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Magnetic-field induced inequivalent vortex zero modes in strained graphene
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Zero energy states in the Dirac spectrum with U(1) symmetric massive vortices of various underlying
insulating orders in strained graphene are constructed in the presence of the magnetic field. An easy-plane
vortex of antiferromagnet and quantum spin Hall orders host two zero energy states, however, with two different
length scales. Such inequivalent zero modes can lead to oscillatory charge and magnetization, and their usual
quantizations get restored only far from the vortex core. Otherwise, these zero modes can be delocalized from
each other by tuning the mutual strength of two fields. One can, therefore, effectively bind a single zero mode in
the vortex core. A possible experimental setup to capture signature of this theory in real graphene as well as in
optical honeycomb lattices is mentioned. Generalization of this scenario with underlying topological defects of
Kekulé superconductors can localize a single Majorana mode in the vicinity of the defect core.
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I. INTRODUCTION

The existence of states at precise zero energy in the
spectrum of a relativistically invariant Dirac equation with
underlying topological defects1 recently attracted ample in-
terest following the successful fabrication of graphene. The
extent of the spectrum over the positive and the negative
energies provides robustness to such states at the middle of
the spectrum against weak local perturbations. The number
of zero energy states, however, depends only on the universal
properties: total magnetic flux enclosed by the system,2 kink
of the mass,3 and the vorticity of a massive vortex.1 For
example, a half-filled Landau level at zero energy leads
to the formation of Hall plateaus at fillings ν = ±2.4 The
existence of zero energy modes can lead to fractionalization of
quantum numbers, e.g., charge,5 Majorana modes in the core
of the superconducting vortex6 or half-vortex7 and additional
competing order parameters in the core of the vortex.8,9 The
Kosterlitz-Thouless (KT) scaling of longitudinal resistivity
(Rxx) in neutral graphene strongly suggests the possibility
of vortex excitations in graphene subject to the magnetic
fields.10 Vortex-zero modes in the Dirac spectrum can exist
in the presence of either real or pseudomagnetic fields.11

The nature of the electronic ground state in the presence of
a fictitious gauge field lately gained attention following the
experimental realization of the strain induced fields.12–14 In
the presence of uniform real (B) and pseudo- (b) magnetic
fields, quantized Hall conductivity in graphene is expected
to discern plateaus at all integer values of e2/h, however,
at noninteger fillings when the former is kept stronger. The
plateau of Hall conductivity with σxy = e2/h can be formed
by developing a ferrimagnet order due to distinct degeneracies
of two interpenetrating relativistic Landau levels living in the
vicinity of two inequivalent Dirac points. Otherwise, their
degeneracies are proportional to the effective gauge fields near
the Dirac points B ± b, respectively.15

A fundamental question is, therefore, raised: Does the
vortex like defect have any zero energy modes when graphene
is subject to both the real and the pseudomagnetic fields?
Deposition of graphene on a metallic substrate at relatively
high temperatures, followed by cooling, produces a strain

induced pseudo- (axial) magnetic field due to the mismatch
in compressibility with the substrate.12 This system can then
be placed in a real magnetic field. Recently, a hexagonal
honeycomb lattice has been realized in an optical lattice system
(OLS).16 One can, therefore, study the proposed scenario in
honeycomb OLSs as well. In the OLS, a magnetic field is
introduced via synthetic gauge potentials, and its strength
can be varied over a wide range.17 On the other hand, a
pseudomagnetic field can arise from specific modulations of
the nearest-neighbor hopping (NNH) amplitudes only.13,14,18,19

