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‘We present a theory of the quantum Griffiths phases associated with the ferromagnetic quantum phase transition
in disordered metals. For Ising spin symmetry, we study the dynamics of a single rare region within the variational
instanton approach. For Heisenberg symmetry, the dynamics of the rare region is studied using a renormalization
group approach. In both cases, the rare region dynamics is even slower than in the usual quantum Griffiths case
because the order parameter conservation of an itinerant ferromagnet hampers the relaxation of large magnetic
clusters. The resulting quantum Griffiths singularities in ferromagnetic metals are stronger than power laws. For
example, the low-energy density of states p(¢) takes the asymptotic form exp[{—A log(ey/€)}*/*]/€ with X being
nonuniversal. We contrast these results with the antiferromagnetic case in which the systems show power-law
quantum Griffiths singularities in the vicinity of the quantum critical point. We also compare our result with
existing experimental data of ferromagnetic alloy Ni, V;_,.
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I. INTRODUCTION

The low-temperature behavior of quantum many-particle
systems can be sensitive to impurities, defects, or other kinds
of quenched disorder. This effect is especially important near
quantum phase transitions, where fluctuations in time and
space become connected. The interplay between static disorder
fluctuations and large-scale quantum fluctuations leads to
much more dramatic effects at quantum phase transitions
than at classical phase transitions, including quantum Griffiths
singularities,'= infinite-randomness critical points featuring
exponential rather than power-law scaling,*> and the smearing
of the transition.°

The Griffiths effects at a magnetic phase transition in a
disordered system are caused by large spatial regions (rare
regions) that are devoid of impurities and can show local
magnetic order even if the bulk system is globally in the
paramagnetic phase. The order parameter fluctuations induced
by rare regions belong to a class of excitations known as
instantons. Their dynamics is very slow because flipping the
rare region requires a coherent change of the order parameter
over a large volume. Griffiths showed' that this leads to a
singular free energy, not just at the transition point but in a
whole parameter region, which is now known as the Griffiths
phase. In classical systems, the contribution of the rare regions
to thermodynamic observables is very weak. However, due to
the perfect disorder correlations in (imaginary) time, Griffiths
effects at quantum phase transitions are enhanced and lead
to power-law singularities in thermodynamic quantities (for
reviews see, e.g., Refs. 7 and 8).

The systems in which quantum Griffiths behavior was
originally demonstrated”~ all have undamped dynamics (a dy-
namical exponent z = 1 in the clean system). However, many
systems of experimental importance involve superconducting’
or magnetic'®!? degrees of freedom coupled to conduction
electrons. This leads to overdamped dynamics characterized
by a clean dynamical exponent z > 1. Studying the effects of
the rare regions in this case is, therefore, an important issue.
It has been shown that metallic Ising antiferromagnets can
show quantum Griffiths behavior at higher energies, where the
damping is less important.'* In contrast, the quantum Griffiths
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singularities in Heisenberg antiferromagnets are caused by the
dissipation and occur at lower energies.'”

In recent years, indications of quantum Griffiths phases
have been observed in experiments on a number of metallic
systems such as magnetic semiconductors,'®'® Kondo lattice
ferromagnets,'®?° and transition metal ferromagnets.>'>> All
these experimental observations of quantum Griffiths phases
are in ferromagnets rather than in antiferromagnets. How-
ever, in contrast to antiferromagnets, a complete theory of
quantum Griffiths phases in ferromagnetic metals does not
yet exist.

In this paper, we therefore develop the theory of quantum
Griffiths effects in ferromagnetic metals with both Ising
and Heisenberg symmetries. We show that the quantum
Griffiths singularities do not take power-law form, in con-
trast to those in antiferromagnets.”8 The rare-region den-
sity of states behaves as p(€) ~ exp[{—i log(eo/e)}3/5]/e in
the low-energy limit, where % plays a role analogous to
the nonuniversal Griffiths exponent. This means that the
Griffiths singularity is stronger than a pure power law.
This kind of density of states leads to non-power-law de-
pendencies on the temperature 7 of various observables,
including the specific heat, C ~ exp[{—A log(Ty/T)}*/°], and
the magnetic susceptibility, x ~exp[{—A log(Ty/T)}*/*1/T.
The zero-temperature magnetization-field curve behaves as
M ~ exp[{—Xlog(Ho/H)}/].

