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Harmonic Debye-Waller analysis of anharmonic vibrations
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We address the error resulting from application of the harmonic Debye-Waller factor to anharmonic vibrations.
The mean-square atomic displacement 〈u2〉 determined from the harmonic analysis is compared to values obtained
from an exact anharmonic analysis. In the case of strong anharmonicity, we find that the harmonic approximation
introduces at most a ∼25% error. The temperature dependence determined from the harmonic analysis follows
that found from the exact anharmonic analysis. Errors introduced by the harmonic approximation are comparable
in magnitude to the usual systematic errors associated with diffraction experiments and Rietveld refinements.
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I. INTRODUCTION

Static or dynamic lattice disorder causes a decrease in
the intensity of the Bragg diffraction peaks. This decrease
results from partial decoherence of the scattered photons,
neutrons, or electrons.1 The reduced Bragg intensities, after
the usual corrections for absorption, Lorenz-polarization, etc.,
are normally interpreted in terms of a Debye-Waller factor.
Debye-Waller factors account for the effect of lattice disorder
on the overall intensity of a particular Bragg reflection. These
factors quantify the intensity reduction due to the atomic
mean-square displacements from equilibrium.2

In the refinement of diffraction data using the gen-
eral structure analysis system (GSAS)3 or other Rietveld
packages, connections between diffracted intensity and the
mean-square atomic displacements (MSADs) are usually
made via the standard expression for the temperature
factor Tj . For isotropic atomic displacements, this ex-
pression is Tj = exp(−8π2〈u2

iso,j 〉 sin2 θ/λ2), where 〈u2
iso,j 〉

is the isotropic mean-square displacement of the atom
in Wyckoff site j , θ is the Bragg angle, and λ is
the wavelength.2,3 For anisotropic displacements, the tem-
perature factor becomes Tj = exp(−2π2[〈u2

1,j 〉h2b2
1 + · · · +

2〈u1,j u2,j 〉hkb1b2 + · · · ]). Here, h, k, and l are Miller indices;
b1, b2, and b3 are the Cartesian components of the reciprocal
lattice vectors; and 〈u2

1,j 〉, 〈u1,j u2,j 〉, etc. are the mean-square
anisotropic displacements.2,3 These equations are of course
derived strictly for the case of a harmonic oscillator.2 We
therefore expect the values of 〈u2

j 〉 deduced from the refine-
ment to be accurate only for atoms that vibrate harmonically, or
nearly so. For most materials and conditions, the phonons have
only mild anharmonicity, so the restriction of Tj to harmonic
vibrations is not a serious limitation.

Since the 1990s, there has been growing interest in strongly
anharmonic vibrations and the physics associated with them.
By strong anharmonicity we mean that the anharmonicity
cannot be considered simply as a perturbation of the harmonic
model. Much of this interest has been motivated by rattling-
mode crystals such as clathrates and filled skutterudites. The
structures of these materials are characterized by networks
of polyhedral cages that are capable of accommodating guest
atoms or molecules.4–8 If the cage is oversized compared to
the guest, then the guest can vibrate with low frequency, large
amplitude, and often times with strong anharmonicity.4–12

Guest atom rattling is associated with several interesting

physical phenomena, including superconductivity,13,14 heavy
fermion behavior,15,16 and strong scattering of heat-carrying
acoustic phonons.4–8 The latter phenomenon is being exploited
to develop new thermoelectric materials with enhanced figures
of merit.17,18

Anharmonic vibrations are also encountered in the vicin-
ity of phase transitions, for example, ferroelectric,19–21

martensitic,22 and distortive transformations.23 These dif-
fusionless transitions are associated with the softening of
particular optical-phonon branches.19–24 In this case, the
anharmonicity evidently corresponds to fluctuations in the
atomic positions at certain crystallographic sites.25 Near
the transition, the atomic fluctuations are coupled by long-
range elastic interactions resulting in the collective motion
that characterizes the transformation. This is different from
rattling-mode materials, where the vibrations appear to be
more localized.4–6,9–12

To treat anharmonic vibrations in a rigorously correct man-
ner, we must refine the diffraction data using an anharmonic
model for the Debye-Waller factor. In principle, this is the
only way to obtain accurate 〈u2

j 〉 values. Numerous models
for the anharmonic Debye-Waller factor have appeared in the
literature since the 1960s.26–35 These models are based mainly
on statistical methods26–29,36 or on single-particle models
of the anharmonic potential.29–35 Statistical approaches26–29

calculate Tj from the probability distribution function for
the atomic displacements. For a harmonic vibration, the
atomic displacements follow a Gaussian distribution, so simple
statistical analyses give the harmonic Tj .36 For an anharmonic
vibration, the probability distribution function is not Gaussian.
In this case, non-Gaussian statistical formalisms are used to
calculate the anharmonic Tj .26–29 The two formulations used
most frequently are the Edgeworth expansion and the Gram-
Charlier expansion.27,36 Both have the general form Tj =
Tj,h[a3 + a4 + · · · ], where Tj,h is the harmonic (Gaussian)
temperature factor and a3,a4, etc. are higher-order cumulants
of the distribution that are associated with the third-, fourth-,
etc. order anharmonic terms of the potential. For an anisotropic
vibration, there are 10 coefficients associated with the cubic
cumulant, 15 associated with the quartic cumulant, etc. These
coefficients are fitting parameters to be determined from the
Rietveld refinement.