In graphene possible candidates with requisite U(1) symme-
try are antiferromagnet (AF), Quantum spin Hall (QSH) orders
projected onto the easy plane and the Kekulé bond density
wave (KBDW). The former two can acquire an easy plane in
the magnetic field due to the Zeeman coupling.20 Otherwise,
AF and QSH phases are energetically favored by strong on-
site22 and second-neighbor repulsions, respectively.23 KBDW
can be stabilized by electron-phonon interactions.24 However,
a QSH phase can be realized even at sufficiently weak
next-neighbor repulsion when a fictitious magnetic field
penetrates graphene.14,18 Immaterial of the vortex nature of
Dirac quasiparticles, we find that there are always two zero
energy modes. However, categorically two different situations
arise: When the underlying order parameters do not couple
two inequivalent Dirac points, e.g., AF and QSH orders, zero
energy modes have two different characteristic lengths. With
underlying KBDW order, two zero energy modes differ from
the ones in the absence of pseudofields only by an overall
factor, hence, enjoy a unique length scale. In the former
situation, we show that the zero modes can be delocalized
from each other arbitrarily by tuning the relative strength of
the fields only. The present mechanism can, therefore, allow
one to localize a single zero mode near, while pushing the other
one far from, the vortex core. The charge and the magnetization
then exhibit oscillatory behavior, while restoring their usual
quantization only at long distances. A previous study shows
that in the absence of gauge fields the zero energy modes have
the same decay lengths, hence, exact quantization is restored
everywhere.25 Additionally, if there exists a half-skyrmion
of AF order, however weak, which otherwise splits the zero
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modes if uniform, maximally lowers the energy by filling the
state with shorter length scale. The zero energy states can
be computed exactly if the fields are uniform, although they
always exist for any arbitrary flux profile and/or shape of the
vortex mass. Tuning the strength of the synthetic gauge fields
and/or modulated NNH, thereby of pseudomagnetic fields,
one can grasp peculiarities of these zero modes on honeycomb
OLSs.

The rest of paper is organized as follows. In the next section,
we write down the free Dirac Hamiltonian subject to both
real and pseudomagnetic fields and mention the single-particle
Landau-level spectrum. Existence of zero energy modes in the
presence of an underlying vortex with easy-plane AF order is
discussed in Sec. III. Robustness of the zero modes against
any modulation of the field and/or the vortex mass profile is
presented in Sec. IV. Section V is devoted to study the internal
structure of the two-dimensional zero energy manifold and
various competing orders in the core of the vortex. Midgap
states with underlying vortices of easy-plane QSH order and
KBDW order are, respectively, considered in Secs. VI and
VII. Concluding remarks and a discussion on related issues
are presented in Sec. VIII.

II. FREE HAMILTONIAN WITH REAL AND
PSEUDOMAGNETIC FIELDS

To describe the massless, chiral Dirac fermionic
excitations around the two inequivalent corners
of the Brillouin zone, suitably chosen at �K1 =
− �K2 = (1,1/

√
3)(2π/a

√
3),26 we construct an

eight-component spinor �(�x) = [�↑(�x),�↓(�x)]�, with
��

σ (�x) = [u†
1σ (�x),v†

1σ (�x),u†
2σ (�x),v†

2σ (�x)]. σ =↑ , ↓ stands for
electron-spin projection along the z-direction and

Yiσ (�x) =
∫ � d �p

(2πa)2
e−i �p·�xYiσ [(−1)i+1 �K + �p]. (1)

Y = u,v are the electron annihilation operators on sub-
lattices A and B, respectively. In this representation, the
relativistically invariant Hamiltonian takes the form HD =
I2 ⊗ iγ0γip̂i . The four-component mutually anticommuting
Hermitian γ -matrices belong to the graphene represen-
tation γ0 = I2 ⊗ σ3, γ1 = σ3 ⊗ σ2, γ2 = I2 ⊗ σ1, γ3 = σ1 ⊗
σ2, and γ5 = σ2 ⊗ σ2. Here, (I2,�σ ) are the standard Pauli
matrices. The chiral Uc(4) symmetry of HD is generated by
(I2,�σ ) ⊗ (I4,γ3,γ5,iγ3γ5).22 Three generators of rotation of
electron spin are �S = �σ ⊗ I4.

