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Engineering surface waves in flat phononic plates

Héctor Estrada,!>” Pilar Candelas,' Francisco Belmar,! Antonio Uris,’

F. Javier Garcia de Abajo,? and Francisco Meseguer

1,21

ICentro de Tecnologias Fisicas, Unidad Asociada ICMM- CSIC/UPV, Universidad Politécnica de Valencia,
Av. de los Naranjos s/n. 46022 Valencia, Spain
2Instituto de Ciencia de Materiales de Madrid (CSIC), Cantoblanco, 28049 Madrid, Spain
3IQFR-CSIC, Serrano 119, 28006 Madrid, Spain
(Received 21 December 2011; revised manuscript received 2 March 2012; published 1 May 2012)

Surface acoustic-wave phenomena span a wide range of length scales going from the devastation of earthquakes
down to image reconstruction of buried nanostructures. In solid-fluid systems, the so-called Scholte-Stoneley
waves (SSWs) dominate the scene at the interface with their evanescent fields decaying away into both media.
Understanding and manipulating these waves in patterned surfaces would enable new applications of sound to
be devised for imaging and acoustic signal processing, although this task has so far remained elusive. Here,
we report SSW modes displaying directional gaps and band folding in fluid-loaded solid phononic plates. The
plates are inhomogeneously patterned with in-plane periodic modulations of the elastic constants, but present flat
surfaces free of corrugations. We experimentally demonstrate control of SSWs, which opens a promising route
toward acoustic fluid sensing, microscopy, and signal processing.
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I. INTRODUCTION

Funnelling waves through small apertures perforated in
opaque plates has served as a source of inspiration in optics
and acoustics alike, leading to remarkable applications such
as enhanced optical sensing in hole arrays,! perfect light
absorption,” and extraordinary sound screening.’ In this
context, extraordinary optical transmission* has stimulated
a large deal of work intended to extrapolate the physics
and understanding of light interaction with perforated plates
to acoustics. However, the mechanisms involved in sound
transmission through subwavelength apertures have distinct
features that prove the photonic analogy to be misleading, as
emphasized by the following established results: (i) at variance
with optics, sound transmission through subwavelength holes
is not extraordinary at all;>® (ii) the interaction with guided
elastic modes becomes critical in assessing the effect of
periodic corrugation induced by apertures in acoustic hole
arrays;’ and (iii) the surrounding medium (e.g., air) only
produces circumstantial effects in the interaction of light with
a good metal, but it plays a pivotal role in acoustics.

Surface (Rayleigh)® and guided-plate (Lamb) waves® are
known to be trapped by a solid that is held in vacuum.
However, if the solid is surrounded by a fluid, both Rayleigh
and Lamb waves become leaky and interface modes known
as Scholte-Stoneley waves (SSWs) emerge.'” Additionally, a
periodic modulation imprinted on a plate induces extra surface
modes,''"!> whose characteristics are independent of the
solid properties as long as the solid-fluid acoustic impedance
mismatch remains high (e.g., in air-solid systems). Moreover,
surface modes strongly hybridize with Fabry-Perot resonances
of the hole cavities in drilled plates.!* These concepts have
spurred a rich literature encompassing resonant acoustic
transmission through periodically perforated plates,>!*1¢
corrugation-assisted sound collimation,'” backward beam
displacement,'®!° and hyperlensing.?’ However, driven by the
optics interpretation, perforated plates with subwavelength
holes have been studied from different mutually exclusive
perspectives, namely, either as sound barriers with waves
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evolving just in the fluid'*~'® or as elastic phononic crystals in
which sound propagates along the plate.?">*> Actually, interface
modes in phononic plates (PPs) have not yet been modelled
or measured, and only very preliminary experimental results
have been reported on SSWs supported by singly and doubly
corrugated phononic crystals on a surface.”?

Here, we demonstrate the dominant role of interface and
Lamb modes in periodically patterned flat solid plates. We
present a comprehensive study of the dispersion relation of
these modes in plates consisting of homogeneous solid films
periodically patterned with arrays of cylindrical inclusions
made of a different solid material. Two complementary
experimental techniques allow us to detect all modes above
and below the sound line. We report measurements that are
well understood from a full elastoacoustic model providing
a complete description of radiating and non-radiating SSW
modes trapped at the fluid-plate interface. Our control of
SSWs is based on mechanisms differing from diffraction and
Fabry-Perot resonances typical of pierced plates, and notably,
the degree of confinement of trapped SSW is much larger in
the samples here presented.

