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Spin-wave method for the total energy of paramagnetic state
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Spin-wave formalism provides a convenient alternative way of modeling the high-temperature paramagnetic
state for a certain type of magnets within the framework of Hamiltonian-type electronic-structure methods.
For Heisenberg systems, it is formally equivalent to the so-called disordered local moment approach, which
is usually used in the methods based on the coherent potential approximation within the Green’s function or
multiple-scattering techniques. In this paper, we demonstrate that the spin-wave method has certain advantages
when it comes to the calculation of forces and relaxations. It also allows one to take magnetic short-range-order
effects into consideration. As examples of the application of the spin-wave method, we calculate the energy
of the paramagnetic state in fcc Co and bcc Fe, the vacancy formation energy, elastic constants, and phonon
spectrum in bcc paramagnetic Fe. We demonstrate that magnetic short-range-order effects play a crucial role in
the mechanical stabilization of the bcc Fe at high temperature in the paramagnetic state.
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I. INTRODUCTION

Accurate first-principles modeling of magnetic systems at
high temperatures in the paramagnetic (PM) state requires
methods going beyond the standard density functional theory
(DFT), which can take all the possible magnetic excitations
into consideration, such as, for instance, a dynamic mean field
theory (DMFT).1 However, in cases when transverse magnetic
fluctuations are dominant, the use of a simple so-called
disordered local moment model2–5 (DLM) provides a reason-
able description of the electronic structure and energetics of
paramagnetic state. In this model, the paramagnetic state is
given by a random orientation of the spin magnetic moments on
different atoms, which is the case when transverse fluctuations
of the local magnetic moment occur on time scales less than
the typical time of electron hopping between atoms.

As has been demonstrated by Gyorffy et al.,5 in the absence
of the spin-orbit interaction (scalar-relativistic case), DLM is
equivalent to the collinear system with randomly distributed
spin-up and spin-down local magnetic moments. This allows
one to use a very efficient and quite accurate in this particular
case coherent potential approximation6,7 (CPA) in order to
obtain the electronic structure and other related properties
of the system in the paramagnetic state. With the advance
of computational techniques and computers, the supercell
modeling of random alloys has also become available, and
it is also used nowadays for the modeling of the paramagnetic
state.8–10

Both CPA and supercell approaches have their advantages
and problems. In the case of the CPA, the main problem is
a reduced accuracy of the corresponding DFT calculations,
so the CPA-based methods, for instance, can be hardly used
for calculating phonon spectrum, local lattice relaxations in
random alloys in the DLM-paramagnetic state. At the same
time, the supercell approach becomes cumbersome in the case
of random alloys or large and inhomogeneous systems.

Another problem with the supercell approach is the fact
that it can provide a DLM-like distribution of the magnetic
moments only on average for the whole supercell, while
specific local correlation functions are quite arbitrary. In
this case, the modeling of local defects, such as vacancies,

impurities, surfaces, interfaces, and so on, becomes quite time
consuming due to the necessity to perform the corresponding
configurational averaging locally.

One should also keep in mind that the random distribution of
spins on the underlying lattice does not guarantee that the final
result of the self-consistent calculations indeed corresponds
to the DLM state since it applies only to the case where all
the local magnetic moments have exactly the same magnitude,
which is usually not the case for the systems with the itinerant
type of magnetism.

In this paper, we suggest an alternative approach that can
be used for calculations of the energetics of systems in param-
agnetic state. It is based on spin-spiral calculations.11,12 Let us
note that the spin-spiral method has been previously used in
calculations of the temperature-induced magnetic excitations
in particular, including longitudinal spin fluctuations.12–14

However, we will use the spin-spiral method just to model
paramagnetic state. As we demonstrate in this paper, it yields
reasonable description of the paramagnetic state in the case of
bcc Fe, and can be used as an alternative to the usual supercell
approach in the methods, which do not have the advantage of
using the CPA.

II. FORMALISM

A. Ideal paramagnetic state within Heisenberg model

Let us assume that the magnetic energy of a system is
accurately given by the classical Heisenberg Hamiltonian

H = −
∑

p

∑
i,j∈p

Jpeiej , (1)

where Jp are the magnetic exchange interaction parameters
for a given coordination shell p and ei is the direction of the
spin at site i. Magnetic configuration can be characterized by
lattice spin-spin correlation functions ξp:

ξp ≡ 〈eiej 〉p = 1

N

∑
i,j∈p

eiej , (2)

where N is the number of atoms in the system. The energy
of a system having a specific magnetic configuration is
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−∑
p Jpξp. Of course, in general one should consider higher-

order interactions and correlation functions, but for simplicity
we assume that only pair interactions are important. The
“ideal” paramagnetic (IPM) state can be defined as the one
with vanishing spin-spin correlation functions:

ξp = 0. (3)