The free Dirac Hamiltonian in the presence of both real
(Ai) and pseudo- (ai) gauge potentials reads27

HD[A,a] = I2 ⊗ iγ0γi(p̂i − Ai − iγ3γ5ai). (2)

The real (pseudo-) magnetic field breaks (preserves) the
time-reversal symmetry (TRS), represented by It = σ2K ⊗
iγ1γ5K in the graphene representation and K is the com-
plex conjugate22,28 but preserves (breaks) chiral symmetry
(CS). Separately, both real and pseudomagnetic fields quench
the linear spectrum of Dirac quasiparticles into a set of
Landau levels at well-separated energies ±√

2nB(b) with
n = 0,1,2, . . ., and degeneracies �2πB(b), where � is the
area of the sample. However, the states in zeroth Landau level

near two Dirac points reside on the complimentary and same
sublattices, respectively. The distinct natures of the zeroth
Landau level can lead to different broken symmetry phases
near and at the charge-neutrality point.13,14 On the other hand,
in the presence of a real as well as a pseudomagnetic field,
the spectrum of the Dirac quasiparticle is composed of two
inequivalent interpenetrating sets of Landau levels at energies
±√

2n|B ± b| with degeneracies �π |B ± b|, respectively,
residing in the vicinity of two Dirac points.29 Next, we consider
vortex defects of various underlying U(1) symmetric-order
parameters in graphene, subject to real and pseudomagnetic
fields and study the zero energy modes bound to them.

III. VORTEX WITH EASY-PLANE ANTIFERROMAGNET
ORDER

The on-site Hubbard repulsion is the strongest interaction in
graphene30 and favors AF order at neutral filling if sufficiently
strong.31 Hence, we consider a uniform background of electron
density and staggered magnetization. Therefore, after keeping
the only relevant term, the on-site Hubbard interaction reads
as

HU = − U

16
[ �f ( �A) − �f ( �A + �b)]2. (3)

Here, �f ( �X) = c†σ ( �X)�σσσ ′cσ ′ ( �X) is the average magnetiza-
tion on sublattice X = A,B, defined in terms of cσ =
uσ ( �A),vσ ( �B), respectively. The effective single-particle
Hamiltonian in a fixed Néel background is

HN [A,a] = HD[A,a] − [ �N (�x) · �σ ] ⊗ γ0, (4)

where �N = 〈 �f ( �A) − �f ( �A + �b)〉 �= 0.25,32 In the absence of
gauge fields, a constant Néel order �N (�x) = �N leads to a gapped
spectrum for the relativistic quasiparticles E = ±

√
k2 + |N |2,

and the order parameter ( �N) breaks the CS.22 In the presence
of real magnetic fields, a finite Néel order shifts the Landau
levels at finite energies to ±√

2nB + N2 with degeneracies
2πB, whereas, the zeroth Landau level gets split to ±|N |
with degeneracy πB, per unit area.20 Next, we assume
N3(�x) = 0 and N1(�x) + iN2(�x) = |	(r)|eipφ, p = ±1: vortex
configuration.33 Here, we use a rotationally invariant represen-
tation of spinor �σ (�x). Thus, the choice of the easy plane is
arbitrary and does not affect the outcomes.

In the absence of gauge fields, there exist two zero energy
modes in the spectrum of HN [0,0].25 Neither HD[A,a] nor γ0

mixes two inequivalent Dirac points, hence, HN [A,a] is block
diagonal in the valley index. One can, therefore, cast HN [A,a]
as H1 ⊕ H2 by exchanging the second and third 2 × 2 blocks.
Both H1 and H2, however, are unitarily equivalent to a generic
Dirac Hamiltonian with mass vortex in the presence of different
effective magnetic fields,

H = H0(At ) + N1(�x)iγ0γ3 + N2(�x)iγ0γ5, (5)

where H0(At ) = iγ0γi(−i∂i − At
i). Specifically, H1 =

U
†
1HU1 with U1 = I2 ⊕ iσ2 and At

i = Ai + ai , whereas,
H2 = U

†
2HU2 with U2 = iσ2 ⊕ I2 and At

i = Ai − ai .15

Therefore, the effective single-particle Hamiltonian with a
vortex for the easy plane of the Néel vector is equivalent to
two copies of the Dirac Hamiltonian with a twisted mass
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(vortex), introduced by Jackiw and Rossi1 and recently
studied in the context of Kekulé orders in graphene5

