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Chiral spin liquid in two-dimensional XY helimagnets
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We carry out Monte Carlo simulations to discuss critical properties of a classical two-dimensional XY frustrated
helimagnet on a square lattice. We find two successive phase transitions upon the temperature decreasing: the first
one is associated with breaking of a discrete Z2 symmetry and the second one is of the Berezinskii-Kosterlitz-
Thouless (BKT) type at which the SO(2) symmetry breaks. Thus, a narrow region exists on the phase diagram
between lines of the Ising and the BKT transitions that corresponds to a chiral spin liquid.
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I. INTRODUCTION

Frustrated magnets have attracted much attention in recent
years. Exotic spin-liquid phases, which have been found in
some of them, are of special interest.1 A chiral spin-liquid
phase is an example of such an exotic state of matter in which
there are neither quasi-long-range nor long-range magnetic
orders, but a chiral order parameter 〈Si × Sj 〉 is nonzero.
Existence of such a phase is discussed in context of one-
dimensional frustrated quantum magnetic systems,2 and it is
found experimentally in Ref. 3.

In larger dimensions, one of the systems in which the
chiral spin-liquid phase can be found at finite temperature is a
classical planar (XY ) helimagnet with Z2 ⊗ SO(2) symmetry
in which the helical structure results from a competition
of exchange interactions between localized spins. Critical
behavior of spin systems from this class is described by two
order parameters. Aside from the conventional magnetization
with SO(2) symmetry, one has to take into account also
the chiral order parameter that is an Ising variable with Z2

symmetry. This parameter characterizes the direction of the
helix twist and distinguishes left-handed and right-handed
helical structures.

In three-dimensional (3D) helimagnets, the phase transi-
tions on the magnetic and the chiral order parameters occur
simultaneously. It was found numerically that the transition
is of the weak first order or of the “almost-second-order”4,5

type in helical antiferromagnets on a body-centered tetragonal
lattice6 and on a simple cubic lattice with an extra competing
exchange coupling along one axis.7 These systems belong
to the same (pseudo)universality class as, e.g., the model
on a stacked-triangular lattice8 and V2,2 Stiefel model.9 The
possibility of existence and stabilization of the chiral spin-
liquid phase by, e.g., Dzyaloshinsky-Moria interaction in 3D
helimagnets, is discussed recently in Ref. 10.

In two dimensions (2D), the situation is rather different.11

Two successive transitions were observed with the temperature
decreasing. The chiral order appears as a result of the first
transition that is of the Ising type. Another one is the
Berezinskii-Kosterlitz-Thouless (BKT) transition driven by
the unbinding of vortex-antivortex pairs.12 Then, the chiral
spin-liquid phase arises between these transitions with the
chiral order and without a magnetic one. Various 2D systems
from the class Z2 ⊗ SO(2) were investigated numerically (see
Ref. 13 for review): triangular antiferromagnet,14,15 J1-J2

model,16 the Coulomb gas system of half-integer charges,17

two coupled XY models,18 Ising-XY model,13,19,20 and the
generalized fully frustrated XY model.21 And surely, the most
famous of them is the fully frustrated XY model (FFXY )
introduced by Villain.22 This model is of great interest because
it describes a superconducting array of Josephson junctions
under an external transverse magnetic field.23 It was found
that the temperature of the Ising transition TI is 1%–3% larger
than that of the BKT transition for most of above-named
systems.11,13,23,24

Korshunov argued25 that a phase transition, driven by un-
binding of kink-antikink pairs on the domain walls associated
with the Z2 symmetry, can take place in models similar to 2D
FFXY one at temperatures appreciably smaller than TBKT (see
also Ref. 26). Such a transition could lead to a decoupling of
phase coherence across domain boundaries, producing in this
way two separate bulk transitions with TBKT < TI .27 It was
pointed out, however, in Ref. 25 that these two continuous
transitions can merge into a single first-order one. These con-
clusions do not depend on the particular form of interactions in
the system as soon as the ground-state degeneracy remains the
same. They are confirmed by numerical studies of the models
mentioned above.11,13–17,23,24