In single-particle potential models,29–36 the interatomic
potential is usually assumed to have the form V (u) =
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V0 + βjkujuk + γjklujukul + δjklmujukulum + · · · . Here the
second term on the right is the harmonic contribution and
the following terms are the cubic, quartic, etc. anharmonic
contributions. The allowable terms are dictated by the site
symmetry. Anharmonic Tj are calculated from V (u) using
statistical mechanics, usually for the classical limit. The
coefficients of the potential terms βjk, γjkl, δjklm, etc. are
fitting parameters determined from the refinement. We should
note that the single-particle potential methods have a physical
basis, whereas the statistical approaches are based simply on
mathematical expansions.

There are several difficulties associated with the an-
harmonic analyses discussed above. First, commonly used
Rietveld refinement packages such as GSAS3 usually do not
include anharmonic models for the Debye-Waller factor.
Therefore one must develop custom Rietveld software that
includes the relevant anharmonic models. No doubt this has
already been done by diffraction experts, but such software
is generally not available or intended for widespread use by
the physics or materials science communities. Second, an
anharmonic analysis adds a large number of fitting parameters
to the Rietveld refinement. One must use care to ensure that the
quality of the diffraction data justifies these extra parameters.
Specifically, one must differentiate between those parameters
that are physically meaningful and those that merely improve
the fit to poor-quality data.36

In view of these difficulties, we would prefer to avoid the
full anharmonic analysis. One approach is simply to ignore
the anharmonicity and use the harmonic Debye-Waller factor.
Maradudin and Flinn’s30 single-particle potential work from
the early 1960s suggests that this may be a reasonable approx-
imation. They found that for a cubic lattice with cubic and
quartic anharmonicity, the Debye-Waller factor can be written
as T 2 = exp(−2M) exp(−2M3 − 2M4), where exp(−2M) is
the usual harmonic contribution and exp(−2M3 − 2M4) are
additional contributions arising from the cubic and quartic
terms. Using the available literature data, Maradudin and Flinn
evaluated these expressions for Pb. They found that even for
temperatures near the melting point, including the anharmonic
terms modifies the value of T 2 by ∼10% compared to using
only the harmonic term. Dash et al.32 later used single-particle
models to address the case of strong anharmonicity, where the
anharmonicity cannot be considered as a perturbation. This
case seems more applicable to the anharmonic vibrations as-
sociated with rattling modes and soft-mode phase transitions.
It was shown32 that the anharmonic Debye-Waller factor could
be expressed approximately as the product of harmonic and
anharmonic contributions, similar to that found by Maradudin
and Flinn. However, in contrast to Maradudin and Flinn’s
results for mild anharmonicity, Dash et al. found that for strong
anharmonicity the anharmonic terms are not negligible.

In the present work, we explore using the harmonic Debye-
Waller factor to analyze anharmonic vibrations, particularly
those with strong anharmonicity. Specifically we assess the
error in the values and temperature dependence of 〈u2

j 〉
associated with applying the harmonic model to anharmonic
vibrations. The remainder of this paper is organized into four
sections. In Sec. II, we define the temperature factor Tj and
derive the form that is applicable to anharmonic vibrations. In
Sec. III, we discuss our methods for determining the harmonic

and anharmonic values of 〈u2
j 〉. In Sec. IV, we show that

strongly anharmonic rattling-mode vibrations can indeed be
analyzed in terms of the harmonic model, with relatively
small errors in the magnitude and temperature dependence
of 〈u2

j 〉. In Sec. V, we repeat this analysis for fluctuations in
the vicinity of soft-mode phase transitions. We again find that
the harmonic model gives satisfactory results, regardless of the
anharmonicity of the vibration. Lastly, in Sec. VI, we compare
our results to available experimental data.

II. THE TEMPERATURE FACTOR AND DEBYE-WALLER
FACTOR

The intensity of a particular Bragg reflection is I (hkl) ∝
F ∗(hkl) × F (hkl), where

F (hkl) =
∑

j

fjTj exp[−i �Q(hkl) · �rj ]

= T
∑

j

fj exp[−i �Q(hkl) · �rj ], (1)

is the structure factor and F ∗(hkl) is its complex conjugate.2

In Eq. (1), fj is the scattering strength of the atom in Wyckoff
site j (as given by the atomic form factor or coherent neutron-
scattering amplitude), �Q(hkl) is the scattering wave vector, �rj

is the equilibrium atomic position, Tj is the temperature factor
for the atom in site j , and T is the effective temperature factor
for the (hkl) reflection.2 The Debye-Waller factor is T 2. The
Debye-Waller factor accounts for the effect of lattice disorder
on the overall intensity of the reflection. If all crystallographic
sites have the same temperature factor, then the Debye-Waller
factor is simply T 2 = T 2

j . If the sites have different Tj ’s, then
T 2 can be a complicated function of Tj ’s and fj ’s.