This implies that the energy of the paramagnetic state is exactly
zero in this formalism, while, for instance, the energy of the
ferromagnetic (FM) state is EFM ≡ −J0 = −∑

p Jp.
Since the magnetic interactions are constant in the Heisen-

berg model, the way condition (3) is satisfied does not matter.
In the DLM model, for instance, the spin-spin correlation
functions are equal to zero because on every coordination
shell an atom with spin-up or -down magnetic moment has
on average the same number of spin-up and -down neighbors.
The electronic structure and total energy of such an alloy can
be calculated either using the CPA or within an appropriate
supercell approach.15

B. Spin-wave method for the total energy of the ideal
paramagnetic state

Another way to satisfy condition (3) is to perform averaging
over a proper set of magnetic systems. Every member of such
a set can have an arbitrary magnetic structure, but their average
should produce the needed result, i.e.,

∑
i

wiξp;i = 0 (4)

for all relevant coordination shells p. Summation here runs
over the set of magnetic systems having weights wi and
spin-spin correlation functions ξp;i . It is clear that the average
energy of the set of the systems Ẽ = ∑

p Jp

∑
i wiξp;i = 0.

In other words, the average of these energies produces exactly
the energy of the paramagnetic state. The latter holds only
in the case of Heisenberg systems, when magnetic exchange
interactions Jp do not depend on the magnetic configuration.

A set, which satisfies this condition, is actually the set of
the planar spin spirals (with the azimuth angle π/2) for all
the wave vectors in the corresponding Brillouin zone (BZ).
This is so since the spin-spin correlation function for two sites
connected by vector R in the spin-spiral configuration with
wave vector q is11

ξq(R) = sin(qR) + cos(qR), (5)

and thus the superposition of all the spin spirals with different
wave vectors q:

1

�BZ

∫
BZ

dq ξq(R) = ξ (R)(≡ ξp,R∈p) = 0 (6)

[except for R = 0, since ξ (R = 0) = 1], which is exactly the
requirement for the correlation functions in the IPM.

Let us now determine the Fourier transform of the real-
space correlation function

ξ (q) = 1

2N

∑
R

[ξ (R)eiqR + ξ ∗(R)e−iqR], (7)

from which the energy of the magnetic state with a specific
choice of ξ (q) is

E = 1

�BZ

∫
BZ

dq E(q)ξ (q), (8)

where E(q) is the energy of the planar spin spiral with wave
vector q.

It is clear that ξq(q′), which corresponds to the planar spin
spiral with ξ (R) determined by Eq. (5), is the Dirac δ function
ξq(q′) = δ(q − q′), so that

E = 1

�BZ

∫
BZ

dq′E(q′)ξq(q′) = E(q). (9)

The energy of the IPM state, which is given by the average
over uniform distribution of planar spin spirals (6), can now
be determined using Eq. (9):

EIPM = 1

�2
BZ

∫
BZ

dq
∫

BZ
dq′E(q′)ξq(q′)

= 1

�BZ

∫
BZ

dq E(q). (10)

Intuitively, Eq. (10) corresponds to the state when all the
possible spin waves are fully excited. One should bear in mind
that the above analysis is valid only for the case of planar spin
spirals, although it can be easily generalized.

C. Special point technique

The potential advantage of the spin-wave approach is the
possibility to use a very efficient special point technique16–18

for the BZ integration. It was developed by Baldereschi16 and
Chadi and Cohen,17 and a more general scheme was introduced
by Monkhorst and Pack.18 The integral over the Brillouin zone
is reduced to the summation over a finite set of q points in the
irreducible part of the BZ (IBZ), with weights determined by
the multiplicity of the point in the BZ due to the point group
of the reciprocal lattice. Since the number of points is finite,
Eq. (6) does not hold anymore for arbitrary R, and the average
spin-spin correlation functions

ξ̃ (R) =
∑

i

wiξqi
(R) (11)

depend on the used set of q points.
In Tables I and II, we show ξ̃ (R) for the first 24 coordination

shells in the fcc and bcc structures for different sets of q
points. The first column represents the spin-spin correlation
functions of the spin spirals for q = (0.6233,0.2953,0.0) and
q = ( 1

6 , 1
6 , 1

2 ) (in units 2π/a) for the fcc and bcc structures,
respectively. These are so-called Baldereschi mean-value
points,16 which are supposed to give an approximate value of
the integral over the Brillouin zone. As one can see, this point
may give a reasonable estimate of the energy of the IPM state,
provided that the strongest exchange interaction parameters
are restricted by the first two coordination shells.

A substantial improvement can be achieved just by adding
one more q point: two Chadi-Cohen points17 provide a very
good convergence of the integral in both cases. As one can
see from Table I, in the case of the fcc structure, the average
spin-spin correlation functions for the set of the two Chadi-
Cohen points are exactly the same as in the case of the 16-atom
supercell,19 with a “quasirandom” distribution of spin-up and
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TABLE I. Spin-spin correlation functions for the first 24 coordination shells of the fcc structure obtained using Baldereschi mean-value
point (B-1) (Ref. 16) 2 and 10 Chadi and Cohen q points (Ref. 17) (CC-2 and CC-10), and 3, 4, and 8 Monkhorst-Pack q points (Ref. 18)
(MP-3, MP-4, and MP-8). Last column shows the correlation functions of the 16-atom supercell (SC-16).

