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Unified picture of cantilever frequency shift measurements of magnetic resonance
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We report a unified framework describing all existing protocols for spin manipulation and signal creation in
frequency-modulation magnetic resonance force microscopy using classical perturbation theory. The framework
is well suited for studying the dependence of the frequency shift on the cantilever amplitude via numerical
simulation. We demonstrate the formalism by recovering an exact result for a single spin signal and by simulating,
for the first time as a function of cantilever amplitude, the frequency shift due to a volume of noninteracting spins
inverted by an adiabatic rapid passage. We show that an optimal cantilever amplitude exists that maximizes the
signal. Our findings suggest that understanding the amplitude dependence of the spin signal will be important for
designing future high-sensitivity experiments.

DOI: 10.1103/PhysRevB.85.165447 PACS number(s): 76.60.−k, 76.30.−v, 07.79.Pk

I. INTRODUCTION

Magnetic resonance force microscopy1–5 has achieved
proton imaging at a resolution of 4 nm,6 competitive with
cryoelectron tomography7,8 and ion-abrasion scanning elec-
tron microscopy.9 The mechanical detection and imaging
of electron spin resonance (ESR) from single defects in
silica has been demonstrated;10 recent advances suggest the
feasibility of mapping the locations of individual nitroxide-
based electron-spin labels in order to determine the ter-
tiary structure of single biomolecules and macromolecular
complexes.11–14 The mechanical detection of ferromagnetic
resonance15–21 offers exciting possibilities for spectroscopi-
cally probing spin relaxation, interlayer coupling, and local
internal fields in individual magnetic nanostructures. For
many of these applications, detection of magnetic reso-
nance as a spin-induced modulation of the eigenfrequency
of a microcantilever offers many advantages. A number
of seemingly disparate approaches to frequency-modulation
magnetic resonance force microscopy (FM-MRFM) have
been demonstrated experimentally10,11,22–32 and considered
theoretically.33–43 The goals of this paper are to (1) unify
the theoretical descriptions of these approaches into a single
semiclassical formalism well suited for numerical calculations
and (2) lift the small-cantilever-amplitude approximation
limiting prior treatments of FM-MRFM. We demonstrate our
signal-calculation approach by numerically calculating the
FM-MRFM signal from an extended object and showing
that the magnetic resonance signal is maximized at a finite
cantilever amplitude.

In this paper we consider three FM-MRFM spin-
manipulation and signal creation protocols. Each of these
approaches places different requirements on the length of
the sample’s relaxation times (T1ρ , the spin-lattice relaxation
time in the rotating frame, and T1 � T1ρ , the spin-lattice
relaxation time in the laboratory frame) relative to the
cantilever period (T = 1/f , with f the cantilever resonance
frequency). The first protocol considered here is the oscillating
cantilever-driven adiabatic reversals or OSCAR protocol. In
this protocol the cantilever frequency shift arises from a
time-dependent, cantilever-synchronized force created by spin
inversions induced jointly via the continuous application of
microwaves or radiowaves and a modulated local field created

by the oscillating cantilever. This protocol requires T1ρ � T

and has been used to detect both ESR10,22,23,30 and NMR.25

The second protocol considered here is the cantilever-enabled
readout of magnetization inversion transients or CERMIT
protocol, in which a modulation of spin magnetization is
induced by a short burst of microwaves or radiowaves and the
resulting change in the force gradient acting on the cantilever
tip shifts the cantilever’s resonance frequency. The method
has been used to detect NMR24,28 and ESR11,32 and requires
only T1 � T . A final set of FM-MRFM protocols considered
here are those based on force gradients and cyclic saturation
of sample magnetization, applicable to fast-relaxing spins
with T1 � T and used so far to detect ESR.26,27,29,31 These
frequency-shift experiments are not obviously related; here
we show that all three classes of experiments can nevertheless
be described by a single unified formalism.