but subject to effective magnetic fields.11 These two
copies, however, experience different effective fields.
For example, choosing χA(r) = Br/2 and χa(r) = br/2
so that �A(�r) = χA(r)(ŷ, − x̂) and �a(�r) = χa(r)(ŷ, − x̂)
yields uniform magnetic fields B ± b for H1(2). Since the
pseudomagnetic fields can be produced by deliberately
buckling the graphene flake, it is likely to be nonuniform, in
general. Nevertheless, a previous study always guarantees the
existence of a zero energy mode in the spectrum of H1 and
H2, irrespective of the modulation of the fields and/or vortex
profile.11 Therefore, HN [A,a] ≡ H1 ⊕ H2 always hosts two
zero modes. Encouraged by a recent experiment,12 we can
take the axial field to be uniform. The characteristic lengths
of two zero modes depend on the effective uniform magnetic
fields. Therefore, the zero energy subspace is composed of
two modes with different length scales. Let us consider an
extreme limit B ± b � 	(r) = 	0 (constant). To the leading
order, one can write the localization lengths of the zero modes
as

L± = 1√
B ± b

+ O

(
	2

0

B ± b

)
. (6)

This result physically makes sense since with a weak-order
parameter, to the leading order, magnetic fields determine the
characteristic length scales. Next, we consider a prototype
vortex profile |	(r)| = r	0/R when r < R and 	0 (constant)
when r > R and the fields to be uniform11 and compute the
zero energy modes explicitly and thereby L±.

IV. ZERO MODES IN UNIFORM FIELDS

Before we arrive at the zero modes for the easy-plane Néel
vortex, it is worth studying the zero modes with the Kekulé
mass vortex in the presence of an effective real magnetic field.
Even though this problem has been studied previously,11 it
is worth reviewing the solution for the sake of completeness
of the discussion. The equations for the zero energy mode
�0(�x) = (u+,v+,u−,v−)� of the massive Dirac Hamiltonian,

H = iγ0γi

(
p̂i − At

i

) + |	(r)|(iγ0γ3 cos φ + iγ0γ5 sin φ),

(7)

with a mass vortex and effective magnetic field reads as

∂rq(r) = −|	(r)|p(r) − χt (r)q(r), (8)

∂rp(r) = −|	(r)|q(r) + χt (r)p(r). (9)

Here, we choose a symmetric gauge �At (�r) = χt (r)(ŷ, − x̂)
and redefine the spinor components as u+(�r) = √

ip(r) and
u−(�r) = √−iq(�r) with v± = 0. The other possibility with
u± = 0, does not lead to a normalizable zero energy state as in
the absence of fields.5,25 For example, assuming a finite field
at the origin, i.e., χ (r) ∝ r , yields v± ∝ 1/r near the origin.
Therefore, v± cannot be normalized. To find the zero modes,
let us define a timelike variable dt = |	(r)|dr as in Ref. 11.
One can then identify the above two equations as the Hamilton
equations, previously argued in Ref. 11 for the canonical
momentum (p(r)) and position (q(r)). The corresponding

time-varying classical Lagrangian,

−L(q,q̇,t) = 1

2
q̇2 + ζ t (t)

2
q2 + 1

2

d

dt
[f t (t)q2] (10)

describes the motion of a classical particle in a repulsive
harmonic potential (up to a total time derivative) ζ t (t) = 1 +
f t (t)2 − ḟ t (t), where f t (t) = χt (t)/|	(t)|. In the presence
of magnetic fields, the potential gets steeper with time,
otherwise, it remains static. In the mechanical analogy, one
may understand the zero energy mode as the trajectory of
a particle starting far from the origin with the right amount
of energy so that it reaches the origin with zero velocity at
infinite time. Since the particle with sufficiently large (small)
initial energy flies (goes back) to negative (positive) infinity,
continuity of solutions, therefore, guarantees the existence of
the zero energy mode in the spectrum H in Eq. (7).