The paper is organized as follows. In Sec. II, we introduce
the model: Landau-Ginzburg-Wilson order parameter field
theories for ferromagnetic Ising and Heisenberg metals. In
Sec. III, we study the dynamics of a single rare region. For
the Ising case, we use a variational instanton calculation,
and for Heisenberg symmetry, we use a renormalization
group theory of the quantum nonlinear sigma model with a
damping term. In Sec. IV, we average over all rare regions
and calculate observables in the ferromagnetic quantum
Griffiths phase. In Sec. V, we compare our predictions with
existing experimental data. Finally, we conclude in Sec. VI by
discussing the difference between ferromagnetic and antiferro-
magnetic quantum Griffiths singularities as well as some open
questions.
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II. THE MODEL

Rare region effects in disordered metallic systems are
realized both in Ising magnets'* and in Heisenberg magnets.'>
In the following, we consider both cases. Our starting point
is a quantum Landau-Ginzburg-Wilson action of the itinerant
ferromagnet®>-2°

S = Sstat + Sdiss + dena (1)

where the static part has the form
B
Sww=Eo [ dr [ @r|igc0+ (Voo
0

+3oteo). @)

Here, E| is a characteristic energy (assumed to be of the order
of the band width in a transition metal compound or the order of
the Kondo-temperature in an f-electron system). We measure
lengths in units of the microscopic length scale &. t > 0 is
the bare distance of the bulk system from criticality. ¢(r,7) is
the dimensionless order parameter field. It is a scalar for the
Ising model, while it has three components (¢;,¢$,,¢3) for a
Heisenberg magnet.

We consider disorder coupled to the square of the order
parameter. The corresponding action has the form

B
Suss = Eo / dr / &r VO, 3)
0

where V(r) is the disorder potential.
(1)

The dynamical part of Eq. (1) is Sqyn = Sy, + Séi)n, where

B

Sin = Eotp, / dt / d’rld:p(r, T, )
0
corresponds to the undamped dynamics of the system with the
clean dynamical exponent z = 1, while
yT |¢(q, )]
§P =L . / dPq —1 5
o =gy 2ol [ P ©

Wn

describes overdamped dynamics with conserved order param-
eter (clean dynamical exponent z = 2 + a), which stems from
the coupling to the conduction electrons. In Eq. (4), 7, is a
microscopic time, and in Eq. (5), y parametrizes the strength
of the dissipation. ¢(q,w, ) is the Fourier transform of the order
parameter ¢(r,7) in momentum and Matsubara frequency. The
value of a depends on the character of the electron motion
in the system and equals 1 or 2 for ballistic and diffusive
ferromagnets, respectively.

III. DYNAMICS OF A SINGLE RARE REGION

In this section, we study the dynamics of a single droplet
formed on a rare region of linear size L. This means, we
consider a single spherical defect of radius L at the origin with
potential V(r) = —V forr < L, and V(r) = 0 otherwise. We
are interested in the case V > 0, i.e., in defects that favor the
ordered phase.

The effective dimensionality of the model defined by Eq. (1)
isdeif = 3 + z. Thus, the clean model Eq. (1) is above its upper
critical dimension (d, = 4), implying that mean-field theory
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is valid. The mean-field equation for a static order parameter
configuration ¢g(r) is>®

V2¢o(r) + [t + V()go(r) + ¢3(r) = 0, (6)
with solution

o) ¢o forr <L o
o) =\ gL 112

=e! forr > L.
This implies that the order parameter is approximately constant
in the region » < L and decays outside of it.