The temperature factor Tj appears naturally in Eq. (1)
as a result of ensemble averaging over the instantaneous
fluctuations of the atomic positions.2,37,38 Expressed in its
most fundamental form, the temperature factor is Tj =
〈exp[−i �Q(hkl) · �uj ]〉, where �uj is the instantaneous displace-
ment from equilibrium due to all normal vibrational modes,
and 〈·〉 denotes the ensemble average over all atoms occupying
site j . For a harmonic vibration, this general expression for Tj

simplifies to the equations in the introduction.2 This is easily
verified using Bloch’s identity.2,39

For an anharmonic vibration, Bloch’s identity does not
apply, and so the harmonic equations for Tj are not valid.
In this case, we expand the exponential as a power series and
ensemble average each term to obtain

Tj = 1 − i〈 �Q · �uj 〉 − 1
2 〈( �Q · �uj )2〉 + 1

6 i〈( �Q · �uj )3〉
+ 1

24 〈( �Q · �uj )4〉 − 1
120 i〈( �Q · �uj )5〉

− 1
720 〈( �Q · �uj )6〉 + · · · . (2)

Here we have dropped the (hkl) argument of �Q. Equation (2)
is rigorously correct for any vibration, regardless of anhar-
monicity, provided that enough terms are evaluated to reach
convergence. Depending on the magnitudes of �uj and �Q, tenth-
or higher-order terms may be required.
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III. METHODS

Our goal is to quantify the error in 〈u2
j 〉 caused by using the

harmonic temperature factor to analyze lattice vibrations with
strong anharmonicity. One approach is to use actual diffraction
data, such as for clathrates4 or skutterudites,18 and to refine the
rattling atom site using both the harmonic model as well as
various anharmonic models. The difference in the values of
〈u2

j 〉 deduced from the harmonic and anharmonic models then
gives the error. Most likely, this approach would not give an
accurate estimate of the error because (i) one cannot be sure
which, if any, of the assumed anharmonic models is correct,
and (ii) systematic errors in the experiment and data analysis
may be difficult or impossible to quantify.

In view of these limitations, here we will model various
anharmonic vibrations using one-dimensional single-particle
potentials. For each potential, we calculate the anharmonic
mean-square displacement 〈u2

j 〉A using quantum statistical
mechanics. To do this, we solve the Schrödinger equation nu-
merically for the assumed anharmonic potential, thus obtaining
eigenenergies En and wave functions �n for the eigenstates
n. We then compute the anharmonic mean-square atomic dis-
placement (MSAD) from 〈u2

j 〉A = ∑
n pn〈�n|u2

j |�n〉, where
pn = e−βEn/Z is the Boltzmann weight, Z = ∑

n e−βEn is
the partition function, β = 1/kBT , and kB is the Boltzmann
constant. Our assumption of a one-dimensional interatomic
potential means that a single value of 〈u2

j 〉A characterizes
the displacement. This is analogous to a cubic-symmetry
crystallographic site, where the MSAD are isotropic and are
characterized by one value of 〈u2

iso,j 〉.2
To determine the quasi-harmonic mean-square displace-

ment 〈u2
j 〉QH , we first calculate as a function of | �Q(hkl)|2 =

16π2 sin2 θ/λ2 the reduction in Bragg intensities associated
with a particle vibrating in the assumed anharmonic potential.
This reduction of intensity is equal to the square of the
anharmonic temperature factor T 2

j , as calculated by evaluating
Eq. (2) to convergence. To evaluate the terms in Eq. (2), we
must make an assumption about the symmetry of the crystal.
For simplicity, and for consistency with our calculations of
〈u2

j 〉A, we assume a cubic crystal with all cubic-symmetry
sites so that the MSAD are isotropic.2 To evaluate the series,
we must also compute the higher-order mean displacements
〈um

j 〉 = ∑
n pn〈�n|um

j |�n〉, where m = 3,4,5 . . .. This is done
numerically as described above for 〈u2

j 〉A.
After calculating these Bragg intensity “data” for our

model anharmonic crystal, we analyze them using the
harmonic and isotropic Debye-Waller factor, T 2 = T 2

j =
exp(−16π2〈u2

iso,j 〉QH sin2 θ/λ2). For this, we construct Wil-
son plots, Log I versus sin2 θ/λ2, where I is the diffracted
intensity. Here we assume that I ∝ T 2. From the slopes of
the Wilson plots, we then determine the quasiharmonic values
〈u2

iso,j 〉QH .
In calculating the Bragg intensities, we assumed that our

crystal has only one type of cubic-symmetry site. In this case,
the Debye-Waller factor is simply T 2 = T 2

j . By assuming that
the site potential is strongly anharmonic, our model crystal
represents an extreme (and perhaps unrealistic) case where
every atom vibrates with strong anharmonicity. In contrast, for
real crystals the anharmonic soft or rattling modes are usually

TABLE I. One-dimensional single-particle potentials. θE is the
characteristic vibrational temperature, me is the effective particle
mass, u is the displacement from the well center (see insets of Fig. 1),
and kB and h̄ are the Boltzmann and Planck constants, respectively.
For the Morse potential, γ characterizes the well depth, whereas for
the double well, α characterizes the height of the barrier separating the
two minima. For the 2–4 Landau potential, Tc is the phase-transition
temperature and a′ describes the strength of the harmonic term.