The vortex Hamiltonian with the easy-plane components
of the Néel order, subject to magnetic fields, is shown
to be unitarily equivalent to two copies of H in Eq. (7),
namely, H1 ⊕ H2. However, χt (r) = χA(r) + χa(r) for H1

and χt (r) = χA(r) − χa(r) for H2. Here, χA(r) and χa(r) are
the vector potentials of the real and the pseudomagnetic fields,
respectively. The above-mentioned mechanical analogy of the
zero modes ensures the existence of two zero energy states,
irrespective of the field and the vortex profile.11

Next, we consider χt (r) = (B ± b)r/2 for H1(2), respec-
tively. Therefore, the effective fields read as Beff = (∂r +
1/r)χt (r), yielding Beff = B + b ≡ B+ for H1 and B − b ≡
B− for H2. Let us take the vortex configuration as in Ref. 11.
|	(r)| = 	0r/R for r < R (vortex core) and 	0 for r > R.
For r � R, the components of two zero modes, say �1,0 and
�2,0, are

q<
± (r) = C±

1 er2/L2
± + C±

2 e−r2/L2
± , (11)

and canonical momentum p(r) = ∂L(q,q̇,t)/∂q̇ is

p<
±(r) = −2Rr

	0L
2±

[
C±

1 er2/L2
± − C±

2 e−r2/L2
±
]
. (12)

Here, ± corresponds to the zero eigenstates of H1(2), respec-
tively. C±

i are constants, and L± are the characteristic lengths
of the zero modes,

L−4
± = 1

4

(
	2

0

R2
+ (B ± b)2

4

)
. (13)

Whereas, far from the core of the vortex (r > R),

q>
± (r) = C3e

−[(B±b)r2]/4F

(
3|δ| + 1 − δ

4|δ| ;
3

2
;

(B ± b)r2

2

)
,

(14)

when δ = B/2	2
0 < 1. On the other hand, for δ > 1,

q>
± (r) = C3e

−[(B±b)r2]/4F

(
2δ + 1

4δ
;

3

2
;

(B ± b)r2

2

)
, (15)

where F is the hypergeometric function.11,34 For r > R, dt =
	0dr , yielding

p>
±(r) = −(1/	0) [∂q>

± (r)/∂r]. (16)

Continuity implies that the value and the first derivative of the
solutions in two regions must match at r = R, which eliminate
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two out of the three constants, whereas, the remaining one is
fixed by the normalization condition. Equation (13) reflects
that two zero energy modes have different characteristic
lengths. Otherwise, two zero modes of HN [A,a] are

�1,0 = U
†
1 (p+,0,q+,0)�(B+), (17)

�2,0 = U
†
2 (p−,0,q−,0)�(B−), (18)

where U1 = I2 ⊕ iσ2 and U2 = iσ2 ⊕ I2. Note �1,0 and �2,0

are the functions of the effective fields B + b and B − b,
respectively. In the following discussion, we show how the
existence of two length scales yields various peculiarities.
However, the following discussion is insensitive to the exact
form of L±.

V. INTERNAL STRUCTURE OF THE ZERO MODES

In the presence of real and pseudomagnetic fields, the zero
energy eigenstates of H1 and H2 are

�1,0 = (u1↑,v1↑,u1↓,v1↓)� =
√

i[p+(r),0,0, − iq+(r)]�,

(19)

and

�2,0 = (u2↑,v2↑,u2↓,v2↓)� =
√

i[0,p−(r), − iq−(r),0]�,

(20)

respectively. q±(r) and p±(r) have been computed exactly in
uniform fields with the above-mentioned profile of the vortex
mass. Typically, the characteristic length for �1,0 is smaller
than that for �2,0, for example, L± in Eq. (13). Consequently,
the former is squeezed into the vortex core.

The magnetization within the zero energy subspace is

HZ = λ(σ3 ⊗ I2) ⊕ (σ3 ⊗ I2), (21)

proportional to the Zeeman term. λ = gB(�x) and g ≈ 2 for
electrons in graphene. In the absence of fields, p±(r) =
q±(r) = exp[− ∫ r

0 |	(z)|dz]. Each of the states then possesses
zero magnetization everywhere in the space.25 In the presence
of fields, the radial dependences of q(r) and p(r) are different,
in general. Therefore, the zero modes can exhibit finite but
oscillatory magnetization, shown in the inset of Fig. 1. The
overall net magnetization is still zero for each state, and zero
energy subspace remains unperturbed. Such a local magnetic
moment can be probed by magnetic force microscope (MFM)
measurements. Replacing the vortex by an antivortex simply
exchanges the role of u and v components. For b > B, �1,0

remains invariant, but the role of q−(r) and p−(r) is exchanged
in �2,0. This limit seems quite conceivable since, in the
experiment, b ∼ 350 T,12 but the highest laboratory magnetic
field is ∼45 T.