To study the dynamics of the droplet, we start from the
variational instanton approach.?’ In the simplest case, the
droplet maintains its shape while collapsing and reforming.
In order to estimate the action associated with this process, we
make the ansatz

P(r,T) = do(r)n(r). ®)

Here, ¢(r) must be chosen such that f d*r¢(r,7) is time
independent because of order parameter conservation in an
itinerant ferromagnet. This can be done by introducing ¢ (r) =
¢o(r)(1 — Ar) such that the q =0 Fourier component is
canceled. A is a constant to be determined. In the limit of
a large rare region, Lt > 1, we find

#i) = o) (1= 22 ©)
r) = ¢o(r —-—=—.
0 0 3L
In the following subsections, using ansatz Eq. (8), we sepa-
rately discuss the dynamics of the droplet in itinerant Ising and
Heisenberg ferromagnets.

A. Itinerant Ising model

We now calculate the tunneling rate between the “up” and
“down” states of a single rare region in an itinerant Ising ferro-
magnet by carrying out variational instanton calculations.?”?8
To estimate the instanton action, we use the ansatz Eq. (8)
(which provides a variational upper bound for the instanton
action) with n(r) = £1 for T — *o0. Inserting this ansatz
into the action Eq. (1) and integrating over the spatial variables
yields, up to constant prefactors,

S ~ L f dt[=2n°(t) + n*(0)] (10)
and
Sgn ~ L* / dr[d.n(x)]. 11

The part of the action corresponding to the overdamped
dynamics becomes

dn d 2 2
s3,=2 / drdr 91 M 1og T2 T

dyn ’
dtdr 2

where the dimensionless dissipation strength o ~ y L3+%. In
order to estimate the action Eqs. (10) to (12), we make the
variational ansatz
dn  20(tf —47?)
—_ =7 (13)
dt To
Summing all contributions, we obtain the instanton action

S ~ L*/t9 4 L3194 y L**“ log(to/ ). (14)
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Minimizing this action over the instanton duration gives
79 ~ L™%/y.Correspondingly, the actionis S ~ y L3*“_ Then,
the bare tunneling rate or tunnel splitting behaves as

€ ~ exp(—S) ~ exp(—const. x yL3+“). (15)

Thus, the bare tunneling rate decays exponentially with
L3+ in the itinerant Ising ferromagnet unlike the tunneling
rate in the itinerant Ising antiferromagnet,?®?” which decays
exponentially with L. The extra factor L can be understood
as follows. To invert the magnetization of a rare region of linear
size L, magnetization must be transported over a distance of the
order of L, because the order parameter conservation prevents
local spin flips. The rare region dynamics thus involves modes
with wave vectors of the order of g ~ 1/L. Since the part of
the action corresponding to the overdamped dynamics Eq. (5)
is inversely proportional to momentum g“, we obtain an extra
factor L“ in the action Eq. (12).

Within renormalization group methods,? the instanton-
instanton interaction renormalizes the zero-temperature tun-
neling rate to

€ren ~ €070 (16)

This implies that at zero temperature, the smaller rare regions
with @ < 1 continue to tunnel with a strongly reduced rate,
while the larger rare regions (@ > 1) stop to tunnel and behave
classically, leading to super-paramagnetic behavior.

B. Itinerant Heisenberg model

A particularly interesting case is that of itinerant Heisenberg
ferromagnets, because quantum Griffiths phases have been
observed experimentally in these systems.?%2 We now study
the dynamics of a single rare region in an itinerant Heisenberg
ferromagnet. We make the ansatz

¢(r,7) = ¢y(r)n(v), A7)

Here, n(7) is a three-component unit vector. After substituting
Eq. (17) into the action Eq. (1) and integrating over the spatial
variables, we obtain

, , , n(T)n(t)
S ~ g2 /dr[afn(r)] + Z/dfdf Gotrta

(18)
where the dimensionless coupling constant g ~ L3 and o ~
y L3+ as before. Because there is no barrier in a system with
continuous order parameter symmetry, the static part of the
action is constant. Therefore, we cannot solve the problem
within the variational instanton approach. Instead, rotational
fluctuations must be taken into account.