ξ̃lmn

lmn B-1 CC-2 CC-10 MP-3 MP-4 MP-8 SC-16

110 − 0.001 53 0.0 0.0 0.0 0.0 0.0 0.0
200 0.001 53 0.0 0.0 0.0 0.0 0.0 0.0
211 − 0.182 99 0.0 0.0 0.0 0.0 0.0 0.0
220 − 0.264 92 0.0 0.0 1.0 0.0 0.0 0.0
310 0.184 52 0.0 0.0 0.0 0.0 0.0 0.0
222 0.200 67 0.0 0.0 0.0 0.0 0.0 0.0
321 0.165 51 0.0 0.0 0.0 0.0 0.0 0.0
400 0.059 69 − 1.0 0.0 1.0 0.0 0.0 − 1.0

330 − 0.292 70 0.0 0.0 0.0 1.0 0.0 0.0
411 0.034 82 0.0 0.0 0.0 0.0 0.0 0.0
420 − 0.203 40 0.0 0.0 0.0 0.0 0.0 0.0
233 − 0.149 26 0.0 0.0 0.0 0.0 0.0 0.0
422 0.265 53 0.0 0.0 1.0 0.0 0.0 0.0
431 0.073 68 0.0 0.0 0.0 0.0 0.0 0.0
510 − 0.219 62 0.0 0.0 0.0 0.0 0.0 0.0
521 − 0.089 94 0.0 0.0 0.0 0.0 0.0 0.0

440 − 0.279 64 1.0 0.0 1.0 0.0 1.0 1.0
433 − 0.550 74 0.0 0.0 0.0 0.0 0.0 0.0
530 − 0.036 60 0.0 0.0 0.0 0.0 0.0 0.0
244 0.192 64 0.0 0.0 0.0 0.0 0.0 0.0
600 0.812 64 0.0 0.0 0.0 1.0 0.0 0.0
532 0.255 53 0.0 0.0 0.0 0.0 0.0 0.0
611 − 0.033 68 0.0 0.0 0.0 0.0 0.0 0.0
620 − 0.048 05 0.0 0.0 1.0 0.0 0.0 0.0

-down magnetic moments in the sites. This means that the total
energy of a Heisenberg system obtained in the supercell calcu-
lations using the 16-atom supercell and in the spin-wave calcu-
lations with the two Chadi-Cohen points should be the same.

The fast convergence of the BZ integral with increasing
number of q points is clearly seen in Tables I and II, where
we also show the spin-spin correlation functions for other sets
of q points, including those generated by Monkhorst-Pack
scheme.18 In the case of the bcc structure, we also include a
point q1 = ( 1

3 , 1
6 , 1

2 ), which we found to give very close results
for the average magnetic moment and total energy of bcc Fe
to those obtained with the set of 29 Monkhorst-Pack q points
(MP-29). From now on, we will refer to this point as Q-1.

D. Magnetic short-range order in paramagnetic state

One of the advantages of the spin-wave method is a
possibility to model a magnetic state with specific magnetic
short-range order (MSRO). If the needed values of the spin-
spin correlation functions ξ (R) are known, the easiest way to
determine the weights of the special points providing these
ξ (R) is to determine the corresponding Fourier transforms of
ξ (R) using Eq. (7) and then use them in the calculations of the
total energy [Eq. (8)].

In this case, the weight of special point qi is renormalized
as wMSRO

i = wiξ (qi), where wi is the weight in the ideal para-
magnetic state [for which ξ (qi) = 1]. One should, however,
bear in mind that these relations are exact only when both ξ (R)

and ξ (q) are determined for the whole set of R and q points,
respectively. This is impractical and we therefore would like
to consider a simple but useful example of the description of
the MSRO in bcc Fe above the magnetic phase transition using
Monkhorst-Pack special points.

As an example, we calculate the MSRO in the bcc Fe in
paramagnetic state using the classical Monte Carlo method20

with the exchange interaction parameters [see Eq. (1)] obtained
in DLM state using the exact muffin-tin orbital method. We
have used 11 first strongest interactions in this case.21 In Fig. 1,
we show the spin-spin correlation functions ξ (R) of bcc Fe in
the paramagnetic state at three different temperatures: 1100,
1200, and 1800 K (the magnetic phase transition takes place
at about 1060 K). The first temperature is just above (∼40 K)
the magnetic phase transition, the second one corresponds
approximately to the temperature of the structural α-γ phase
transition, and the third one to the highest temperature when
the bcc structure is still stable (so-called δ phase), before
undergoing the melting phase transition.

The spatial decay of the spin-spin correlation functions can
be analyzed using the Ornstein-Zernike function exp(−κd)/d,
where κ is the inverse correlation length and d is the relative
distance (in units of the lattice constant in this particular
case).22 The inverse correlation length determines the scale
relevant for the correct description of the MSRO. If this scale
is smaller than the shortest distance between the q points for
a particular set of special points, the latter can not provide an
accurate description of the MSRO.
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TABLE II. Spin-spin correlation functions for the first 24 coordination shells of the bcc structure obtained using Baldereschi mean-value
point (B-1) (Ref. 16), q1 point (Q-1), 2 and 8 Chadi and Cohen q points (Ref. 17) (CC-2 and CC-8), and 3, 4, and 8 Monkhorst-Pack q points
(Ref. 18) (MP-3, MP-4, and MP-8). Last column shows the correlation functions of the 16-atom supercell (SC-16).