Nevertheless, the situation remains contradictory in 2D
helimagnets belonging to the same Z2 ⊗ SO(2) class as
the FFXY model and the antiferromagnet on the triangular
lattice. Garel and Doniach28 (see also Ref. 29) considered the
simplest helimagnet on a square lattice with an extra competing
exchange coupling along one axis that is described by the
Hamiltonian

H =
∑

x

(J1 cos(ϕx − ϕx+a) + J2 cos(ϕx − ϕx+2a)

− Jb cos(ϕx − ϕx+b)), (1)

where the sum runs over sites x = (xa,xb) of the lattice, a =
(1,0) and b = (0,1) are unit vectors of the lattice, the coupling
constants J1,2 are positive. Using arguments of Ref. 30, they
concluded28 that at low temperatures the vertices are bound
by strings, which would inhibit the BKT transition and make
the Ising transition occur first with the temperature increasing.
Kolezhuk noticed31 that those arguments are not valid for a
helimagnet, and showed that the Ising transition temperature
is larger than the BKT one at least near the Lifshitz point
J2 = J1/4. It was found by Monte Carlo simulations in the
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recent paper32 that TBKT > TI at J2 = 0.3 and J1 = Jb = 1
(i.e., very near the Lifshitz point) in accordance with Ref. 28
and in contrast to Ref. 31.

To account for the discordance between results for helical
magnets and the general arguments for Z2 ⊗ SO(2) class,
we perform extensive Monte Carlo simulations of the model
(1) for different values of J2. We obtain reliable results at
J2 > 0.4J1 which show that TBKT < TI . On the other hand,
the value of TI close to the Lifshitz point is hiding among
effects of the finite-size scaling and is not accessible for
ordinary estimation methods. We obtain the Ising transition
temperature from the chiral-order-parameter distribution and
find that TBKT < TI near the Lifshitz point too. At the same
time, we find in accordance with results of Ref. 32 that the
specific heat and susceptibilities have subsidiary peaks at
low T < TBKT near the Lifshitz point. These are anomalies
which are attributed in Ref. 32 to the Ising phase transition.
However, we demonstrate that these anomalies do not signify
a continuous phase transition. Apparently, their origin is in
metastable states, which lead also to a peculiar distribution
of the chiral order parameter. We find no such features in the
specific heat and susceptibilities far from the Lifshitz point (at
J2 > 0.4J1). As a result, we obtain the phase diagram shown
in Fig. 1.

The rest of this paper is organized as follows. We discuss in
Sec. II the model (1) in more detail and introduce quantities to
be found in our calculations. Numerical results are discussed
in Sec. III. In particular, the Ising and the BKT transitions
are considered in Secs. III A and III B, respectively. The
neighborhood of the Lifshitz point and the phase diagram are
discussed in Sec. III C. Section IV contains our conclusions.

II. MODEL AND METHODS

We consider the model (1) of the classical XY magnet on a
square lattice. We set J1 = Jb = 1 for simplicity, and the value
of the extra exchange interaction J2 is a variable. The Lifshitz
point corresponds to J2 = 1/4 in this notation. The system
has a collinear antiferromagnetic ground state at J2 < 1/4. To
discuss the phase transition from the (quasi-)antiferromagnetic
phase to the paramagnetic one, we consider J2 = 0 and 0.1 (see
Fig. 1). The ground state has a helical ordering at J2 > 1/4.

FIG. 1. (Color online) Phase diagram of the model (1) that is
found in this paper.

FIG. 2. (Color online) Distribution of the value E′
b defined in

Eq. (9) for J2 = 0.5, L = 42 and three T values: T > TI , T < TBKT,
and TBKT < T < TI .

The turn angle θ0 between two neighboring spins along the a
axis is given by cos θ0 = −J1/4J2 at zero temperature.