We calculate the characteristic relaxation time of the rare
region by a renormalization group analysis of the action
Eq. (18). As shown in the Appendix, for weak damping o < g,
there are two different regimes, where the behaviors of the
relaxation times are different. Particularly, for energies w larger
than some crossover energy w, ~ «/g, undamped dynamics
is dominant, and the relaxation time of the rare region has the
form

£~ L7, (19)
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which leads to a power-law dependence of the rare-region
characteristic energy on L,

e~L7. (20)

For energies w < w,, overdamped dynamics dominates the
system properties, and the relaxation time of the rare region
behaves as

£; ~ exp|const. x y L3 21
This results in a characteristic energy of
€ ~ exp[—const. x yL>T9]. (22)

Thus, the behavior of the characteristic energy in the itinerant
Heisenberg magnet is the analogous to that of the tunneling
rate in the Ising model discussed above.

We can now roughly estimate the size L. of the rare
region corresponding to the crossover of the two regimes. By
comparing Eqgs. (19) and (21), we find for small o:

L. ~ [log(const./y)/y]"/C+. (23)

For small rare regions, L < L., the undamped dynamics
dominates systems properties and the characteristic energy
is given by Eq. (20), while for L > L., the damping term
is dominant and the characteristic energy is determined by
Eq. (22).

For large damping o >> g, the overdamped dynamics domi-
nates the system properties for all energies w. Correspondingly,
the characteristic energy is given by Eq. (22).

IV. OBSERVABLES

In the last section, we have seen that metallic Ising
ferromagnets display modified Griffiths behavior at higher
energies [Eq. (15)], while at asymptomatically low energies,
the rare regions freeze and lead to a smeared phase transition
[Eq. (16)]. For Heisenberg ferromagnets, we have found con-
ventional behavior at higher energies [Eq. (20)] and modified
Griffiths behavior at low energies [Eq. (22)]. Correspondingly,
we expect modified Griffiths singularities in thermodynamic
quantities at low energies for itinerant Heisenberg ferromag-
nets, while for metallic Ising ferromagnets they should occur
at higher energies.

In this section, we use the single-rare-region results of
Sec. III to study the thermodynamics in these ferromagnetic
quantum Griffiths phases. To do so, we need to estimate the
rare-region density of states. By basic combinatorics (see, e.g.,
Refs. 7 and 8), the probability for finding an impurity-free
rare region of volume L* is P ~ exp(—bL?>) with b being
a constant that depends on the disorder strength. Combining
this and Eq. (22) gives the density of states (of the Heisenberg
system) in the low-energy regime as

ple) ~ éexp[{—i log(eo/€)}*/ . (24)

Here, € is a microscopic energy scale, and the nonuniversal
exponent A ~ b@*+3/3/y plays a role similar to the usual
quantum Griffiths exponent. The same density of states follows
from Eq. (15) for the higher-energy regime of the Ising model.
Thus, in ferromagnetic metals, the rare-region density of states
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does not take power-law form, in contrast to the one in
antiferromagnets.

We can now find observables using the rare-region density
of states Eq. (24). The number n of free rare regions at
temperature 7 behaves as

n(T) ~ / dep(e)e T /(1 + /T

~ exp[{—2log(Ty/ T)}/“*¥], (25)

where Ty is a microscopic temperature scale.

The uniform static susceptibility can be estimated by
summing Curie susceptibilities for all free rare regions,
yielding

x(T)=n(T)/T~ % expl{—Alog(To/ T)Y'“*¥ 1. (26)

The dependence of the moment p of the rare region on its
energy leads to a subleading correction only.