ξlmn

lmn B-1 Q-1 CC-2 CC-8 MP-3 MP-4 MP-8 SC-16

111 0.00 0.0 0.0 0.0 0.0 0.0 0.0 0.000
200 0.00 − 0.3333 0.0 0.0 0.0 0.0 0.0 0.000
220 − 0.25 − 0.0833 0.0 0.0 0.0 0.0 0.0 0.000
311 0.00 0.0 0.0 0.0 0.0 0.0 0.0 0.000
222 − 0.25 0.25 0.0 0.0 1.0 0.0 0.0 0.000
400 0.00 0.0 − 1.0 0.0 1.0 0.0 0.0 − 0.333
331 0.00 0.0 0.0 0.0 0.0 0.0 0.0 0.000
420 0.25 0.1667 0.0 0.0 0.0 0.0 0.0 0.000

422 0.25 − 0.0833 0.0 0.0 0.0 0.0 0.0 0.000
511 0.00 0.0 0.0 0.0 0.0 0.0 0.0 0.000
333 0.00 0.0 0.0 0.0 0.0 1.0 0.0 0.000
440 − 0.25 − 0.25 1.0 0.0 1.0 0.0 0.0 − 0.333
531 0.00 0.0 0.0 0.0 0.0 0.0 0.0 0.000
442 − 0.25 − 0.0833 0.0 0.0 0.0 0.0 0.0 0.000
600 − 1.00 − 0.3333 0.0 0.0 0.0 1.0 0.0 0.000
620 0.00 0.1667 0.0 0.0 0.0 0.0 0.0 0.000

533 0.00 0.0 0.0 0.0 0.0 0.0 0.0 0.000
622 0.25 − 0.25 0.0 0.0 1.0 0.0 0.0 0.000
444 0.25 0.25 − 1.0 0.0 1.0 0.0 1.0 1.000
711 0.00 0.0 0.0 0.0 0.0 0.0 0.0 0.000
551 0.00 0.0 0.0 0.0 0.0 0.0 0.0 0.000
640 0.00 0.1667 0.0 0.0 0.0 0.0 0.0 0.000
642 − 0.25 0.1667 0.0 0.0 0.0 0.0 0.0 0.000
731 0.00 0.0 0.0 0.0 0.0 0.0 0.0 0.000

For instance, κ = 0.23, 0.656, and 2.487 for the three
temperatures: 1100, 1200, and 1800 K, shown in Fig. 1. If
we take the Monkhorst-Pack 8-point mesh (MP-8), with the

1 1.5 2 2.5 3
d (=R/a)

0

0.05

0.1

0.15

0.2

0.25

ξ(
R

)

1100 K (MC)

1200 K (MC)

1800 K (MC)

1200 K (MP-8) 

1800 K (MP-8)

FIG. 1. (Color online) Real-space spin-spin correlation functions
in bcc Fe in the paramagnetic state at different temperatures obtained
in the Monte Carlo simulations. Fit by Ornstein-Zernike correlation
function is shown by dashed line. Small filled symbols are ξ (R)
obtained from reweighting the 8-point Monkhorst-Pack grid (MP-8).

smallest distance between points about 2.22 (in units 1/a) there
is no way to obtain an accurate fit for the MSRO at 1100 K.
In this case, the use of a finer grid of q points is needed.
Nevertheless, as one can see in Fig. 1, a small adjustment of
the weights of q points allows one to get quite reasonable
spin-spin correlation functions at the first five coordination
shells for the MSRO at 1200 K. At the same time, ξ (qi)
provides a quite accurate description of the MSRO at 1800
K without any adjustment as obvious from Fig. 1.

Of course, one should bear in mind that the Monkhorst-Pack
grid will always produce translationally symmetric ξ (R) since
the qi points of such a grid are translationally symmetric in
the reciprocal space. The translation vectors of ξ (R) are thus
just the “reciprocal” vectors of the qi mesh. In particular, in
the case of MP-8 grid, one of the smallest translation vectors
is T = (222) in units of lattice vector a (or 444 in terms of lmn

indices, see Table II), so that ξ (R + nT) = ξ (R), and so on.
In the presence of the MSRO, additional “harmonics” appear,
reducing the range of the repetition of the correlation functions
further. However, one can always chose a more dense mesh of
q points if necessary.

III. METHODOLOGY

The electronic-structure calculations have been done by two
methods: the exact muffin-tin orbital (EMTO) method23,24 and
projector augmented wave (PAW).25,26 The EMTO method,
being implemented in the Green’s function formalism27 and
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combined with the full-charge-density (FCD) technique and
CPA,28 is an accurate tool for doing DLM-CPA total energy
calculations. The PAW method as implemented in the Vienna
ab initio simulation package29 (VASP) has been used in the
calculations of elastic constants, vacancy formation energy,
and phonon spectra of bcc Fe in the paramagnetic state.