To discuss the number and the sequence of phase transitions
from the (quasi-)helical phase to the paramagnetic one, we
consider J2 ≈ 0.309, 0.5, and 1.76 corresponding at T = 0
to angles of commensurate helices θ0 = 4π/5, 2π/3, and
6π/11, respectively. We use lattices with L2 cites, where L

is divisible by the size of the helix pitch and it lies in the
range from 20 to 120. We apply the periodic (toric) boundary
conditions as well as the cylindrical ones (i.e., with the periodic
condition along the b axis and the free one along the a
axis). We have found that both conditions lead to the same
values of transition temperatures and indexes. In contrast,
values of Binder’s cumulants and the chiral-order-parameter
distribution at J2 ≈ 0.309 depend on boundary conditions as
we discuss below in detail. Standard Metropolis algorithm33

has been used. The thermalization was maintained within
4 × 105 Monte Carlo steps in each simulation. Averages have
been calculated within 3.6 × 106 steps for ordinary points and
6 × 106 for points close to the critical ones. We have used also

FIG. 3. (Color online) Distribution of the value E′
a defined in

Eq. (10) for J2 = 0.5, T = 0.67 < TI , and different L.
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the histogram analysis technique in which the range of each
quantity has been divided into 6.4 × 105 bins.

A. Order parameters

The BKT transition is driven by the magnetic order
parameter for which we use two definitions. Similar to the
triangular lattice,14 one can introduce a number of sublattices
in the case of helix pitches, which are divisible by the lattice
constant. Then, one can write for the magnetic order parameter

mi = nsl

L2

∑
xi

Sxi
, m =

√
1

nsl

∑
i

〈
m2

i

〉
, (2)

where index i enumerates nsl sublattices, the sum over xi runs
over sites of the ith sublattice, spin Sxi

= (cos φxi
, sin φxi

) is
a classical two-component unit vector, and 〈. . .〉 denotes the
thermal average. The second definition of the order parameter
is valid both for commensurate and incommensurate helices

Mj = 1

L

∑
i

Sja+ib, M =
√√√√ 1

L

∑
j

〈
M2

j

〉
. (3)

Our calculations show that definitions (2) and (3) lead to the
same results away from the Lifshitz point. We have found
that m shows an anomalous behavior at J2 ≈ 1/4, and we
use definition (3) in this case. Thus, we demonstrate that it
is useful in numerical discussion of helimagnets to choose
parameters of the Hamiltonian so that the helix pitch at T = 0
is commensurate.

The Ising transition is driven by the chiral order parameter
defined as

k = 1

L2 sin θ0

∑
x

sin(ϕx − ϕx+a), k =
√

〈k2〉. (4)

B. Susceptibilities and cumulants

We introduce corresponding susceptibilities for all order
parameters34

χp =
{

L2

T
(〈p2〉 − 〈|p|〉2), T < Tc

L2

T
〈p2〉, T � Tc.

(5)

FIG. 4. (Color online) Same as in Fig. 3 for T > TI .

The second line in this definition is used below for estimation
of critical exponents. Binder’s cumulants34 are defined as

Up = 1 − 〈p4〉
3〈p2〉2

. (6)

We discuss also the cumulant

Vk = ∂

∂(1/T )
ln〈k2〉 = L2

( 〈k2E〉
〈k2〉 − 〈E〉

)
, (7)

for which the critical exponent νk can be found by finite-size
scaling analysis.35

C. Helicity modulus

It is useful to introduce the helicity modulus (or the spin
stiffness)36 to discuss the BKT transition that is defined by the
increase in the free-energy density F due to a small twist 	μ

across the system in one direction (a or b):

ϒμ = ∂2F

∂	μ
2

∣∣∣∣
	μ=0

, (8)

where μ = a,b denotes the direction. Important universal
properties of a BKT transition predicted by Kosterlitz and
Nelson37 are the jump of the helicity modulus (8) from zero
at T > TBKT to the value of 2TBKT/π at T = TBKT and the
value of the exponent η(T = TBKT) = 1/4. These properties
have become standard methods of finding the transition
temperature.