Potential V (u)

Harmonic
1

2

(kBθEme

h̄2

)
kBθEu2

Morse γ kBθE

{
1 − exp

[(kBθEme

h̄2

)1/2 1√
2γ

u
]}

Sextic
1

6

(kBθEme

h̄2

)3
kBθEu6

2–4 Double −α

2

(kBθEme

h̄2

)
kBθEu2 + 1

4

(kBθEme

h̄2

)2
kBθEu4

well

2–4 Landau
1

2
a′ T − Tc

θE

(kBθEme

h̄2

)
kBθEu2 + 1

4

(kBθEme

h̄2

)2
kBθEu4

confined to one type of lattice site, whereas the other sites
are characterized by smaller anharmonicity. The point is that
in our model crystal, the anharmonic atom contributes all of
the the intensity to every (hkl) Bragg reflection, whereas for
real crystals the anharmonic atom contributes differently to
the intensities of the various Bragg reflections. As a result, the
effect of anharmonicity on the peak intensities will probably
be more pronounced in our fictitious crystal than in a real one.

Modern structural refinements are usually performed via
Rietveld-type whole-pattern methods, where 〈u2

iso,j 〉QH values
are extracted using a nonlinear least-squares fitting algorithm.
For complicated crystal structures containing different types
of sites, this is the only practical way to deduce MSAD values.
For structures containing only one type of site, one may also
use the Wilson plot analysis, as done here. In principle, the two
methods should give the same values of 〈u2

iso,j 〉. In practice,
the linear Wilson analysis might be more reliable. The reason
is that nonlinear algorithms such as those used in Rietveld
refinements are known to get stuck near boundaries of the
parameter space, or get lost in regions of parameter space
where the model is unresponsive to changes in the parameter
values.40

We performed this analysis for the five single-particle
potentials listed in Table I: harmonic, Morse, sextic (sixth-
order), 2–4 double-well, and 2–4 Landau. The harmonic
potential was chosen as a check on the self-consistency of our
methods. The Morse potential was chosen because it captures
qualitatively the “high-temperature” anharmonicity exhibited
by most solids (although this particular potential is more often
used to describe covalent bonding in molecules). Sextic and
2–4 double-well potentials model the anharmonic “rattling
modes” found in certain clathrates,4 filled skutterudites,17

β-pyrochlore oxides,11 and VAl10.41 Finally, the 2–4 Landau
potential approximates optical vibrations in the vicinity of
soft-mode phase transitions. For each potential, the above-
described calculations were done for various effective particle
masses me and characteristic vibrational temperatures θE ,
as characterized by the quantity h̄2/(mekBθE). Calculations
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FIG. 1. (Color online) Main panels: Relative intensity T 2
j vs sin2 θ/λ2 (Wilson plot) for a crystal whose atoms all vibrate in (a) harmonic,

(b) Morse, (c) sextic, and (d) 2–4 double-well potentials. The data points were calculated numerically as described in Sec. III. The lines through
the points are fits of the harmonic model for T 2

j . Each set of points and the corresponding fitted line is labeled with a Roman numeral plus
two numbers, which denote the values of h̄2/(mekBθE), 〈u2

iso,j 〉A, and 〈u2
iso,j 〉QH (see text for details). Insets: Schematics of the potentials, with

energy eigenstates superimposed. For the double-well potential, the ground state has a small tunnel splitting that is barely visible. In the insets,
the ordinate is the energy in units of h̄ω (=kBθE), and the abscissa is the displacement in units of (h̄2/(mekBθE))1/2.

were also done as a function of reduced temperature T/θE ,
or the reduced transformation temperature T/Tc, so that the
temperature evolution of 〈u2

iso,j 〉QH and 〈u2
iso,j 〉A could be

compared.

IV. ANHARMONIC RATTLING MODES

Figure 1 shows the calculated intensity (T 2
j ) versus

sin2 θ/λ2 for crystals whose atoms all vibrate in (a) harmonic,
(b) Morse, (c) sextic, and (d) 2–4 double-well potentials. The
insets show schematics of the potentials, with the energy
eigenstates superimposed. Table I lists their equations. For
the Morse potential, we assume a well depth of γ = 60, which
corresponds to the onset of bond dissociation at T/θE ≈ 6.
(Dissociation can be considered as roughly equivalent to
melting.) For the double-well potential, we assume a barrier
height of α = 4 separating the minima. As shown later,
this value seems reasonable for rattling modes in particular
crystals.

The points in Fig. 1 show the calculated intensities T 2
j

for a reduced temperature of T/θE = 1. We have assumed a

large lattice parameter, a = 15 Å, and a face-centered-cubic
structure to provide a high density of (hkl) points in Q space.
The maximum value of sin2 θ/λ2 = 1 corresponds to a Bragg
angle of 2θ = 180◦ for a wavelength of λ = 1 Å, and 2θ = 90◦
for λ = 0.71 Å. The former value of λ corresponds to that for
high-resolution neutron diffractometers, whereas the latter is
for Mo Kα radiation. The lines through the points are fits
of the harmonic model, T 2

j = exp(−16π2〈u2
iso,j 〉 sin2 θ/λ2),

in the range 0 � sin2 θ/λ2 � 1 or 0.1 � T 2
j � 1. Each set

of points and the corresponding fitted line is labeled with
a Roman numeral plus two numbers. The numeral denotes
the value of h̄2/(mekBθE): (i) 0.001, (ii) 0.002, (iii) 0.005,
(iv) 0.01, (v) 0.02, (vi) 0.04, and (vii) 0.07 Å2. The quantity
h̄2/(mekBθE) is a measure of the zero point 〈u2

iso,j 〉 and
provides a convenient way to compare atoms with different
masses and characteristic vibrational temperatures. Larger
values of h̄2/(mekBθE) indicate a smaller effective mass
and/or softer interatomic potential. As shown in Fig. 1,
anharmonic effects become more pronounced for larger values
of h̄2/(mekBθE). The values chosen here are representative
of vibrations in a wide range of materials, from elemental
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U [h̄2/(mekBθE) ≈ 0.001 Å2] (Ref. 42) to elemental Cs and
Na (≈0.01 Å2) to the anharmonic rattling of the Al guest in
VAl10 (≈0.07 Å2).41 The two numbers following the Roman
numeral are 〈u2

iso,j 〉A, as calculated numerically from quantum
statistical mechanics, and 〈u2

iso,j 〉QH , as determined by fitting
the harmonic Debye-Waller factor model to the calculated
intensity points in the Wilson plot.