The EMTO total energies have been calculated using
the generalized gradient approximation30 (GGA) within the
full charge density (FCD) formalism. All the self-consistent
EMTO-CPA calculations have been performed using an
orbital momentum cutoff of lmax = 3 for partial waves. The
integration over the Brillouin zone has been performed using
a 37 × 37 × 37 grid of special k points determined according
to the Monkhorst-Pack scheme.18 The core states have been
recalculated at each self-consistency iteration.

The PAW calculations have been performed in the GGA.31

The energy cutoff was set to 450 eV. For all spin-spiral
calculations, all the symmetry operations have been switched
off. The convergence criterion for the total energy was chosen
to be 10−5 eV in the lattice parameter calculations and 10−8 eV
in the elastic constants calculations. The elastic constants have
been calculated using a 37 × 37× 37 grid of special k points
determined according to the Monkhorst-Pack scheme.18

A 27-atom supercell formed by 3 ×3 × 3 translations
of a primitive cell of the bcc structure has been used in
calculations of vacancy formation energies and forces for
the small-displacement method.32 The small-displacement
method in a way similar to that described in Ref. 32 and as
implemented in PHON (Refs. 33 and 34) code has been used
to calculate the phonon spectrum of paramagnetic iron. The
displacement amplitude has been 0.04 Å. The convergence
criterion has been chosen to be 10−5 eV. The disordered
magnetic state calculations have been done using spin-wave
approach by averaging the forces that have been obtained
by displacements in the 〈111〉 directions for each spin-spiral
vector q.

Local relaxations have been included in the vacancy
formation energy calculations. In order to keep the cubic
symmetry of the lattice, which is the case of real macroscopic
alloys where it is preserved on average, the form of the unit
cells has been kept fixed. At the same time, we have relaxed
all the atomic positions in the supercell. The atomic positions
were relaxed until the forces on atoms have been less than
10−2 eV/Å.

IV. RESULTS AND DISCUSSION

A. Total energy of paramagnetic fcc Co and bcc Fe

In this section, we compare the supercell, DLM-CPA, and
spin-wave methods for two systems: fcc Co and bcc Fe. Both

are itinerant magnets, which do not satisfy the necessary
conditions for Heisenberg systems: Their local magnetic
moments and exchange interaction parameters, obtained by
a perturbative method, i.e., the magnetic force theorem,35

depend quite strongly on the global magnetic state.20,36 In other
words, none of these methods is exact for the paramagnetic
state of Fe and Co, and therefore this test is merely a
comparison of different techniques, and it can not be used
to judge the quality of the presentation of the paramagnetic
state. The main point here is about efficiency and possibilities.

The electronic-structure and total energy calculations are
done by the EMTO method, which can be used in all three
cases. In order to avoid systematic errors, all the parameters
of the electronic-structure calculations have been exactly the
same, but the Monkhorst-Pack grid for the k-point integration,
which has been reduced in the supercell calculations according
to the size of the supercells. In Tables III and IV, we present
the results for fcc Co and bcc Fe obtained for the same Wigner-
Seitz radius 2.65 a.u.

In the case of Co, however, there are no results for supercell
calculations since it has not been possible to get a self-
consistently convergent electronic structure for the random
magnetic configuration of spin-up and -down Co atoms, the
spin-spin correlation functions of which are given in Table I.
This is a very good illustration of one of the problems one
faces in the supercell modeling of paramagnetic state in the
case of itinerant magnets. The origin of the problem can be
clearly seen from the results presented in Table III.

Here, we show the energy and (average) magnitude of the
local magnetic moments of paramagnetic, ferromagnetic, and
antiferromagntic fcc Co. First of all, the antiferromagnetic
state of fcc Co with spin-wave vector qAFM = (100)2π/a is not
stable: the magnetic moment vanishes and the system becomes
nonmagnetic (last column in Table III). Now, one can notice
that the energy of nonmagnetic state is actually very close to
that of the DLM state, in spite of the fact that the energy of
the ferromagnetic state is an order of magnitude lower. One
can also see very large variations of the magnitude of the local
magnetic moment. All these point to the weak itinerant nature
of magnetism in fcc Co in the paramagnetic state, characterized
by a very shallow energy landscape for the magnetic states
close to the paramagnetic (and nonmagnetic) one.

It is clear that the spin-wave method allows quite efficient
calculations of the paramagnetic state. By using just a single
Baldereschi mean-value point, one can obtain a reasonable
representation of the paramagnetic state. Obviously, the Chadi-
Cohen special points work also quite well. This is also
apparently the case of bcc Fe, as one can see in Table IV.
Although the variation of the energy of the paramagnetic state
is larger in the case of bcc Fe than in the case of fcc Co, it

TABLE III. Total energy and the average magnitude of the local magnetic moment in the “ideal” paramagnetic, FM, and AFM states fcc
Co. The total energy is given relative to that in the DLM-CPA model (in mRy).