The need for the new formalism is clear. Unifying the
description of all FM-MRFM signals into a single formalism
paves the way for developing a program for numerically
calculating the signal from an extended object for all possible
frequency-shift experiments. While distinct first-principles
derivations of both the OSCAR33–35,39,43 and the CERMIT
effect11,24 have been reported, existing derivations all as-
sume that the cantilever amplitude is much smaller that
the tip-sample separation. Here we lift this small-amplitude
approximation. Since working at finite cantilever amplitude
is crucially important for optimizing the signal-to-noise ratio
in a cantilever frequency-shift experiment,44 our findings
significantly advance our ability to design and optimize future
experiments.

II. GENERAL ANALYTICAL FORMALISM

Our starting point for unifying the various FM-MRFM
protocols is the following formula, developed by Giessibl45

from Hamilton-Jacobi perturbation theory, for the shift in
the resonance frequency �f of a cantilever arising from a
time-dependent force acting on the cantilever tip:

�f = − f

kq 2
pk

〈 �Fon tip · �q 〉
T
. (1)
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FIG. 1. Frequency-modulation magnetic resonance force mi-
croscopy of slowly relaxing spins. Schematic illustration of
(a) the “hangdown” cantilever geometry, showing the cantilever with
a magnetic tip and a spin buried in the extended sample, (b) the
interrupted OSCAR spin manipulation and signal creation protocol,
and (c) the CERMIT protocol.

Here f is the cantilever’s resonance frequency, k is the
cantilever’s spring constant, �q = q̂ q(t) is the tip position
with q̂ the unit vector parallel to the direction of can-
tilever oscillation and q(t) = qpk sin(2πf t), and �Fon tip is
the time-dependent force acting on the tip. In Eq. (1), 〈 〉T
represents the temporal average taken over a single period of
oscillation.

III. SINGLE-SPIN FREQUENCY-SHIFT SIGNALS IN
THE SMALL-AMPLITUDE LIMIT

Let us begin by using Eq. (1) to describe the interrupted
OSCAR, CERMIT, and cyclic saturation experiments in the
limit where the cantilever amplitude is smaller than the
tip-sample separation. We model the specific experimental
configurations sketched in Figs. 1 and 2. The interrupted
OSCAR experiment sketched in Figs. 1(a) and 1(b) is identical
to the experiments of Refs. 10, 23, 25, and 30. The magnet-on-
cantilever CERMIT experiment sketch in Figs. 1(a) and 1(c) is
conceptually identical to the sample-on-cantilever CERMIT
experiment of Ref. 28; the formalism developed below is

FIG. 2. Frequency-modulation magnetic resonance force mi-
croscopy of fast-relaxing spins. Schematic illustration of (a) the
cantilever geometry and (b) the first-harmonic spin manipulation and
signal creation protocol via cyclic saturation with φ = 0 [see Eq. (10)
and text].

easily modified to encompass the experiments of Refs. 11, 24,
and 32 in which the field is applied in other orientations.
The specific cyclic saturation experiment sketched in Fig. 2 is
conceptually identical to the sample-on-cantilever experiments
of Refs. 26, 27, and 29.

In the experiments of Figs. 1 and 2 we assume for simplicity
that a uniform external magnetic field is applied along the z

axis and that this external field is much larger than the tip field
at any spin site in the sample. Within these approximations,
the force of interaction between spins and the magnetic tip is
given by

− �Fon tip = �Fon spin = �∇( �mspin · �Btip) � mz
spin

�∇Bz
tip. (2)

Consequently,

�Fon tip(t) · �q (t) � −mz
spin(t) �∇Bz

tip(�r − �q (t)) · �q (t)

=−mz
spin(t)

∂Bz
tip

∂q
(�r − q̂ q(t)) q(t), (3)

with �r the spin location relative to the center of the tip at
equilibrium, �q = 0. Below we use Eqs. (1) and (3) to calculate
the frequency shift expected from a CERMIT experiment
carried out on an extended object and examine the dependence
of the calculated signal on cantilever amplitude. Previous
descriptions of FM-MRFM experiments follow from these
equations in the limit that the cantilever amplitude goes to
zero. Expanding ∂Bz

tip/∂q in Eq. (3) in a Taylor series about
�q = 0 yields, to first order,

�Fon tip · �q ≈ −mz
spin(t)