As a result of the fact that the exchange couplings along
the a and b axes are different, the helicity moduli in these
directions differ too. Thus, at zero temperature, ϒa(0) = 4J2 −
J 2

1 /(4J2), while ϒb(0) = Jb. Nevertheless, both ϒa and ϒb

must vanish at the same temperature with the identical value
of the jump. One finds after trivial calculations using Eqs. (1)
and (8) that the helicity modulus ϒb is expressed via correlation
functions and has a common view38

ϒb = 〈E′′
b 〉 − L2

T
〈(E′

b)2〉, (9)

where T is measured in units of J1 = Jb = 1, we set kB =
1, E′

b = L−2 ∑
x sin(ϕx − ϕx+b), and E′′

b = L−2 ∑
x cos(ϕx −

ϕx+b). Similar calculations give, for the helicity modulus in

FIG. 5. (Color online) Estimation of the transitions temperature
by the Binder-cumulant crossing method.
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FIG. 6. (Color online) Binder’s cumulant Uk(L) defined by
Eq. (6) as a function of temperature for L = 24, . . . ,90.

the a direction,

ϒa = 〈E′′
a 〉 − L2

T
〈(E′

a)2〉 + L2

T
〈E′

a〉2, (10)

where E′
a = L−2 ∑

x[sin(ϕx − ϕx+a) + 2J2 sin(ϕx − ϕx+2a)]
and E′′

a = −L−2 ∑
x[cos(ϕx − ϕx+a) + 4J2 cos(ϕx − ϕx+2a)].

It may seem that the last term in Eq. (10) can be discarded
as it is done with the corresponding term in Eq. (9), which is
equal to zero. However, it is not so because 〈E′

b〉 = 0 at all
T , whereas 〈E′

a〉 = 0 at T � TI and 〈E′
a〉 �= 0 at T < TI . To

demonstrate this, let us apply an infinitesimal twist 	a across
the system in the a direction, i.e., let us replace in Eq. (1)
ϕx − ϕx+a by ϕx − ϕx+a + 	a . One writes in the first order in
	a∑

x

(cos(ϕx − ϕx+a + 	a) + J2 cos(ϕx − ϕx+2a + 2	a))

≈
∑

x

(cos(ϕx − ϕx+a) + J2 cos(ϕx − ϕx+2a))

−	a

∑
x

(sin(ϕx − ϕx+a) + 2J2 sin(ϕx − ϕx+2a)). (11)

Comparing the last term in Eq. (11) with the chiral-order-
parameter k definition (4) and noting that one can use an
equivalent definition k̃ = L−2 ∑

x sin(ϕx − ϕx+2a), we con-
clude that the last term in Eq. (11) is a linear combination

FIG. 7. (Color online) Specific heat C(T ).

of k and k̃. However, k and k̃ have opposite signs in the case
considered. In particular, their combination k + 2J2k̃ in the last
term in Eq. (11) is equal to zero at T = 0. Nevertheless, our
numerical results presented below show that this combination
is not equal to zero at T �= 0 and it can be considered as
the Ising order parameter at T ∼ TI . Then, one sees from
Eq. (11) that 	a plays the role of the “chiral” field and,
consequently, ∂F/∂	a|	a=0 (that is equal in our notation to
〈E′

a〉) is proportional to the chiral order parameter, which is
equal to zero at T � TI and which is finite at T < TI .

To illustrate this consideration, we present in Fig. 2 the
distribution of E′

b for J2 = 0.5 and for various temperatures
below TBKT ≈ 0.671, between TBKT and TI ≈ 0.69, and above
TI (the values of TI and TBKT are obtained below). The
distribution has a Gaussian form with the zero expected
value 〈E′

b〉 = 0. Figure 3 shows the distribution of E′
a for

T = 0.67 < TI and various lattice sizes. A nonzero expected
value of 〈E′

a〉 is seen. One can observe a double-peak structure
of E′

a distribution (see Fig. 3) for small lattices or at T

that is close enough to TI , when the system can tunnel to a
configuration with opposite chirality. The probability of such
tunneling is estimated as

p(k+ → k−) = exp

(
− 2Lfdw

T

)
, (12)

where fdw is a domain-wall tension39 that is positive at T <

TI and it vanishes at T = TI . That is why we observe two
peaks for small lattices and only one peak for large ones.
Quite expectedly, we find the single-peak distribution of E′

a at
T > TI demonstrated in Fig. 4.