Two zero energy modes �1 = (�1,0,0) and �2 = (0,�2,0)
comprise a two-dimensional basis in the zero energy manifold
(H0). Any operator that commutes or anticommutes with
HN [A,a] leaves that space invariant. When a = 0, there
are four matrices falling in the second category, namely
(σ3 ⊗ γ0,I2 ⊗ iγ0γ3,I2 ⊗ iγ0γ5,σ3 ⊗ iγ1γ2), which together,
close a Cl(3) × U (1) algebra.8,35 σ3 ⊗ γ0 is the z-component
of the Néel order, and the remaining members of the Cl(3)
group correspond to the KBDW. The U(1) part is generated by
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FIG. 1. (Color online) Energy (E/N3) as a function of mag-
netic length (LB/a) with B(r) = B and N3(r) = N3 for r � R,
zero elsewhere. The vortex configuration is 	(r) = 	0 for r � R,
otherwise, zero. We set R = 5 Å and 	0 = 30 eV. Inset: Absolute
magnetization (|M/m3|) as a function distance (in Å) from the center
for LB = 40 Å ∼ 1/

√
B.

σ3 ⊗ iγ1γ2, representing the third component of the spin-triplet
version of the time-reversal symmetry-breaking order.23 When
the pseudomagnetic field is finite, the KBDW orders no longer
anticommute with HD[A,a]. Nevertheless, the expectations
value of all four orders come only from H0. The expectation
value of any physical observable is

〈m(�x)〉 = 1

2

(∑
occup

−
∑
empty

)
�

†
E(�x)M�E(�x), (22)

where M is the traceless matrix and {�E(�x)} is the set of
eigenstates with eigenvalues E of a generic Hamiltonian. The
existence of a unitary matrix T , which commutes with M while
anticommuting with the Hamiltonian, restricts the above sum
within H0.25,36 Choosing T = σ3 ⊗ γ0, which anticommutes
with HN [A,a], one finds that the expectation value of either
M = σ3 ⊗ γ0 or σ3 ⊗ iγ1γ2 is solely determined by �i,0’s. For
M = I2 × iγ0γ5 or I2 × iγ0γ5 or any linear combination, one
can choose T = σ3 ⊗ iγ1γ2. Therefore, the AF and QSH as
well as the KBDW orders acquire their expectation values only
from the zero energy subspace.

When the Néel vector is tilted out of the easy plane (N3 �=
0), the zero energy manifold gets split since N3〈�†

i,0(σ3 ⊗
γ0)�j,0〉 = ±N3δij .25 Therefore, at half-filling, a finite N3

keeps only one of the zero energy states occupied while
leaving the other one empty. On the other hand, if the Néel
order forms a half-skyrmion, �i,0’s are no longer degenerate.
If |N3(�r)| � 	0, one can neglect the mixing of zero modes
with the rest of the spectrum. The energy is then maximally
lowered by filling the state with smaller characteristic length
(L+). The physical reason: N3(�x) is finite in the core of the
vortex and smoothly vanishes toward the boundary. Out of the
two states, the one with the smaller length scale experiences
a larger overlap with the out-of-plane component of the Néel
order and, therefore, being filled lowers the energy maximally.
The effective magnetic fields for �1,0 and �2,0 are B + b and
|B − b|, respectively. The characteristic length is smaller for
�1,0. Hence, state �1,0 is occupied in the presence of a weak
half-skyrmion or meron configuration of �N . This feature is
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independent of specific configuration of field or vortex or N3.
Nevertheless, energy as a function of magnetic length for a
chosen vortex profile, N3 and the fields is shown in Fig. 1.