II. RESULTS AND DISCUSSION

Throughout this article, we study plate modes and their
dispersion relations in the space of frequency w and parallel
wave vector Kk [see Fig. 1(a) for a scheme of a PP]. For
simplicity, only variations of k; along the I'X direction of the
first Brillouin zone [see Fig. 1(a), inset] are considered. Two
transmission regimes can be distinguished depending on the
irradiation conditions. For an incident propagating wave, char-
acterized by k| < w/cp, where ¢y is the sound velocity in the
fluid, the (kj, w) dependence of the transmission 7 yields in-
formation of the plate-fluid coupling and the presence of leaky
surface modes.” In contrast, incident evanescent waves (k; >
w/cp) provide information about nonleaky bound modes.

We present underwater sound transmission measurements’
in Figs. 1(b) and 1(d) for two types of PPs, namely, aluminum
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FIG. 1. (Color online) (a) Scheme of a PP, its geometrical
parameters, and the orientation of an incident sound wave. The
host plate of thickness % is periodically decorated with cylindrical
inclusions of diameter d arranged in a square lattice of period a.
The incident wave, represented by its wave vector k,, determines
the parallel wave-vector component k;. The inset shows the first
Brillouin zone. Measured [(b), (d)] and calculated [(c), (e)] fraction T
of transmitted sound power (color scale) as a function of normalized
parallel wave vector kja/m and frequency wa/mcy. Results for
an aluminum-PMMA PP of dimensions d = 3 mm, a = 5 mm, and
h =3 mm [see inset in (b)] are shown in panels (b) and (c). Panels
(d) and (e) correspond to an aluminum-epoxy PP having d = 2.5 mm,
a=5mm, and 2 = 0.85 mm [see inset in (d)]. The sound line
(dashed) is indicated in all cases.

with poly-methyl metacrylate (PMMA) inclusions [see
Fig. 1(b)] and aluminum with epoxy resin inclusions [see
Fig. 1(d)]. Our angle-resolved measurements cover a limited
range of incidence angles (0°-60°) within the sound cone,
which are accessed by tilting the sample around the direction
of a nearest-neighbor axis of the inclusion lattice. For the
aluminum-PMMA PP [see Fig. 1(b)], zero-order Lamb modes
are clearly distinguishable. The Ay mode couples to the sur-
rounding fluid producing a broad peak featuring full transmis-
sion. In contrast, the Sy mode preserves its less radiative nature,
showing up as a very sharp feature. These results are in excel-
lent agreement with the simulations shown in Fig. 1(c), which
are based upon a full elastoacoustic model’** (FEAM) that
incorporates the elastic properties of the structured plate.
The periodic band structure is clearly emphasized by
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mode doubling beyond kj > 7/a, particularly, in features
resembling Wood anomaly minima.” Negative group velocity
and band maxima associated with zero group velocity are
clearly resolved in both theory and experiment. Incidentally,
there is a measured transmission minimum at low frequencies
that is not predicted by theory, presumably arising from PP
imperfections.

Calculations of the transmission of solid-solid PPs have
been performed using an implementation of the FEAM
described elsewhere.”?* In the FEAM, the two-dimensional
solid-solid problem is solved using plane-wave expansions
for both the elastic constants and the displacement in the
translationally invariant crystal with the same symmetry [a
square lattice of period a, see Fig. 1(a)] and cylindrical
inclusions (diameter d) as the original plate. The fields in the
plate are then expanded in terms of guided modes by fixing
(kj,w) and solving a quadratic diagonalization problem in
which the wave vector component parallel to the cylinders
(k;) is the eigenvalue. We further use a Rayleigh expansion to
describe the wave field in the fluid (incident and transmitted
waves, along with their diffracted beams). The continuity of the
displacement u and normal stress o;, is then imposed for a finite
plate of thickness h. As the fluid only supports longitudinal
vibrations, its stress tensor reduces to a scalar pressure (o;; =
—pd;;). Viscosity effects are neglected. The transmitted sound
power t is finally calculated for any given frequency @ and
parallel wave vector k; from the self-consistent coefficients
of the noted Rayleigh expansions. The elastic constants of the
different materials used in the calculations (density p as well
as longitudinal and transversal sound velocities, ¢; and c,) are
detailed in Ref. 25.