It should be stressed that the disappearance of the double-
peak structure at the critical temperature TI (L) is a signature
of the transition on a lattice with size L. The value of TI (L) is
close to the correct value of the transition temperature for large
lattices. We use this circumstance below in our analysis of the
Lifshitz point neighborhood. It should be noted also that we
replace in our numerical calculations 〈E′

a〉 by 〈|E′
a|〉 at T < TI

in the last term in Eq. (10) as it is usually done in considerations
of order parameters.34 It is done because the order-parameter
distribution has tails in both positive and negative regions even
below the transition temperature. The value 〈p〉 is replaced by
〈|p|〉 in Eq. (5) by the same reason.

FIG. 8. (Color online) Estimation of the exponent νk using the
cumulant Vk defined by Eq. (7).
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FIG. 9. (Color online) Estimation of the exponents βk and γk .

III. NUMERICAL RESULTS

We discuss in this section in detail our results for the special
case of J2 = 0.5, which corresponds at T = 0 to 120◦ helical
structure with three sublattices. Then, we discuss the phase
diagram. We consider lattices with L = 24, 30, 36, 42, 48, 60,
72, 90, 120. The lattice with L = 18 is also used for estimation
of some quantities.

A. Ising transition

To obtain the Ising transition temperature TI , we use
the Binder-cumulant crossing method.34 We find for L = 24
and 30 the temperature TL′ as a function of ln−1(L′/L) at
which curves Uk(L) intersect for different lattice sizes L′ > L.
Extrapolation to the thermodynamic limit L′ → ∞ gives the
following transition temperature (see Figs. 5 and 6):

TI = 0.689(1). (13)

The dispersion in the value of TI obtained for the different
lattice sizes L gives the error of the transition temperature
estimation. Notice that error bars are not shown in Figs. 5
and 6 and in all figures below if they are smaller than or
comparable with symbols size.

A peak in the specific heat shown in Fig. 7 is found approx-
imately at the same temperature. For the largest lattices, the
peak is located in the range of temperature from 0.690 to 0.695.

FIG. 10. (Color online) Binder’s cumulant Um(L) as a function
of temperature for L = 24, . . . ,90.

FIG. 11. (Color online) Helicity modulus ϒb in the b direction
and its intersection with the line 2T/πJeff .

One expects that this peak corresponds to the logarithmic
divergence of the specific heat that is a characteristic of the 2D
Ising model in which the critical exponent α is equal to zero.
Insufficient accuracy of our data for the specific heat prevents
us from the immediate estimation of α.

Critical exponents νk , βk , and γk are obtained by the finite-
size scaling theory. To estimate the exponent νk , we find a
maximum of the quantity Vk given by Eq. (7) as a function of
lattice size L (Ref. 35):(

V
(L)
k

)
max ∼ L1/νk . (14)

The fitting presented in Fig. 8 gives

νk = 0.97(4), (15)

which coincides within the computational error with the exact
value of ν = 1 for the 2D Ising model.

Exponents βk and γk are found from scaling properties of
the order parameter k and the susceptibility χk at the critical
point

(k̄(L))T =TI
∼ Lβk/νk ,

(
χ

(L)
k

)
T =TI

∼ Lγk/νk , (16)

with the following result (see Fig. 9):

βk = 0.118(8), γk = 1.70(6). (17)

FIG. 12. (Color online) Root-mean-square fit error 	c of the
helicity modulus ϒb to the Weber-Minnhagen scaling equation (21).
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FIG. 13. (Color online) Same as in Fig. 11 for ϒa .

These values coincide within computational errors with exact
values of 1/8 and 7/4, correspondingly, of the 2D Ising model.
Using the scaling relations, we find other exponents

α = 2 − 2νk = 0.06(8), ηk = 2 − γk/νk = 0.25(5). (18)

Note that the scaling relation α + 2βk + γk = 2.00(8) ≈ 2 is
satisfied within the computational error. We have found also
the universal value of the Binder cumulant U ∗ = 0.615(6) at
the critical temperature (see Fig. 6), which is in agreement
with the value U ∗ ≈ 0.611 observed in the 2D Ising model40

with periodic boundary conditions.