As seen in Fig. 1(a), for a harmonic potential the calculated
intensity points all fall on straight lines, regardless of the
value of h̄2/(mekBθE). Moreover, the values of 〈u2

iso,j 〉QH

and 〈u2
iso,j 〉A agree perfectly. These results verify the self-

consistency of our methods.
For the Morse potential, shown in Fig. 1(b), the points again

fall on straight lines, at least for the temperature considered
here (T/θE = 1). The quasiharmonic values 〈u2

iso,j 〉QH , as
deduced from the slopes of the Wilson plots, agree well with
the anharmonic values 〈u2

iso,j 〉A. Even for h̄2/(mekBθE) =
0.04 Å2, the difference is only 4%. Later we show that
this conclusion also holds for temperatures much closer to
melting.

In the case of a sextic potential, shown in Fig. 1(c), we
begin to see more clearly the effects of the anharmonicity. The
calculated intensity points begin to show scatter, and there is a
slight downward curvature of the Wilson plots. Nonetheless
the values of 〈u2

iso,j 〉QH and 〈u2
iso,j 〉A are quite close: for

h̄2/(mekBθE) = 0.04 and 0.07 Å2, the quasiharmonic values
are only ∼5% and ∼7% too large, respectively. Considering
the strong anharmonicity of the sextic potential, and the large
values of h̄2/(mekBθE), this small error is remarkable. For
smaller values of h̄2/(mekBθE), there is virtually no difference
between 〈u2

iso,j 〉QH and 〈u2
iso,j 〉A.

The situation is much the same for the double-well
potential. The scatter is significant and the downward curvature
clear, particularly for h̄2/(mekBθE) = 0.01 Å2. Yet even for
this case, the harmonic model fits the data fairly well, and the
quasiharmonic value 〈u2

iso,j 〉QH = 0.0422 Å2 is only ∼21%
larger than the 〈u2

iso,j 〉A value. We should note that we
analyzed the double-well potential in exactly the same way
as the harmonic, Morse, and sextic potentials. Specifically, we
determined the values of both 〈u2

iso,j 〉QH and 〈u2
iso,j 〉A using

a single-site model, where the equilibrium atomic position
is assumed to be 〈uj 〉 = 0 with respect to the coordinates
shown in the Fig. 1 insets. Another approach would be to use
a split-site model to account for the multiple minima. Here we
chose the single-site model because this is the only option in
most Rietveld refinement packages.

The scatter in the calculated intensity points, as seen in
Figs. 1(b)–1(d), arises from the anharmonicity of the vibra-
tions. To understand why it is present, one must consider that
after evaluation of the scalar product �Q · �uj and expansion
of the exponents, the terms of Eq. (2) contain products of
the type k4〈u4

iso,j 〉, h2k4l4〈u2
iso,j 〉〈u4

iso,j 〉2, etc. For anharmonic
potentials, these terms cannot be expressed as factors of
(h2 + k2 + l2)n, where n is an integer. The result is that (hkl)
sets which give the same value for sin2 θ/λ2 = (1/4a2)(h2 +
k2 + l2) can give different values for the calculated intensity.
The scatter that we observe in these calculated intensity
points should also appear in measured intensity data. How-
ever, it might be difficult to distinguish this anharmonicity-

caused scatter from the usual scatter in experimental
data.

For harmonic potentials, the terms of the series can
be simplified using 〈u4

iso,j 〉 = 3〈u2
iso,j 〉2, 〈u6

iso,j 〉 = 15〈u2
iso,j 〉3,

〈u8
iso,j 〉 = 105〈u2

iso,j 〉4, etc.43 By making these substitutions,
we find that each term of the series can be written as a factor
of (h2 + k2 + l2)n. As a consequence, any (hkl) set that gives
a particular value for sin2 θ/λ2 also gives the same intensity,
and there is no scatter in the calculated harmonic points.

Figure 2 shows the temperature dependence of 〈u2
iso,j 〉,

plotted in nondimensional form as 〈u2
iso,j 〉mekBθE/h̄2 versus

T/θE , for the same single-particle potentials as in Fig. 1. The
points show values of 〈u2

iso,j 〉QH determined from slopes of
Wilson plots, whereas the curves show values of 〈u2

iso,j 〉A
computed using quantum statistical mechanics. For each
type of potential, there is one curve for 〈u2

iso,j 〉A, regardless

of the value of h̄2/(mekBθE), because of the normalization of
the ordinate. For the harmonic vibration, shown in Fig. 2(a), the
curve and points agree exactly for all temperatures and values
of h̄2/(mekBθE), as we expect. For each anharmonic vibration,
the points deviate from the curve, and the deviation grows
as the value of h̄2/(mekBθE) increases. The differences
between the curves and the points, and between the points
for different values of h̄2/(mekBθE), are due to fitting of
the anharmonic calculated intensities with the harmonic
Debye-Waller model. Specifically, the harmonic model cannot
account for the scatter and curvature that is present in the
Wilson plots.