IPM

DLM-CPA B-1 CC-2 CC-10 MP-3 MP-8 MP-30 FM NM (AFM)

	Etot 0.0 − 0.35 − 0.54 − 0.51 0.01 − 0.62 − 0.51 − 12.08 1.74
m 1.105 1.170 1.072 1.027 0.209 0.989 1.025 1.667 0.0
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TABLE IV. Total energy and the average magnitude of the local magnetic moment in the IPM, FM, and AFM states bcc Fe. The total energy
is given relative to that in the DLM-CPA model (in mRy).

IPM

DLM-CPA B-1 CC-2 CC-8 MP-3 MP-29 sc-16 FM AFM

	Etot 0.0 − 0.81 − 1.43 − 0.59 1.39 − 0.75 0.69 − 13.65 15.45
m 1.956 2.145 2.119 2.100 2.021 2.096 2.095 2.220 1.434

is relatively on the same scale, taking into consideration the
large variation of the magnetic energy of bcc Fe, which spans
about 29 mRy from the AFM to the FM states. It is also clear
that there is no such shallow energy landscape in the case of
bcc Fe, as in the case of fcc Co.

B. Vacancy formation energy in bcc Fe

Another problem of the supercell approach is the fact that it
may require the use of very large model systems or equivalently
a large set of smaller systems in the case of defect-formation
energy calculations in paramagnetic metals and alloys. The
point is that, in this case, it is not sufficient to satisfy Eq. (3)
globally, but it should also be valid locally in the vicinity
of the defect. This means, for instance, that in the case of a
point defect, the local spin-spin correlation functions on the
defect site should obey Eq. (3). Besides, in order to have really
accurate results, one should also take care of the magnetic
structure of atoms surrounding an impurity (vacancy), which
should provide on average the necessary spin-spin correlation
functions. It is clear that in the end, this is a highly nontrivial
problem.

The spin-wave method has an obvious advantage in this
case since for a given spin-wave vector, the system is
magnetically homogeneous in the sense that all the sites of
the lattice are equivalent. Of course, the presence of a defect
destroys this equivalence, and moreover, the modeling of a
defect requires the use of a finite supercell, which imposes
certain boundary conditions. The latter in effect destroys a
perfect spin-spiral state with a given wave vector q unless
the translations are multiples of the spin-spiral wavelength.
At the same time, it is also clear that the boundary effect
can be systematically diminished by increasing the size of
the supercell, and the effect of the boundaries is easy to
check.

In this work, we have chosen a 27-atom supercell (3 × 3× 3)
for the vacancy formation energy calculations. Such a supercell
provides quite an accurate description of the vacancy formation
energy, at least for the purpose of the demonstration of the
technique (see, for instance, Ref. 37). Accurate calculations
of the vacancy formation energy in real magnetic systems at
finite temperature is, in fact, a quite nontrivial task, which is
not considered here.

In Table V, we show the vacancy formation energy in bcc
Fe in the FM and PM states obtained by the EMTO and PAW
methods for the experimental room- and high-temperature
(1073 K) lattice constants38 corresponding to the FM and PM
states. The EMTO calculations are less accurate and do not
allow us to take local lattice relaxation effects into account,
but the EMTO method is used here for comparison of the
supercell DLM-CPA and spin-wave results. In the latter case,

we have used just a single spin spiral with wave vectors either
given by the Baldereschi mean-value point (B-1), or q1 (Q-1).

It is clear that the spin-wave method yields the results very
close to the DLM-CPA calculations. The latter means that
cumbersome supercell calculations can be done just by using
one mean-value q point, either Q-1 or B-1. The PAW calcula-
tions of unrelaxed vacancy formation energies for MP-8, B-1,
and Q-1 also agree well with each other. Unfortunately, we
could not stabilize self-consistent calculations with relaxation
for single-point sets B-1 and Q-1.

Results presented in Table V allow one to analyze the
vacancy formation energy as a function of the magnetic state
and lattice parameter and compare it to that obtained in other
papers.39–46 In particular, the effect of the lattice constant on
the vacancy formation energy is clearly small in the FM state
between 2.84 and 2.90 Å (see also Ref. 39), while it is quite
noticeable in the PM state in the same interval. But, the effect
of the magnetic state is obviously dominating. The vacancy
formation energy in the ideal PM state is about 30% lower
than that in the FM state. This reduction is higher than that
observed experimentally.40,41

Partly, this discrepancy could be due to the MSRO,
neglected in the IPM. Using the weights of the MP-8 q-point
set for the MSRO at 1800 and 1200 K, we have also determined
the effect of the MSRO on the vacancy formation energy
(last three columns in the table). As one can see, the MSRO
increases the vacancy formation energy by about 7% at
1200 K and brings the theoretical ratio between the FM and
PM vacancy formation energy to better agreement with the
experimental data. The larger absolute values of the vacancy
formation energies can be related to an inaccurate description
of the exchange-correlation effects in the GGA.