The measured transmission dispersion of the aluminum-
epoxy PP [see Fig. 1(d)] looks very different from that of
aluminum-PMMA not only because of the different geomet-
rical parameters (d = 2.5mm, a = 5mm, and 7 = 0.85 mm),
but also because of the higher attenuation produced by the
epoxy resin, which has been incorporated in the corresponding
calculations [see Fig. 1(e)] and leads to smoother features.
Wood anomalies are too narrow to be observed in experiment
and do not play the key role that they have in perforated plates.’
Interestingly, the aluminum-epoxy PP presents a nearly flat
band at low frequencies both in theory and experiment. In
addition, the Sp mode is clearly observable, including its
mirror in the second Brillouin zone, which features negative
group velocity. However, the Ay mode is difficult to resolve in
the transmission for this frequency range and plate thickness,
because it is too broad and overshadowed by the overall high
transmission observed near the sound line. Finally, a bound
SSW is predicted by theory below the sound cone, which has
a replica at small k that is clearly discernible in experiment.
Unfortunately, the transmission measurements do not grant us
access to this bound SSW, and thus we use a complementary
near-field setup to that end.

Our near-field in-plate excitation measurement (NiPEM)
setup is schematically represented in Fig. 2(a). A needle
hydrophone (Precision Acoustics, 1 mm wide) is used as the
receiver and a small piezoelectric disk (Steiner & Martins Inc.
model SMD15T09S411, 15 mm in diameter and 1 mm thick) is
attached to the plate and employed as a source [see Fig. 2(a)].
The piezoelectric actuator is bonded to the plate by means of
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FIG. 2. (Color online) (a) Scheme of our near-field measurement
technique. (b) Near-field dispersion measurement for the PP of
Fig. 1(d), with the color scale showing the normalized two-
dimensional Fourier transform of the space-time resolved measured
amplitude. White dashed curves show the modes predicted by
FEAM calculations. (c) Transmitted sound power 7 as a function of
normalized parallel wave vector kja/m and frequency wa/mco from
FEAM calculations for an underwater aluminum-epoxy PP. Wave
fields at the points marked by labels in the dispersion curves are
shown in Fig. 3. The PP geometrical parameters are d = 2.5 mm,
a =5mm, and &~ = 0.85 mm.

cyanoacrylate based adhesive and covered with a thin silicone
layer to avoid electrical short circuit. The dispersion of the
plate modes is then measured by performing a linear spatial
scan with the hydrophone on the inspected plate surface, taking
into account the array symmetry when choosing the scanning
path. A total scanned length of 220 mm, covering the whole
array in steps of 0.25 mm and at ~1 mm from the plate surface
is measured using an automated positioning system.
Common techniques use liquid*® and solid®’ wedges at-
tached to the transducers to excite Lamb waves. However, con-
sidering the geometry of the array, a simple piezoceramic disk
at its center is found to be more appropriate to our purposes.
This experimental setup renders a position- and time-
dependent amplitude, which we Fourier transform”® to obtain
an amplitude in (kj,w) space. The result is shown in Fig. 2(b)
for the same underwater aluminum-epoxy PP as in Figs. 1(d)
and 1(e). The normalized Fourier transform depicted in
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Fig. 2(b) is an average of data acquired for both negative
and positive k| along a I'X direction, to minimize the effect of
small deviations in the position of the piezoelectric source with
respect to the array. The corresponding FEAM calculations are
shown in Fig. 2(c), from which we extract dispersion mode
features that are superimposed on Fig. 2(b) as dashed curves.
The Ay feature that was difficult to identify in transmission is
now clearly resolved in the NiPEM dispersion right at the
sound line (solid white line). There is a clear correlation
between measured maxima and FEAM calculated modes,
which corroborates the suitability of our NiPEM technique
to resolve dispersion relations, particularly below the sound
cone, which was inaccessible to transmission measurements.
In particular, we observe nonleaky modes exhibiting band gaps
and regions of negative group velocity, which have not been
reported so far.