We should comment briefly on the temperature dependence
of 〈u2

iso,j 〉 for the anharmonic vibrations. Notice that for the
Morse potential, shown in Fig. 2(b), 〈u2

iso,j 〉 increases with
temperature more rapidly than for a harmonic potential. This
behavior is expected for “high-temperature” anharmonicity,
where with increasing vibrational energy (temperature) the
Morse potential widens more rapidly than the harmonic po-
tential. This can be seen in the Fig. 1 insets, where the ordinates
and abscissas are normalized to account for different values
of me and θE . For the sextic vibration, 〈u2

iso,j 〉 increases more
slowly with temperature than for the harmonic vibration. The
reason is that the sextic potential is steep walled and boxlike,
which restricts the atomic displacements compared to the
harmonic potential. This is especially true for higher energies
(temperatures), where the value of 〈u2

iso,j 〉 seems to saturate.
The most interesting temperature dependence belongs to

the double-well potential. At low temperatures, the atom
resides mainly in the split portion of the double well [see
Fig. 1(d) inset]. Because these split lobes have large static
displacement relative to u = 0, the value of 〈u2

iso,j 〉 is large at
low temperatures. The value of 〈u2

iso,j 〉 remains approximately
constant in the range 0 < T/θE < 0.5, due to confinement
to the split region. For T/θE > 0.5, the atom can populate
vibrational states above the split, where there is a higher
probability of being found close to u = 0. Initially this leads to
a decrease in 〈u2

iso,j 〉 in the range 0.5 < T/θE < 2.5. For even
higher temperatures, T/θE > 2.5, the increasing population of
states above the split causes 〈u2

iso,j 〉 to reach a minimum and
eventually increase with temperature in a more usual way.

The insets of Fig. 2 show the temperature dependence of
�〈u2

iso,j 〉/〈u2
iso,j 〉A, where �〈u2

iso,j 〉 = 〈u2
iso,j 〉QH − 〈u2

iso,j 〉A
174105-5
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FIG. 2. (Color online) Temperature dependence of 〈u2
iso,j 〉, plotted as 〈u2

iso,j 〉mekBθE/h̄2 vs T/θE , for a crystal whose atoms all vibrate in (a)
harmonic, (b) Morse, (c) sextic, and (d) 2–4 double-well potentials. The points denote quasiharmonic values 〈u2

iso,j 〉QH that were determined
by fitting the harmonic Debye-Waller model to the calculated intensities, as done in Fig. 1. The curves denote anharmonic values 〈u2

iso,j 〉A

that were computed numerically using quantum statistical mechanics. Inset figures show the temperature dependence of the relative error
�〈u2

iso,j 〉/〈u2
iso,j 〉A for different values of h̄2/(mekBθE). The scatter in �〈u2

iso,j 〉/〈u2
iso,j 〉A, evident for the sextic and double-well potentials, is

an artifact of the scatter in the Wilson plots.

is the error associated with the harmonic analysis of the
anharmonic data. As expected, the error is zero for the
harmonic vibration, but increases as the anharmonicity grows.
Nonetheless, the largest error is only ∼23%, which we
find for the 2–4 double-well potential at low temperatures.
Notice that even for the strong anharmonicity considered
here, the temperature dependence of 〈u2

iso,j 〉QH follows that
of 〈u2

iso,j 〉A.

V. ANHARMONIC VIBRATIONS NEAR SECOND-ORDER
PHASE TRANSITIONS

Near a second-order structural phase transition, the tem-
perature dependence of the Gibbs free energy can be

approximated using a 2–4 Landau potential,44

G(T ) = G0 + 1
2a(T − Tc)u2 + 1

4Bu4, (3)

where G0 is the free energy of the high-symmetry phase (in the
absence of vibrations), Tc is the phase-transition temperature,
and a and B are coefficients of the harmonic and quartic
terms. Here we assume that all parameters are temperature
independent. Within the Landau framework, the transition is
modeled using a single-particle potential, with a temperature-
dependent harmonic term to account for the long-range elastic
interactions that are associated with the transformation. In
Eq. (3), we have already assumed that the order parameter
η corresponds to the average displacement 〈u〉 for atoms or
groups of atoms located at particular Wyckoff sites. This is
a standard assumption for displacive-type transformations.43
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FIG. 3. (Color online) Temperature dependence of 〈u2
iso,j 〉 in

the vicinity of a second-order displacive transition, plotted as
〈u2

iso,j 〉mekBθE/h̄2 vs T/Tc. The effective single-site potential is
modeled using a 2–4 Landau potential with Tc/θE = 1 and a′ = 3
and 10 (see Table I). The curves show values of 〈u2

iso,j 〉A, whereas
the points show values of 〈u2

iso,j 〉QH for h̄2/mekBθE = 0.01 Å2 and
0.07 Å2. Notice that for a′ = 10, some of the 0.01 and 0.07 Å2 points
overlap. The insets are schematics of the 2–4 Landau potential for
T/Tc = 1 and T/Tc = 1.2 (a′ = 10). In the insets, the ordinate is the
energy in units of h̄ω (= kBθE), and the abscissa is the displacement
in units of (h̄2/(mekBθE))1/2.