The contribution of the rare regions to the specific heat C
can be obtained from

AE ~ /dep(e)e e T )1+ e /T

~ T exp[{—Alog(To/ T)}/“+], 27)

which gives AC ~ exp[{—A log(Ty/ T)}¥/“*3]. Knowing the
specific heat, we can find the rare region contribution to the
entropy as AS ~ exp[{—A log(Ty/T)}*/@+3].

To determine the zero-temperature magnetization in a small
ordering field H, we note that rare regions with ¢ < H are
(almost) fully polarized while the rare regions with € > H
have very small magnetization. Thus,

H
m~ / dep(e) ~ expl{—Alog(Ho/ H)Y'“*],  (28)
0

where H is a microscopic field (again, the moment of the rare
region leads to a subleading correction). The zero-temperature
dynamical susceptibility can be obtained by summing the
susceptibilities of the individual rare regions using the density
of states Eq. (24),

A
x(w) = /O dep(€) xu(w;€), (29)

where the dynamical susceptibility of a single rare region in
Heisenberg metals at zero temperature is given by’

e

Xer(@ +1i0;€) = ———, (30)
€—iyw
where p is the moment of the rare region. Substituting Eq. (30)

into Eq. (29) we find
(I + iy sgn(w))

o exp[{—2 log |wo/w|}/ ],

X (w +i0) ~
(€29)]

where ) is a microscopic frequency. This result can be used
to estimate the rare region contribution to the NMR spin
relaxation time 7;. Inserting Eq. (31) into Moriya’s formula®!
for the relaxation rate yields

T ~
1/T) ~ — expl{—Alog |wy/w]}/“+V]. 32)
w
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FIG. 1. (Color online) Temperature dependence of the suscepti-
bility of Ni, V,_, for different Vanadium concentrations. Solid and
dotted lines represent fits to Eq. (26) in the different temperature
ranges 5 to 300 K and 1 to 20 K, respectively (data from Ref. 21).

V. EXPERIMENT

Recently, indications of a quantum Griffiths phase
have been observed in the transition metal ferromagnet
Ni, V,_,.2"?2 The behavior of the thermodynamics has been
described well in terms of the power-low quantum Griffiths
singularities predicted for an itinerant antiferromagnet (and
the transverse-field Ising model). Here, we compare our new
theory of ferromagnetic quantum Griffiths phases with the
experimental data given in Refs. 21 and 22. The residual
resistivity of Ni, Vi_, close to the quantum phase transition
is rather high.*> Thus, we choose a =2 for a diffusive
ferromagnet. Figure 1 shows the behavior of the susceptibility
as a function of temperature. The curves corresponding to
the concentrations x = 13.0% and x = 15.0% (which are
far away from the critical concentration x. =~ 11.5%) are
described better by power laws rather than our modified
quantum Griffiths behavior Eq. (26), at least above T~ 10K
(the low-temperature upturn is likely due to freezing of the rare
regions). For concentrations x = 12.07% and x = 12.25%,
our theory fits better than power-law Griffiths singularities
and extends the fit range from 30-300 K down to 5-300 K.
The curves corresponding to the concentrations x = 11.4%
and x = 11.6% can be fitted by Griffiths power-laws only in
the temperature range 30 to 300 K, our new functional form
Eq. (26) does not improve the fit of these curves.

We also compared the prediction Eq. (28) for a modified
magnetization-field curve with the data given in Refs. 21 and
22. We found that the fits to power-laws and to the modified
quantum Griffiths behavior Eq. (28) cannot be distinguished.