VI. EASY-PLANE QUANTUM SPIN HALL VORTEX

If, on the other hand, repulsion among the fermions living
on the second-neighbor sites of the honeycomb lattice is suffi-
ciently strong, a QSH order ( �C = 〈∑σ �†

σ [�σ ⊗ iγ1γ2]�σ 〉 �=
0) can be realized in graphene. It breaks the TRS for each spin
component and corresponds to circulating currents among the
sites of the same sublattice.23 However, the QSH phase can
be realized even at infinitesimal next-nearest-neighbor inter-
actions in the presence of finite pseudomagnetic fields.13–15,18

The single-particle Hamiltonian with an underlying QSH order
reads as

HC[A,a] = HD[A,a] − [ �C(�x) · �σ ] ⊗ iγ1γ2. (23)

Alike AF, the QSH order is also block diagonal in the valley
index and can be projected onto the easy plane by a finite
Zeeman coupling.33 Otherwise, Ni → (−1)j+1Ci for Hj with
i,j = 1,2.32 The two zero energy modes are the following:
�1,0 remains unchanged, while p−(r) ↔ q−(r) in �2,0. Within
H0, the members of the Cl(3) algebra are (σ3 ⊗ γ0,σ3 ⊗
iγ0γ3,σ3 ⊗ iγ0γ5). The last two entries correspond to the
z-component of the spin-triplet KBDW. The U(1) component
is formed by σ3 ⊗ iγ1γ2. A finite third component of the
QSH order (C3) can be developed in the core by making the
vortex charged since it acts like an identity operator in H0. An
out-of-plane component of the Néel order splitsH0. Therefore,
on-site Hubbard repulsion (U) can lift the degeneracy of the
zero energy subspace by developing a finite N3 in the core of
the vortex.

It is worth confirming that all four mass orders, constituting
the Cl(3) × U(1) algebra, acquire their expectation values
from H0, even though some of the members do not anticom-
mute with the Hamiltonian upon imposing an axial magnetic
field. If we select M = σ3 ⊗ γ0 or σ3 ⊗ iγ1γ2, one can choose
T = σ3 ⊗ γ0. And for M = σ3 ⊗ iγ0γ3 or σ3 ⊗ iγ0γ5, one can
again choose T = σ3 ⊗ iγ1γ2, same as before.

VII. KEKULÉ VORTEX

In contrast to the AF and QSH orders, the KBDW couples
two inequivalent Dirac points and breaks the translational
symmetry of the lattice into the Kekulé pattern.5,7 In the pres-
ence of gauge fields, the effective single-particle Hamiltonian
HK [A,a] with an underlying vortex of KBDW order is

HD[A,a] − mrI2 ⊗ iγ0(γ3 cos φ + γ5 sin φ) ≡ UHK [A,0]U,

(24)

where U = exp[−ρ(�x)(I2 ⊗ γ0)]. mr counts the radial varia-
tion of the vortex profile. I2 ⊗ γ0 anticommutes with HK [A,0]
and acts like an identity matrix in H0. The zero energy states
in the presence of the pseudofield, therefore, differ from the
one in its absence by a factor exp[ρ(�x)], where b = εij ∂iaj =
∂2ρ(�x).37 However, two zero modes are identical for each
spin component and have equal characteristic lengths. The
explicit form of the zero modes without the pseudofields can
be computed simply by setting b = 0 in the previous exercises.

The exclusive members of the Cl(3) algebra of the masses
are �N = (�σ ⊗ γ0), three components of the Néel vector,
whereas, that of the U(1) part is I2 ⊗ γ0: charge-density wave
order. The Zeeman coupling λ(σ3 ⊗ I4) is proportional to
N3 within H0, thus, may develop its finite expectation value
by splitting H0. On the other hand, a charge-density wave
order can be developed inside the core of the vortex if it is
charged. Contrary to the previous examples, all four orders
anticommute with the Hamiltonian HK [A,a] even when an
axial field is present. One can choose T = I2 ⊗ γ0 for all
four order parameters. Hence, their expectation values can be
computed only from the zero energy states.