In this case, Eq. (3) is equivalent to a single-site potential for
the atoms undergoing displacement. Then by analogy with the
2–4 double well (see Table I), we can rewrite Eq. (3) as

G(T ) = G0 + 1

2
a′ T − Tc

θE

(
kBθEme

h̄2

)
kBθEu2

+ 1

4

(
kBθEme

h̄2

)2

kBθEu4, (4)

where a′ is a constant and the other parameters have already
been defined.

Figure 3 shows the temperature dependence of 〈u2
iso,j 〉 for

the single-particle potential of Eq. (4), plotted nondimension-
ally as 〈u2

iso,j 〉mekBθE/h̄2 vs T/Tc. Here we show results for
a relative transition temperature of Tc/θE = 1 and harmonic
term coefficients of a′ = 3 and 10. For both values of a′, we
performed calculations assuming h̄2/mekBθE = 0.01 Å2 and
h̄2/mekBθE = 0.07 Å2. The latter case represents a particularly
small effective mass and/or soft interatomic potential, where
anharmonic effects should be most evident. It is important to
note that we obtained results comparable to those shown in
Fig. 3 by using a wide range of Tc/θE , a′, and h̄2/mekBθE

values.
The curves in Fig. 3 show anharmonic values 〈u2

iso,j 〉A,
whereas the points show quasiharmonic values 〈u2

iso,j 〉QH .
For particular values of Tc/θE and a′, there is one curve

for 〈u2
iso,j 〉A regardless of the value of h̄2/mekBθE . As seen

in the figure, 〈u2
iso,j 〉 increases as the temperature decreases

toward T = Tc. The reason is that the harmonic contribution
to the potential becomes softer, and hence the potential well
becomes progressively wider, until at T = Tc the harmonic
term disappears and the potential is purely quartic. This trend
is seen in the Fig. 3 insets. Despite the increased anharmonicity
at lower temperatures, the values of 〈u2

iso,j 〉QH and 〈u2
iso,j 〉A

agree closely. Even for h̄2/mekBθE = 0.07 Å2, the relative
error �〈u2

iso,j 〉/〈u2
iso,j 〉A is only 6% at T/Tc = 1. The small

error is not surprising, given that the Landau potential has
similar anharmonicity to the sextic and double-well potentials
considered in Sec. IV. Based on this analysis, together with the
rattling-mode analyses in the previous section, we can safely
assume that 〈u2

iso,j 〉QH ≈ 〈u2
iso,j 〉A in the vicinity of most phase

transitions.
Below Tc, the crystal distorts from the high-symmetry

structure into a lower-symmetry one. For these temperatures, it
is perhaps more correct to measure 〈u2

iso,j 〉 relative to the new
Wyckoff sites of the low-symmetry (distorted) phase. If we
instead continue to describe the atomic position in terms of the
high-symmetry phase, then the values of 〈u2

iso,j 〉 will continue
to increase as the temperature decreases below Tc. This result
is shown in Fig. 3. In this case, there are two contributions to
〈u2

iso,j 〉: one associated with the static atomic displacements
(e.g., movement of the equilibrium atomic position away from
〈uj 〉 = 0), and one associated with the dynamic displacements
of the vibration.

VI. COMPARISON WITH EXPERIMENTAL DATA

In the preceding sections, we showed that the MSAD for
an anharmonic vibration, 〈u2

iso,j 〉A, is well approximated using
the quasiharmonic value, 〈u2

iso,j 〉QH . To demonstrate this, we
assumed various single-particle anharmonic potentials and
calculated 〈u2

iso,j 〉A and 〈u2
iso,j 〉QH for each model. In this

section, we present 〈u2
iso,j 〉 versus temperature data for a

particular atom in two different crystals. These data suggest
that both atoms vibrate with strong anharmonicity. Moreover,
we show that one atom is well described using a sextic
anharmonic model, whereas the other is described using a
double-well model.

Figure 4 shows the temperature dependence of 〈u2
iso,j 〉

for the Al guest atom in VAl10.1, and for the Eu guest in
Eu8Ga16Ge30. The data for VAl10.1 are our own,41 whereas the
data for Eu8Ga16Ge30 were obtained from Ref. 4. For both
materials, the values of 〈u2

iso,j 〉 were determined via Rietveld
refinement of neutron-diffraction data, using a single-site
crystallographic model for the guest atom and the harmonic
and isotropic model for the temperature factor. In terms of
the notation defined in this paper, these MSAD values are
quasiharmonic, 〈u2

iso,j 〉QH .
The structures of both VAl10.1 and Eu8Ga16Ge30 are

characterized by a network of polyhedral cages, each of which
can accommodate one guest atom.4,41 The cages are oversized
compared to the guests, and the guests undergo low frequency
(h̄ω ∼ 2–5 meV) and large amplitude vibrations that are often
described as “rattling.” Studies have suggested that many, but
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FIG. 4. (Color online) Temperature dependence of 〈u2
iso,j 〉 for the

Eu rattling atom in Eu8Ga16Ge30 and the Al rattling atom in VAl10.1.
The data points are experimental values of 〈u2

iso,j 〉QH obtained from
Refs. 4 and 41. The dashed curves were calculated using the harmonic
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solid curves were computed using sextic and 2–4 double-well models
for the indicated parameter values. Note the break in the ordinate
axis.

not all, rattling modes have strong anharmonicity.4,11,41,45–48

To investigate the anharmonicity of the guest vibrations in
VAl10.1 and Eu8Ga16Ge30, we first calculated the expected
temperature dependence of 〈u2

iso,j 〉 assuming that the rattling is
harmonic and dispersionless. The results of these calculations
are shown by the dashed curves in Fig. 4. Here we used
the free-atom masses together with the literature values of
θE = 21 K for VAl10.1 and θE = 30 K for Eu8Ga16Ge30,
which were determined from low-temperature heat-capacity
measurements.4,41 As seen in Fig. 4, the harmonic model
cannot reproduce the temperature dependence of 〈u2

iso,j 〉 for
the rattling atoms.