Let us also point out that the susceptibility data in the
temperature range below 20 K can be fitted reasonable well
by Eq. (26); see details in Fig. 1. Further experiments may be
necessary to decide whether our theory applies in this region.
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Overall, our theory does not significantly improve the
description of the data of Refs. 21 and 22 over the temperature
range where Griffiths behavior is observed. A possible reason
is that the relevant rare regions are too small. At concentrations
x =13.0% and x = 15.0%, they have moments of about
u~5ug and u ~ 1 up, respectively. Correspondingly, the
effect of the order parameter transport cannot play any role,
whereas our functional forms arise for large rare regions
where the order parameter transport limits the relaxation of the
rare region. A possible reason why the curves corresponding
to the concentrations x = 11.4% and x = 11.6% cannot be
described by our theory at 7 < 30 K might be that the curves
are actually slightly on the ordered side of the quantum phase
transition.

VI. CONCLUSIONS

In summary, we studied the dynamics of rare regions
in disordered metals close to the ferromagnetic quantum
phase transition, considering the cases of both Ising and
Heisenberg spin symmetries. The overall phenomenology is
similar to the well-studied antiferromagnetic quantum Griffiths
behavior.>!*%!327 Namely, for Ising symmetry at low temper-
atures, the overdamping causes sufficiently large rare regions
to stop tunneling. Instead, they behave classically, leading to
super-paramagnetic behavior and a smeared quantum phase
transition. In contrast, at higher temperatures but below a
microscopic cutoff scale, the damping is unimportant and
quantum Griffiths singularities can be observed. In contrast to
the Ising case, the itinerant Heisenberg ferromagnet displays
quantum Griffiths singularities when damping is sufficiently
strong, i.e., at low temperatures. Above a crossover tempera-
ture, conventional behavior is expected.

Although the phenomenologies of the ferro- and antifer-
romganetic cases are similar, the functional forms of the
quantum Griffiths singularities are different. In ferromagnetic
quantum Griffiths phases, the tunneling rate (or characteristic
energy) of a rare region decays as exp[—const. x y L4"3] with
its linear size L, where a is equal to 1 or 2 for ballistic
and diffusive ferromagnets, respectively. This leads to the
modified nonpower-law quantum Griffiths singularities in
thermodynamic quantities, discussed in Sec. IV, in contrast
to the power-law quantum Griffiths singularities in itinerant
antiferromagnets. The reason is the following. Because of
the order parameter conservation in the itinerant quantum
ferromagnet, the damping effects are further enhanced as the
dimensionless dissipation strength « for a rare region of linear
size L is proportional to L**? rather than L3.

In strongly disordered system, where our theory is most
likely to apply, the motion of the electron is diffusive.
Correspondingly, we expect a = 2. In hypothetical systems
with rare regions, but ballistic dynamics of the electrons, a
would take the value 1.

In our explicit calculations, we have used Hertz’s form?? of
the order-parameter field theory of the itinerant ferromagnetic
quantum phase transition. However, mode-coupling effects
in the Fermi liquid lead to an effective long-range spatial
interaction between the order parameter fluctuations.’>=3> In
the order-parameter field theory, this leads to a nonanalytic
momentum dependence of the static action Eq. (2). The effects
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of this long-range interaction on the existence and energetics
of a locally ordered rare region were studied in detail in
Ref. 28. This work showed that the long-range interactions
only produce subleading corrections to the droplet-free energy.
Therefore, including these long-range interactions in the action
Eq. (1) will not change the results of the present paper.

Let us now turn to the limitations of our theory. In
our calculations, we assumed that the droplet maintains its
shape while collapsing and reforming. Correspondingly, our
calculation provides a variational upper bound for the instanton
action. There could be faster relaxation processes; however, it
is hard to image the droplet dynamics to avoid the restriction
coming from the order parameter conservation. We treated
the individual, locally ordered rare regions as independent.
But, in a real metallic magnet, they are weakly coupled by a
Ruderman-Kittel-Kasuya-Yosida (RKKY) interaction, which
is not included in the Landau-Ginzburg-Wilson action Eq. (1).
At the lowest temperatures, this RKKY interaction between the
rare regions induces a cluster glass phase.*® Finally, our theory
does not take the feedback of the order parameter fluctuations
on the fermions into account. It has been found that for some
quantum phase transitions, the Landau-Ginzburg-Wilson the-
ory breaks down sufficiently close to the transition point due to
this feedback.?”-3® For strongly disordered systems, this ques-
tion has not been addressed yet, it remains a task for the future.