Finally, we would like to mention the fact that the local
relaxations are quite important in both FM and PM states.
The relaxation energy in the PM and FM states are −0.23
and −0.21 eV, respectively, for the high-temperature lattice
constant, while in the FM state at room temperature it is
−0.25 eV, which indicates that the relaxation energy is
probably more sensitive to the lattice constant than to the
magnetic state.

C. Elastic constants of paramagnetic bcc Fe

The spin-wave method is well suited for the calculation of
elastic constants in the absence of the spin-orbit term since, in
this case, the spin wave can be oriented arbitrarily with respect
to the strain, and thus no average is needed. This is, however,
not the case of the supercell approach unless special conditions
are satisfied. In particular, the distribution of atoms with the
spin-up and -down orientations of magnetic moment should be
not only random on average, but it should be homogeneously
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TABLE V. Vacancy formation in bcc Fe (in eV) obtained in the FM and PM states at room- (a = 2.86 Å) and high-temperature (a = 2.90 Å)
lattice constants (Ref. 38). Other ab initio results are obtained in the GGA for the FM state and at the GGA theoretical lattice constant (2.84 Å).

FM PM, a = 2.90 (2.84) Å

a = 2.86 Å a = 2.90 Å DLM Q-1 B-1 MP-8 MSRO (MP-8)
IPM 1800 K 1200 K

EMTO, unrelaxed 2.61 2.62 2.24 (2.05) 2.26 (2.15) 2.31 (2.17)
PAW, unrelaxed 2.51 2.53 2.00 1.97 2.00 2.05 2.09
PAW, relaxed 2.26 2.32 1.77 1.84 1.90

Experimental data
Ref. 40 2.00 1.79
Ref. 41 1.60 1.50
Ref. 42 1.50
Ref. 43 1.40
Ref. 44 1.60

Other ab initio calculations
FP-LMTO, relaxed (Ref. 37) 2.18
FP-KKR, unrelaxed (Ref. 39) 2.45
PAW, relaxed (Ref. 46) 2.14
PAW, relaxed (Ref. 45) 2.14

random providing the needed cubic symmetry. The latter can
be achieved only for a large-size supercell.

In this work, we have used the EMTO-CPA and PAW
method to calculate elastic constants in bcc Fe in the PM state
using the same methodology as reported in Ref. 47. However,
in order to calculate shear elastic constants using the spin-wave
method, one needs to generate a new set of q points, which
corresponds to a new distorted lattice under the corresponding
strain. This leads to a larger number of q points due to the
reduced symmetry. For instance, in the case of C44 and C ′, the
Monkhorst-Pack 8-point set (MP-8) for bcc lattice becomes
18-point sets under the corresponding strains.

The results of the calculations for the bulk modulus B and
two shear elastic constants C44 and C ′ are shown in Table VI
and compared to the PM results from the other works.48–50

Again, as in the case of vacancy formation energy, one can see
that there is very good agreement between the spin-wave and
DLM-CPA calculations. The EMTO results are in fact in quite
good agreement with experimental data,48 at least it is much
better than that between the PAW results and experiment. We
believe that this is rather accidental since the EMTO method is
obviously less accurate in the elastic property calculations than
the PAW method. The PAW results should be regarded as the
most accurate, and this point indicates an apparent problem.
In particular, this concerns C ′, which is negative in the PAW

calculations in the IPM, indicating the mechanical instability
of bcc Fe.

The reason for the disagreement between PAW results
and experimental data can be related (1) to the fact that our
model of the paramagnetic state is oversimplified; (2) to the
neglected magnetic short-range-order (MSRO) effects in the
paramagnetic state; (3) to the neglected contribution from
other type of excitations, vibrational in particular; and (4) to
an inaccurate description of the exchange-correlation potential
in the GGA. It is also clear that all the above-mentioned
approximations can in different ways affect different elastic
properties.

For instance, as has been recently demonstrated by Razu-
movskiy et al.,51 the magnetic state in Fe produces large impact
upon C ′, but has little effect upon the bulk modulus, which
exhibits a quite strong volume dependence. Thus, as far as
C ′ concerns, the MSRO should correct the obtained results.
This is indeed the case as one can see in Table VI: C ′ is very
sensitive to the MSRO and is positive for the MSRO at 1800
K, which is the point of the liquid-bcc transition. The MSRO
at 1200 K is quite strong, and it produces large impact upon
C ′. Let us note that the calculated value of C ′ is very close to
the experimental data at this temperature.

It is interesting to note that MSRO practically does not
affect C44 and correct just a little bit the bulk modulus. In fact,

TABLE VI. Bulk modulus B and shear elastic constants C44 and C ′ of Fe in the PM state calculated using EMTO-CPA and PAW methods
at the experimental high-temperature lattice parameter, 2.90 Å (Ref. 38). Experimental data (Ref. 48) at 1073 K. Other ab initio results: the
EMTO-CPA (Ref. 49) and DMFT (Ref. 50) (at T 20% higher the Curie temperature) for a = 2.88 Å.

