η = λ+(qC)

λ+(qIC) is found to be η = 0.974 and 0.97 for the
sets of Ehrenberg et al. (both the original and modified sets)
and Ye et al., respectively. Table II summarizes the values
of λ+(qIC), D, and η calculated from the experimental sets
of magnetic parameters and those fitted to the experimental
transition temperatures.

The calculation of the Curie-Weiss temperature reveals a
much more serious discrepancy. According to Eq. (44), the
Curie-Weiss temperature is θx = −7.6 K, θb = −9.25 K for
the set of Ehrenberg et al. and θx = −23.2 K, θb = −25.65 K
for the set of Ye et al. The Curie-Weiss temperature for the
set of Ehrenberg et al. multiplied by a factor of 2 is θx =
−16.85 K, θb = −18.5 K. These values do not fit the experi-
mental Curie-Weiss temperature θ ≈ −75 K.17,36 We suspect
that the origin of most of the discrepancies are errors in the
set of magnetic couplings. The results suggested by our model
may be used as additional constraints in the determination of
those couplings. For instance, one may constrain the value of
D to approximately ≈ 0.27−0.18kB K, the value of λ+(qIC)
to ≈ 4.36−4.45 K, and the Curie-Weiss temperature in Eq.
(44) to ≈ −75 K. Those constraints should reduce the wide
freedom in determining the set of magnetic parameters from
inelastic scattering measurements. As mentioned before, an
additional possible cause for the above discrepancies is related
to fluctuations near the transitions, as will be discussed in the
next section.

V. GINZBURG CRITERION

The results of the preceding sections have been obtained
within the mean-field approximation. Here, we estimate the
Ginzburg range, in which fluctuations become important
near the first transition P→AF3, by two methods. First, we
compare the mean-square fluctuation of the order parameter
σx(qIC) with the mean-field value, and then we compare the
discontinuity in the heat capacity derived from the Landau
theory with the divergent heat capacity, originating from the
fluctuations at quadratic order.39

Let us denote by δσx(q) = σx(q) − 〈σx(q)〉 the fluctuation
of the order parameter in the AF3 phase. The correlation

function of these deviations is

〈δσx(q)δσx(q ′)〉 = kBT δq ′,−q

4N [D + λ+(q) − aT ]
, (59)

where N is the number of unit cells in the correlation volume.
We can find the correlation lengths by expanding λ+(q) to
second order around qIC:

λ+(q) ≈ λ+(qIC) +
∑
i,j

Mij (qi − qIC,i)(qj − qIC,j ), (60)

with Mij ≡ 1
2

∂2λ+(q)
∂qi∂qj

|q=qIC
. Denoting by μ1, μ2, and μ3 the

three eigenvalues of the positive matrix −Mij , the three
correlation lengths are

ξi =
√

μi

a
(
T

(0)
N3 − T

) . (61)

Substituting q = qIC and N = ξ1ξ2ξ3
Vcell

in Eq. (59), the condition

〈|δσx(qIC)|2〉  |σ 0
x (qIC)|2 for the validity of the mean-field

theory reads as39

kBT
(0)
N3

4a
(
T

(0)
N3 − T

) Vcell

ξ1ξ2ξ3

 a
(
T

(0)
N3 − T

)
6b

. (62)

By inserting Eq. (61) into (62) at the Ginzburg temperature
TG, we find

∣∣TG − T
(0)
N3

∣∣ ≈ 9k2
Bb2V 2

cell

(
T

(0)
N3

)2

4aμ1μ2μ3

. (63)

Equation (63) estimates the temperature range below T
(0)
N3 , in

which fluctuations are not negligible.
Let us now estimate the Ginzburg range according to the

second method. On the one hand, according to Landau theory,
the heat capacity c = −T

∂2f

∂T 2 grows discontinuously at the
transition P→AF3:

�cL ≡ cL

(
T

(0)−
N3

) − cL

(
T

(0)+
N3

) = a2T
(0)
N3

6b
. (64)

On the other hand, assuming fluctuations at quadratic order,
the singular part of the heat capacity is given by

cG = VcellkBa2T 2

2(2π )3

∫
BZ

d3q

[aT − D − λ+(q)]2
, (65)

where the integral is over the first Brillouin zone. In the
neighborhood of T

(0)
N3 , the main contribution to the integral

comes from the neighborhood of the incommensurate wave
vector qIC in reciprocal space. Thus, we can use the expansion
(60). Replacing the first Brillouin zone by a sphere, and taking
T ≈ T