The solid curves in Fig. 4 show the temperature dependence
of 〈u2

iso,j 〉A, calculated using a sextic potential with m = mAl

and θE = 27 K for the Al rattler, and using a 2–4 double-well
potential with m = mEu, θE = 22 K, and α = 8 for the Eu
rattler. For these calculations, we included a temperature-
independent term 〈u2

iso,j 〉0, so that 〈u2
iso,j 〉A = 〈u2

iso,j 〉0 +∑
n pn〈�n|u2|�n〉. This term accounts for systematic errors

in the experimental data and Rietveld refinement.42 As shown
in the figure, the data for the Al rattler are well described
by the calculated curve. For the Eu rattler, the scatter in the
data and the larger error bars tend to blur the details of the
temperature dependence. Nonetheless, we can see that the data
are generally independent of temperature, and this behavior is
reproduced by the double-well model. Our assumption of a
multiple-well potential for Eu is supported by nuclear density
maps developed from single-crystal neutron diffraction,4 and
by Mossbauer and microwave absorption experiments.49 The
maps indicate that for temperatures near 40 K, the Eu nuclear
density splits into four crystallographically equivalent sites,
each displaced symmetrically from the original site by about

∼0.4 Å. The Mossbauer and microwave measurements show
direct experimental evidence for Eu tunneling between the four
sites.

The agreement between our calculations and experimental
data supports our conclusion in Secs. IV and V, namely,
that the harmonic temperature factor can virtually always
be used to deduce reliable thermal parameters, even for the
case of strong anharmonicity. Furthermore, it suggests that
anharmonic potentials similar to those assumed in Sec. IV do
occur in nature. We should recognize, however, that these
simple potentials are probably only rough approximations
for the true rattling atom potentials. Most likely, the good
agreement between the data and the curves points to the
insensitivity of 〈u2

iso,j 〉 to the details of the potentials.
With regard to phase transitions, it is well known from

experiment that 〈u2
iso,j 〉 for the displacing atom(s) usually

increases as temperature decreases toward Tc. The observed
behavior is usually similar to that shown in Fig. 4. This temper-
ature dependence was the subject of numerous experimental
and theoretical studies during the 1970s and 1980s.20,21,23,50,51

We will not discuss these data here. Based on the analyses
presented in Secs. V and IV, we can safely conclude that
〈u2

iso,j 〉QH and 〈u2
iso,j 〉A are nearly equal in the vicinity of a

phase transformation.

VII. SUMMARY AND CONCLUSIONS

In the structural refinement of diffraction data, one nor-
mally uses the harmonic temperature factor, e.g., Tj =
exp(−8π2〈u2

iso,j 〉 sin2 θ/λ2), to deduce values for the mean-
square atomic displacements 〈u2

iso,j 〉. For most materials,
as well as temperature, pressure, and field conditions, the
phonons have small anharmonicity, so use of the harmonic
model is justified. For some materials and conditions, however,
particular atoms may vibrate with strong anharmonicity. In this
case, we expect the harmonic model to give erroneous values of
〈u2

iso,j 〉. Examples include “rattling atoms” in particular crystal
structures,4,11,18,41 atoms that are displaced in the vicinity of a
continuous phase transition,20,21,23,50,51 and atoms in a crystal
that is close to its melting point.30 For these cases, a rigorously
correct analysis requires an anharmonic expression for Tj that
is based on statistics or on a single-particle model of the
anharmonic vibration.

Our present results show that the value and temperature de-
pendence of 〈u2

iso,j 〉 can be determined accurately by analyzing
diffraction data in terms of the harmonic temperature (Debye-
Waller) factor, regardless of the anharmonicity of the vibration.
We demonstrated this by calculating Bragg intensities for
various anharmonic model crystals, and then analyzing these
calculated intensities in terms of the harmonic Debye-Waller
factor to deduce quasiharmonic values 〈u2

iso,j 〉QH . These
values were then compared to the anharmonic values 〈u2

iso,j 〉A
that we calculated using quantum statistical mechanics. We
found that even for strongly anharmonic potentials and for
extreme low and high temperatures, the quasiharmonic values
are in error by at most 25%. Moreover, the temperature
dependences of 〈u2

iso,j 〉QH and 〈u2
iso,j 〉A track closely. This

latter result is especially relevant to the interpretation of
temperature-dependent phenomena. It is important to stress
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that for these analyses, we used model anharmonic crystals
that represented a worst-case scenario where every site in the
structure was characterized by large vibrational anharmonic-
ity. For real crystals, where only a small fraction of sites
have strong anharmonicity, we expect the errors to be even
smaller.
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