EMTO PAW: IPM PAW: MSRO (MP-8) Expt. (1180 K) DLM DMFT

DLM MP-8 MP-8 1800 K 1200 K Ref. 48 Ref. 49 Ref. 50

C ′ 15 10 −5 5 10 13 19 36
C44 104 106 90 90 89 99 129 124
B 121 121 110 112 115 131 132 181a

aCalculated from the elastic constants reported in Ref. 50.
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the electronic correlations should also play an important role
according to the recent DMFT calculations by Leonov et al.50

(see Table VI). However, the DMFT results are in much worse
agreement for all the elastic properties for some unknown
reasons. Apparently, an additional investigation is needed.

D. The phonon spectra of bcc Fe in the paramagnetic state

The final example we would like to demonstrate here
is calculations of the phonon spectra in the paramagnetic
state. It can be done using different approaches, but here we
will use the so-called small-displacement method32 when the
force constants (dynamical matrix) are determined from the
Hellman-Feynman forces caused be a small displacement of
one atom in the supercell.

First, we start from FM calculations in order to test the
convergence of the phonon spectrum with respect of the
supercell size. In Fig. 2, we show phonon spectrum of bcc Fe
in the FM state obtained in 27- (3 × 3× 3) and 64-atom (4 ×
4 × 4) supercell calculations. As one can see, the quantitative
agreement with the experiment52 is obtained only in the case of
the 64-atom supercell. Unfortunately, we have not been able
to run spin-spiral calculations for 64-atom supercell due to
restrictions of computer facilities, and thus results presented
below for the 27-atom supercell will be quite in error. Thus,
they should be considered as a demonstration of the technique
in this particular case.

Being the second derivative of the total energy with respect
to displacements, the force constants in the PM state are
determined as the average of the force constants for the spin
spirals in the set


̃αβ(R) =
∑

i

wi

i
αβ(R). (12)

Here, 
̃αβ(R) is the average force constant matrix for lattice
vector R; α and β are the x, y, and z indexes; 
i

αβ(R)
the force constant matrix for a specific spin-spiral state qi .
Since the spin-spiral state lowers the point group symmetry of
the underlying lattice, but, at the same time, 
i

αβ(R) are sup-
posed to preserve this symmetry as it is preserved in the param-
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FIG. 2. (Color online) Phonon spectrum of bcc Fe in the FM state
from 64- and 27-atom supercell calculations. The experimental data
are taken from Ref. 52.
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FIG. 3. (Color online) Calculated phonon dispersion of PM iron
at 1073 K lattice constant (Ref. 38). Paramagnetic state is calculated
using DLM-CPA and spin wave with the selected special mean-value
point q = ( 1

6 , 1
3 , 1

2 ) (Q-1), the Baldereschi mean-value point (B-1),
and integration of the magnon spectrum in the corresponding IBZ
using eight special points determined according to the Monkhorst-
Pack scheme (MP-8). The results are compared with PM DMFT
calculations from Ref. 50 and PM experimental data from Ref. 53.

agnetic state, 
i
αβ (R) should be determined either by averaging

over nonequivalent (with respect to the spin-spiral state)
displacements or equivalently over the star of the qi vector.

In Fig. 3, we show our results of for PM Fe obtained at the
high-temperature lattice constant38 together with experimental
data53 and recent DMFT results.50 In our calculations, we
have used the 8-point set of the Monkhorst-Pack q points
(MP-8), the Baldereschi mean-value point (B-1), and q1 point
(Q-1). The agreement between all the results obtained by the
spin-wave method is good, except the T1 mode in the �−N
direction ([ξξ0]), for which the MP-8 and Q-1 spin-wave sets
yield negative energy leading to dynamical instability, while
B-1 yields positive energy.

Let us note that both DMFT and experimental studies
indicate a pronounced softening of the T1 mode, but, of course,
in reality bcc Fe in the PM state is dynamically stable. As in the
case of elastic constants, the dynamical instability of bcc Fe in
the PM state in the spin-wave calculations is related most prob-
ably to the magnetic SRO effects. The additional reason, rele-
vant for Fe in the high-temperature δ phase, can be connected
with phonon-phonon interactions or anharmonic effects, which
are apparently important close the melting point. Nevertheless,
we leave this point to further theoretical investigations.

V. CONCLUSIONS

We have proposed the spin-wave method for the total
energy of the paramagnetic state. It is based on the average
over the total energies of the planar spin spirals and it is
equivalent to the DLM model for Heisenberg systems. As
has been demonstrated, it yields results very close to those
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obtained by the DLM-CPA approach for fcc Co and bcc Fe.
Although it is quite computationally demanding (partly due to
inefficiency of the code we have used in the case of the spin-
spiral calculations), it provides new opportunities for ab initio
investigation of metals in the paramagnetic state. In particular,
it allows one to calculate the defect-formation energies, elastic
constants, and phonon spectrum. Besides, it can be used to take
MSRO effects into consideration, which is hardly possible to
do by any other ab initio technique. Of course, one should bear
in mind that the spin-wave method describes accurately only
the energetics of the Heisenberg system. This point, however,
concerns all the existing techniques, such as the DLM-CPA
and supercell approaches.
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