B. BKT transition

According to the Mermin-Wagner theorem,41 there is no
spontaneous magnetization at finite temperature in 2D magnets
with short-range interactions and a continuous symmetry. But,
a quasi-long-range order appears at nonzero temperature due
to the Berezinskii-Kosterlitz-Thouless mechanism12 in XY

magnets with SO(2) symmetry. It is important that as long
as we measure the temperature in units of J1, the universal
value of the jump 2TBKT/π perturbs by the factor of J1/Jeff ,
where Jeff is an effective coupling constant. The competing
exchange coupling J2 gives rise to this factor. To obtain it,
we considered the Coloumb-gas representation of the model
(1) using standard duality transformations.12,42 As a result, we
obtain

Jeff =
√

Jb(J1 − 4J2) (19)

FIG. 14. (Color online) Same as in Fig. 12 for ϒa .

FIG. 15. (Color online) Intersection of the exponent η(T ) with
the bound η = 0.25.

for the antiferromagnetic phase (J2 < J1/4), and

Jeff =
√

1

2
Jb

(
4J2 − J 2

1

4J2

)
(20)

for the helimagnetic one (J2 > J1/4). Equation (19) is in
accordance with results of Refs. 28 and 43. In particular,
Jeff = √

3/2 for J2 = 0.5.
A few authors have investigated the properties of the Binder

cumulant for magnetization as an alternative method of the
BKT transition temperature estimation.44 Due to finite-size
corrections, this method gives a value for the transition
temperature TB that is slightly larger than the true value TBKT.
Nevertheless, this method is useful as it provides an estimation
of the BKT transition temperature and an extra evidence of
separated transitions (if one finds that TB < TI ). Using the
Binder-cumulant crossing method described above, we find
TB = 0.679(2) (see Figs. 5 and 10) that is 1.8% smaller than
TI given by Eq. (13).

To obtain TBKT precisely, we use the Weber-Minnhagen
finite-size-scaling analysis45 that is based on consideration of
logarithmic corrections to the value of the helicity modulus at
temperature close to TBKT having the form

ϒ(T ,L) = 2T

πJeff

(
1 + 1

2 ln L + c

)
, (21)

FIG. 16. (Color online) Same as in Fig. 6 for cylindric boundary
conditions.
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FIG. 17. (Color online) Specific heat C(T ), helicity modulus ϒb, and susceptibilities χk,m for J2 ≈ 0.309.

where c is a fitting parameter. Fixing T , we find the root-mean-
square error 	c of the least-squares fit of our numerical data
for ϒ(T ,L) with different L � 60 that is based on Eq. (21).
The minimum of 	c as a function of T gives the value of the
transition temperature.45 We obtain for the helicity modulus in
the b direction (see Figs. 11 and 12)

T
(ϒb)

BKT = 0.671(1). (22)

Corresponding results for ϒa are shown in Figs. 13 and 14. For
the largest lattice of L � 48, the Weber-Minnhagen finite-size
scaling analysis estimates the BKT transition temperature as

T
(ϒa )

BKT = 0.673(2), (23)

which is in agreement with Eq. (22). It should be noted that
inaccuracy in estimation of ϒa is larger than of ϒb. That is
why we use in the following the more precise value (22) for
comparison between different methods.

To verify our results, we use also cylindric boundary
conditions with the periodic condition along the b axis
and with the free one along the a axis. We obtain results
consistent with those for periodic conditions. In particular,
transitions temperatures TBKT = 0.671(2) and TI = 0.6907(6)
were estimated by the Weber-Minnhagen analysis and the

TABLE I. Some results of our discussion of the model (1). Here
Lmax is the maximum value of L considered.

J2/J1 θ0 Lmax TBKT/J1 TI /J1

0 0 40 0.891(2)
0.1 0 30 0.781(3)
≈0.309 4π/5 100 0.443(5) 0.48(1)
0.5 2π/3 150 0.671(1) 0.690(1)
≈1.76 6π/11 66 1.24(1) 1.285(7)

Binder-cumulant crossing method (see Fig. 16). The universal
value of the Binder cumulant at the critical temperature is
U ∗ = 0.496(7), which is close to the value expected for the
2D Ising model40 with mixed (cylindric) boundary conditions.