The relation of these nonleaky modes to SSWs can be
demonstrated by comparing the c; /c( ratios between the lowest
transversal sound velocity in the solids forming the PP and
the nominal speed of sound in water ¢y = 1480m/s. For
the aluminum-PMMA PP, this ratio reaches 0.97, whereas
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FIG. 3. (Color online) The plots show the fluid pressure p
(red-blue scale), the normalized first principal stress (—o;; in the
PP, purple-orange scale), and the displacement vector (plate surface
deformation) within a unit cell for selected values of (kj,w), as
indicated in Fig. 2(c). Two leaky [(a) and (c)] and two nonleaky
[(b) and (d)] modes are considered. The incident wave comes from
the upper right side of the plots [see Fig. 1(a)]. The epoxy cylinder
is placed in the center of the unit cell. The plate deformation is
exaggerated for clarity, but its relative amplitude is maintained in all
four modes.
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for the aluminum-epoxy PP it is 0.64. Comparing now
Figs. 1(c) and 1(e), we can clearly relate the separation of
the modes from the sound line for a given frequency to the
¢;/co ratio, which is consistent with observations of wave
propagation in fluid-solid interfaces.? A fluid-solid interface
exhibits Rayleigh waves if ¢, > ¢p, but it is only governed
by SSWs if ¢; < ¢¢. In our samples, because we are dealing
with PPs that contain two different materials, this condition
is reflected in the distance from the nonleaky modes to
the sound line, which is larger for epoxy than for PMMA
inclusions and is far larger than that achieved by means of
corrugations.'?

We obtain further insight into guided modes by analyzing
their field distributions in the fluid and in the PP. Figure 3 shows
calculated distributions within a plate unit cell for four different
points of the dispersion diagram of Fig. 2(c) (see labels). Near-
field plots are obtained by explicitly evaluating both Rayleigh
and plane-wave expansions of the FEAM. Specifically, we
represent the first principal stress —o;; = —(0yxx + 0yy + 07;)
and the displacement u in the PP, as well as the pressure p
in the fluid. The orientation of the wave fields follows the
diagram of Fig. 1(a), with the incident wave coming from
the upper part for excitation of leaky modes. The first point
of interest [see Fig. 3(a)] corresponds to the first folded SSW
mode at (kja /7 ,wa/mco) = (0.08,0.94). The negative pressure
maximum near the plate in the epoxy cylinder is caused by its
strong deformation, compensated by the lower deformation
of the aluminum and its higher stress. The incident wave is
almost fully transmitted through the plate (from top to bottom),
whereas the plate vibration has a relatively low displacement
amplitude and negative group velocity (see video 1 in Ref. 31).
We then focus on a nonleaky SSW mode at (1.98, 1.04) with
zero group velocity and a standing-wave character (see video
2 in Ref. 31), which we plot in Fig. 3(b). The PP displacement
clearly shows two maxima producing evanescent waves in the
fluid. This is in contrast to the long wavelength (larger than the
unit cell) traveling Sop mode at (0.42,1.23) [see Fig. 3(c)]. The
incident plane wave couples the Lamb mode and it reradiates
a wave to both fluid half-spaces, so that the top pressure field
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is the sum of the incident and the reflected field (see video 3 in
Ref. 31). On the nonleaky side at (2.42,1.47), Fig. 3(d) reveals
a field similar to that of Fig. 3(b) (i.e., several displacement
maxima exist in the plate and the pressure field is evanescent
in the fluid). However, this is a traveling SSW, as inferred from
its position in the dispersion diagram (see video 4 in Ref. 31).

III. CONCLUSIONS

In summary, the behavior of the phononic plates here
studied differs from common perforated plates or corrugated
surfaces, in particular due to (i) the absence of Fabry-Perot
resonances, (ii) the strong effect that the inclusions have
on intrinsic modes of the plate, leading to a varied band
structure encompassing mode mixing and band folding to
unprecedented levels, and (iii) the presence of textured trapped
SSW modes outside the sound cone exhibiting zero and
negative group velocity at some points in the dispersion
diagram. We experimentally demonstrate control of SSWs,
fully supported by theoretical calculations. Our use of poly-
meric inclusions turns out to be crucial to achieve good
confinement of nonleaky modes, although it is accompanied
by an increase in dissipation. It should be emphasized that
our demonstration of trapped-mode zero and negative group
velocity near Scholte-Stoneley band gaps provides a basis on
which to construct a Scholte-Stoneley acoustic microscopy,”
using flat lenses and near field coupling strategies instead of
concave acoustic lenses.
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