(0)
N3 , we can estimate the integral in Eq. (65):

cG ≈ kBa1.5T 2
(
T − T

(0)
N3

)−0.5

16π
√

μ1μ2μ3

. (66)

Comparing Eqs. (64) and (66) at the Ginzburg temperature TG,
we find39

∣∣TG − T
(0)
N3

∣∣ ≈
(

6

16π

)2 k2
Bb2V 2

cell

(
T

(0)
N3

)2

aμ1μ2μ3

. (67)
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Calculating the eigenvalues μ1, μ2, and μ3 from the experi-
mental sets of exchange couplings, the Ginzburg temperature
is estimated to be |TG − T

(0)
N3 | ≈ 9.41 K and |TG − T

(0)
N3 | ≈

6.24 K for the sets of Ehrenberg et al. and Ye et al., respectively,
by the first method [see Eq. (63)], while it is |TG − T

(0)
N3 | ≈

0.06 K and |TG − T
(0)
N3 | ≈ 0.04 K by the second method [see

Eq. (67)]. For the set of Ehrenberg et al. multiplied by a
factor of 2, the Ginzburg temperature is |TG − T

(0)
N3 | ≈ 4.12 K

by the first method and |TG − T
(0)
N3 | ≈ 0.03 K by the second

method. These values suggest that fluctuations of the order
parameters can also contribute to the discrepancies between the
experimental data and the mean-field Landau theory results.

VI. SUMMARY AND CONCLUSIONS

We have studied the phase diagram of Mn1−xMxWO4
(M = Fe, Zn, Mg) by a semiphenomenological Landau theory.
The energy has been modeled by a Heisenberg Hamiltonian
with a single-ion anisotropy, while the entropy has been
expanded in powers of the classical spins. This approach
is different from the previous theoretical studies,31,45 which
are purely phenomenological, since it enables us to compare
different sets of exchange couplings. Although a purely
phenomenological approach may capture all the symmetry
aspects of the problem and may provide a full mapping of the
stable states allowed by the order-parameter symmetries,31 it
does not indicate a clear connection between the free-energy
coefficients and the microscopic interactions. The advantage
of our approach is the simple relation of the free-energy
coefficients with experimentally derived quantities such as the
superexchange couplings and the anisotropy coefficients. For
instance, this simple relation allows us to consider the effect
of different dopants on the phase diagram, not discussed in
Ref. 31. We emphasize that our approach does not contradict
any symmetry requirement.

We used the superexchange interaction couplings from the
inelastic neutron scattering studies of Ehrenberg et al.26 and
Ye et al.28 Provided that the set of Ehrenberg et al. should
not be multiplied by a factor of 2, the results show that both

sets yield transition temperatures T
(0)
N3 and T

(0)
N2 that slightly

deviate from the experimental temperatures, and significantly
underestimate the Curie-Weiss temperature |θ |. In addition, the
calculated incommensurate wave vector q IC has non-negligible
deviations from the experimentally observed one. However, if
the set of Ehrenberg et al. should be multiplied by a factor
of 2, then this set significantly overestimates the transition
temperatures T

(0)
N3 and T

(0)
N2 . In such case, the set of Ye et al.

yields much better results. The results presented in this paper
can serve as additional constraints on a future determination of
the magnetic Hamiltonian parameters. Another possible cause
for the discrepancies relates to fluctuations near the transitions.
We have demonstrated the possible important contribution of
fluctuations in MnWO4. This issue should be further examined
in future experiments.

Beyond that, the model clarifies the effect of different
dopants on the phase diagram. The sensitivity of the expression
(38) for the transition temperature TN1(x) to small changes

of the ratio η ≡ λ+(qC)
λ+(qIC) reflects the frustrated nature of the

multiferroic MnWO4. The origin of the complex phase dia-
gram lies in the competition between different superexchange
interactions. Small changes in the local environment of the
Mn2+ ions due to a chemical doping cause a significant change
in the phase diagram. The sensitivity for the local environment
manifests itself by the contrasting behavior of doping with
different ions.

Looking to the future, two points should be further
examined. First, a new analysis of the inelastic scattering
experiments, together with the additional constraints provided
in this work, should improve the exchange couplings for the
multiferroic MnWO4. Second, the measurement of the critical
exponents near the transitions would shed light on the effect of
fluctuations. This may contribute to the general understanding
of critical phenomena in multiferroics.
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