Turning to experiment, our theory does not significantly
improve the description of the data of Ni,V;_,.?"?> We
believe that the main reason is that our theory is valid for
asymptomatically large rare regions where the order parameter
transport plays an important role, whereas the experimental
accessible rare regions in Ni, V|_, are not large enough for
the order parameter conservation to dominate their dynamics.
We expect our theory can be applied in systems where one can
observe Griffiths singularities at lower temperatures leading to
larger rare regions.
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APPENDIX: RENORMALIZATION GROUP THEORY

In this Appendix, we show the derivation of Egs. (19)
and (21) by renormalization group (RG) analysis. At low
temperatures, the action Eq. (18) is formally equivalent to
a quantum nonlinear sigma model® in imaginary time .
We can set n(t) = [7(7),0(7)], where 7 (t) = [1(t),m2(7)]
represents transverse fluctuations. After expanding in 7 and
keeping terms up to O(g~2), O(a~?), we find*

dow , Y
5= [ 52 (e0*+ Flol) 17@)

+/da)1da)2da)3 a| |
———| = |wi| — gww
QP \ g T 8Ues

x fig(w)ftg(w2)ftg (w3)ftp (—wi — wr — w3).  (Al)

We now consider the case of the small damping @ < g. Two
different energy regimes can be distinguished: (i) w larger than
some crossover energy w. ~ «/g, implying that the undamped
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dynamics dominates the systems properties, and (ii) v < @,
when the damping term is dominant.

(i) Because the contribution of the undamped dynamics is
dominant in this regime, we neglect the damping term and
renormalize g. To construct a perturbative renormalization
group, consider a frequency region [—A,A] (A is a high
energy cut off), and divide the modes into slow and fast
ones, 7(w) = 7~(w)+ 7~ (w). The modes 7 =(w) involve
frequency —A/b <w < A/b and are kept. We integrate
out the short-wavelength fluctuations 7~ (w) (with frequen-
cies in the region —A <w < —A/b and A/b < w < A) in
perturbation theory using the propagator (7; (a))ﬁ;,(a)/)) =
8pp8(w + )/ (gw?).

After applying standard techniques, we find that this coarse
graining changes the coupling constant g to g, = g + I(b),
where 1,(b) = Q2w A)~'(b — 1). After rescaling t’ = /b and
renormalizing 7'(t") = 7w =<(7)/{,, we obtain the renormalized
coupling constant in the form

g :b_lgggmo (A2)
To find the rescaling factor ¢,, we average n over the short
wavelength modes 7~ and obtain

m” =(x +n7,..../1=@=<+7>)2)"
= (1= (™))" )24+ O], ... W 1=(T)?).
(A3)
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Thus, we identify
I,(b)

+0(g™.
(Ad)

Le=1— (@) /2+0@EgH=1-

Correspondingly, the renormalized coupling constant given in
Eq. (A2) becomes

g =b""[g— L®).

Setting b = 1 + §/, and integrating Eq. (AS) gives the recur-
sion relation g(I) = g(0)e. To find the relaxation time, we
run the RG to g(/) = 1 and use &7 ~ ¢. This gives

(AS5)

£~ L. (A6)

(i) In the same way, for low energies w <K w., we
neglect the term corresponding to the undamped dynamics and
renormalize the o coefficient. We find that « is not modified
by the perturbation, i.e., o, = o, and the field rescaling factor
Ly 1s given by
L)

==+ 0@,
o

So =1 (A7)
where 1,(b) = 2~ 'log(h). Then, we find the recursion
relation «(!) = «(0) — 4w ~'1. This leads to the relaxation
time

£; ~ exp|const. x y L34, (A8)
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