VIII. SUMMARY AND DISCUSSIONS

To summarize, we find that, in the presence of real and
pseudomagnetic fields, all the U(1) symmetric orders in
graphene can host two zero modes with underlying vortex
defects. However, two zero modes can have either one or
two characteristic lengths, depending on the nature of the
underlying insulating orders. We show that, if the underlying
order parameter couples two inequivalent Dirac points, two
zero modes have the same characteristic length, whereas, with
translational symmetric order parameters, zero modes enjoy
different length scales. The existence of two zero modes leads
to additional competing order parameters in the core of the
vortex. These order parameters together close a Cl(3) × U(1)
algebra, and their expectation values always arise only from
zero energy subspace. When the midgap states have different
length scales, e.g., with underlying AF and QSH orders, charge
is continuous and oscillatory; the overall neutrality of the
system is preserved only far from the vortex core. Midgap
states with identical length scales do not lead to any excess
charge anywhere in the space. The excess local charge can
be measured by a scanning tunnel microscope (STM) probe.
It can, therefore, also serve the purpose of litmus test to
determine the possible broken translational symmetry in the
system. Zero modes with different scales can be delocalized
from each other by tuning the relative strength of two magnetic
fields, thereby keeping a single state in the core. For example,
when B ≈ b, �1,0 is highly localized near the vortex core.
However, �2,0 ≈ exp (−∫ r

0 |	(t)|dt) experiences effectively
zero field, therefore, exists even beyond the vortex core.
Moreover, if B,b � 	0/R, q+(r) is localized very close to
the vortex core, and p+(r) ∼ (B + b)R/	0q+(r) � q+(r).11

A finite magnetization, therefore, persists beyond the vortex
core and points opposite to that in the core. Net magnetization
is still zero.

Besides the insulating orders, one can also consider the
underlying vortex of various superconducting orders (SCOs)
in graphene. Aside from the Kekulé superconductors, the rests,
e.g., s-wave or f -wave SCOs, couple two inequivalent Dirac
points and may not host Majorana modes.6,38 However, a
Kekulé SCO with topological defects, e.g., vortex or half-
vortex can lead to Majorana modes.7 Those MMs are valley
polarized. Hence, in the presence of real and pseudomagnetic
fields, the Majorana modes experience different effective
magnetic fields. Therefore, by adjusting the relative strength
of the fields, one can localize one of the Majorana modes
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within the vortex core, while the other one can be pushed
outside. Binding of a single Majorana mode can also be useful
for quantum computations. Otherwise, the existence of zero
modes in the presence of vortices can lead to KT scaling of
the longitudinal resistivity (Rxx) in a neutral graphene (ν = 0),
subject to real and pseudomagnetic fields.15 Zero modes with
different length scales can also be found in the spectrum
of a birefringent Dirac fermion with a kinked staggered
chemical potential.39 In a recent paper,40 authors considered
dual vortices: a vortex in the birefringent parameter as well as

the standard mass vortex. Under that circumstance, vortex and
antivortex zero modes decay with different length scales.
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V. Juričić, and O. Vafek, ibid. 80, 075432 (2009); B. Roy, ibid. 84,
113404 (2011).

23F. D. M. Haldane, Phys. Rev. Lett. 61, 2015 (1988); S. Raghu, X.-L.
Qi, C. Honerkamp, and S.-C. Zhang, ibid. 100, 156401 (2008).

24K. Nomura, S. Ryu, and D.-H. Lee, Phys. Rev. Lett. 103, 216801
(2009); C. Y. Hou, C. Chamon, and C. Mudry, Phys. Rev. B 81,
075427 (2010).

25I. F. Herbut, Phys. Rev. Lett. 99, 206404 (2007).
26G. W. Semenoff, Phys. Rev. Lett. 53, 2449 (1984).
27A general SU(2) pseudogauge potential is ai = γ3a

3
i + γ5a

5
i +

iγ3γ5a
35
i .15 However, smoothly deformed graphene flake does not

break the translational symmetry,12 generated by I2 ⊗ iγ3γ5.22 The
first two entries couple two Dirac points and break the translational
symmetry. Thus, we set a3

i = a5
i = 0 and a35

i ≡ ai .
28K. Gotfried and T.-M. Yan, Quantum Mechanics: Fundamentals,

2nd ed. (Springer, Berlin, 2004).
29B. J. Claessens, S. B. van der Geer, E. J. D. Vredenbregt, and O. J.

Luiten, Phys. Rev. Lett. 95, 164801 (2005).
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