Another indication of the BKT transition is the equality to
0.25 of the exponent η(T ). Below the transition temperature,
the susceptibility diverges with the size of the system as

χm(T ,L) ∼ L2−η(T ). (24)

The exponent η as a function of temperature found using
Eq. (24) is shown in Fig. 15. The intersection of η(T ) with
the bound η = 0.25 gives

T
(η)

BKT = 0.676(2). (25)

By comparing Eqs. (22) and (25), one notes that T
(η)

BKT >

T
(ϒ)

BKT. Because η(TBKT) = TBKTJeff/2πJ1ϒ(TBKT),37 we can

FIG. 18. (Color online) The chiral-order-parameter distribution
for J2 = 0.5 and L = 42.
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FIG. 19. (Color online) The chiral-order-parameter distribution
for J2 = 0.309, L = 45 at different temperatures.

not exclude that at the true transition temperature the exponent
η and the jump of the helicity modulus have nonuniversal
values. Such a possibility has been considered for other models
from the class Z2 ⊗ SO(2).14,17,23,24,46 If it is so, η has a value
smaller than 0.25 and the jump is greater than 2J1/πJeff . Thus,
our data show that η(T (ϒ)

BKT) ≈ 0.22.

C. Neighborhood of the Lifshitz point and the phase diagram

Aside from the case of J2 = 0.5 considered above in detail,
we have carried out similar discussions of J2 = 0, 0.1, 0.309,
and 1.76 to obtain the phase diagram shown in Fig. 1. Some
results of this consideration are summarized in Table I. The
case of J2 = 0 corresponds to the well-known XY model
on a square lattice, and we find TBKT = 0.891(2), which is
consistent with the previous results.47

It should be stressed that we obtain TI > TBKT at J2 > 1/4
in accordance with conclusions of Refs. 25 and 31 and in
contrast to Refs. 28 and 32. Because our finding is at odds
with that of the similar numerical consideration of the same
model carried out in Ref. 32, our special interest is to consider
the case of J2 ≈ 0.309, which is close to J2 = 0.3 discussed
in Ref. 32.

The case of J2 ≈ 0.309 corresponds at T = 0 to θ0 = 4π/5.
In particular, we find TBKT = 0.443(5), which is very close
to the value reported in Ref. 32. Estimating the temperature

FIG. 20. (Color online) The chiral-order-parameter distribution
for J2 = 0.309, L = 25, and L = 35 at T/J1 = 0.43.

FIG. 21. (Color online) The chiral-order-parameter distribution
for J2 = 0.309, L = 65, and L = 100 at T/J1 = 0.43.

of the Ising critical point by the Binder-cumulant crossing
method, we encounter the anomalous behavior of the chiral
order parameter and do not obtain a reliable result. Apparently,
it is the reason why the authors of Ref. 32 base their conclusion
about the Ising transition on the behavior of the specific heat
C(T ) and susceptibilities χk,m. Our results for these quantities
are shown in Fig. 17 and they are consistent with those of
Ref. 32. It is seen from Fig. 17 that the chiral susceptibility has
a high peak at T ≈ 0.4, while the specific heat and the magnetic
susceptibility have subsidiary peaks at T ≈ 0.4, which grow
with the lattice size increasing. These anomalies at T ≈ 0.4 <

TBKT are attributed in Ref. 32 to the Ising transition. However,
we observe that for other J2 > 0.4, the specific heat has only
one peak corresponding to the logarithmic divergence which
characterizes the Ising transition (see, e.g., Fig. 7 for J2 = 0.5).
Therefore, the behavior of C(T ) shown in Fig. 17 is not normal
for the model discussed and it is characteristic of the Lifshitz
point neighborhood. To account for this anomaly, we examine
the behavior of the chiral order parameter in detail.

Figure 18 shows the chiral-order-parameter distribution
for J2 = 0.5 and L = 45. It looks like a customary order-
parameter distribution in a system with the second-order
transition. In particular, the distribution has a Gaussian form
below a critical temperature with a peak at k̄ (see the curve

FIG. 22. (Color online) Distribution of E′
a defined in Eq. (10) for

L = 65.
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FIG. 23. (Color online) Estimation of TI for J2 = 0.309 that is
based on Eq. (26).

for T = 0.6). In approaching to the critical temperature,
the distribution acquires an appreciable tail (see curves for
T = 0.68 and 0.7). Such a broad distribution leads to a peak in
the susceptibility. The distribution has a peak at k = 0 above
the critical point (see curves for T = 0.72 and 0.8).

However, the picture for the chiral-order-parameter distri-
bution is quite different close to the Lifshitz point, e.g., at
J2 ≈ 0.309. We show in Fig. 19 the chiral-order-parameter
distribution for L = 45 and different temperatures. One can
see one Gaussian peak at T < 0.35 in agreement with the
common picture described above. But, a few additional peaks
arise at T > 0.35. Then, the number and the breadth of peaks
depend on the lattice size L (see Figs. 20 and 21) and, what
is much more important, on the boundary conditions. For
the cylindrical boundary conditions, these peaks are broader
and they are accompanied by a great number of accessory
peaks. Such a distribution of the chiral order parameter is
characteristic in the case of L = 45 to the range of temperature
from T ≈ 0.35 to 0.55. One can see from Fig. 19 that at
T = 0.57 the distribution has a form that is typical for a
disordered phase with the peak at zero value of the order
parameter. Then, it is clear that the order-parameter distribution
at T ≈ 0.4 shown in Fig. 19 does not correspond to a critical
point of a continuous transition.

Apparently, the origins of such a peculiar behavior at
J2 ≈ 0.309 are metastable states with different values of the
chiral order parameter which prevent the system investigation
considerably. The multipeak structure of the order-parameter
distribution leads to a sudden jump of the susceptibility, and
states intermediate between metastable configurations give rise
to the specific-heat anomaly. It should be noted that energy
values of the metastable states are close since we observe in
our simulations that the energy distribution has a Gaussian
form even for the largest lattice size.

To estimate the Ising transition temperature at J2 ≈ 0.309,
we analyze E′

a distribution defined in Eq. (10) and discussed

in Sec. II C. As it is pointed out above, 〈E′
a〉 �= 0 whenever a

helical ordering exists. Figure 22 shows that the distribution
is not symmetric relative to zero at T = 0.52 and L = 65,
while it is definitely symmetric at T � 0.53. Therefore, the
critical temperature for L = 65 can be roughly estimated as
TI (L) = 0.53(1). The transition temperature can be estimated
using the relation

TI = TI (L) − A

Lν
, (26)

where A is constant and ν = 1 as it is expected for an Ising
transition. An extrapolation to the thermodynamic limit using
Eq. (26) gives TI = 0.477(12) (see Fig. 23). Then, we obtain
that TBKT < TI even in the neighborhood of the Lifshitz point.

IV. CONCLUSION

We discuss critical properties of the 2D helimagnet de-
scribed by the Hamiltonian (1). It belongs at J2/J1 > 1/4 to
the same class universality as the fully frustrated XY model
and the antiferromagnet on triangular lattice, which have two
successive phase transitions upon the temperature decreasing:
the first one is associated with breaking of the discrete Z2

symmetry and the second one is of the BKT type at which
the SO(2) symmetry breaks. We confirm that this scenario is
realized also in the model (1) at J2/J1 > 1/4 and obtain the
phase diagram shown in Fig. 1. A narrow region exists on
this phase diagram between lines of the Ising and the BKT
transitions that corresponds to the chiral spin liquid.

In particular, we demonstrate that the number and sequence
of transitions do not depend on the turn angle θ0 of the
helix twist at T = 0. Then, this quantity is not a critical
parameter that has been already found6,48 in three-dimensional
helimagnets. We find that it is useful in numerical discussion
of helimagnets to choose parameters of the Hamiltonian so
that the helix pitch at T = 0 is commensurate. It allows us to
use definition (2) of the magnetic order parameter in which the
summation over sublattices is involved.

We find in accordance with results of Ref. 32 that the
specific heat and susceptibilities have subsidiary peaks at low
T near the Lifshitz point J2/J1 = 1/4 (see Fig. 17). However,
in contrast to the conclusion of Ref. 32, we demonstrate that
these anomalies do not signify a continuous phase transition.
Apparently, their origin is in metastable states near the Lifshitz
point, which lead also to a peculiar distribution of the chiral
order parameter shown in Fig. 19.
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