{
∂Bz

tip

∂q
(�r) − q(t)

∂2Bz
tip

∂q2 (�r)

}
q(t), (4)

where we have used the approximation that the cantilever
amplitude is small compared to the tip-spin separation,
|q(t)| 	 ‖�r‖. The zero-order term in the series is force related
while the first-order term is force-gradient related. What is
learned from this development is that the cantilever frequency
shift in general depends on both the force and the force
gradient, the two terms arising from a Taylor expansion of
the underlying exact results of Eqs. (1) and (3).

To calculate the frequency shift in the three FM-MRFM
experiments of Figs. 1 and 2, it remains to enumerate the
exact spin-modulation protocols used in each method. In
the interrupted OSCAR experiment of Figs. 1(a) and 1(b)
the sample magnetization is modulated during a cantilever
period T as follows:

mz
spin =

⎧⎪⎨
⎪⎩

lock antilock duration

−μ +μ 0 � t < T/2,

+μ −μ T/2 � t < T ,

(5)

where μ is the spin magnetic moment, decaying with a time
constant T1ρ . In order to compute the signal, let us assume that
T 	 T1ρ , so that mz

spin(t + T ) = mz
spin(t). Inserting Eq. (5)

into Eq. (4), inserting the result into Eq. (1), and taking the
temporal average gives

�fOSCAR =∓ 2f μ

πkxpk

∂Bz
tip

∂x
(�r)

{
lock

antilock

}
, (6)

where we have used q(t) = xpk sin(2πf t). This result agrees
with the result asserted by Mamin et al. in Ref. 23 and derived
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from first principles by Berman et al. in Ref. 43. Only the
force-based term in Eq. (4) survives in the OSCAR protocol.

In the CERMIT experiment, Figs. 1(a) and 1(c), the
magnetization immediately following the application of the
oscillating magnetic field is

mz
spin(t) = μ, (7)

decaying with a time constant T1 which we assume is much
longer than T . Substituting Eq. (7) into Eq. (4), inserting the
result into Eq. (1), and taking the temporal average gives

�fCERMIT = −f μ

2k

∂2Bz
tip

∂x2 (�r). (8)

This result is equivalent to the result presented by Garner et al.
in Ref. 24. Only the force gradient–based term in Eq. (4)
survives in the CERMIT protocol.

In the cyclic-saturation protocol of Fig. 2, the strength
of the microwave field is modulated between B lo

1 and Bhi
1

every cantilever half period. Assuming T1 	 T , the magnetic
moment is given by

mz
spin(t) =

{
A(z − q(t))�zMz

B lo
1
, 0 � t < T/2

A(z − q(t))�zMz

Bhi
1
, T /2 � t < T ,

(9)

where A is the area of spins in resonance, �z is the thickness
of the resonant shell, Mz

B lo
1

is the spin magnetization in

the (microwaves-off) fully polarized state, and Mz

Bhi
1

is the
spin magnetization in the (microwaves-on) saturated state.
The cantilever displacement in Fig. 2 is given by q(t) =
zpk sin(2πf t − φ) so that the spin magnetization is modulated
with a phase of φ with respect to the cantilever oscillation.
Inserting Eq. (9) into Eq. (4) ultimately yields

�fcyc sat = −f �z

k

{
− cos φ

δMz A

π zpk

∂Bz
tip

∂z
(�r)

+ �Mz

4

∂A

∂z

∂Bz
tip

∂z
(�r) + �Mz A

4

∂2Bz
tip

∂z2
(�r)

+
(

cos 3φ

3
− 3 cos φ

)
δMz zpk

4π

∂A

∂z

∂2Bz
tip

∂z2
(�r)

}
,

(10)

with δMz = Mz

B lo
1

− Mz

Bhi
1

and �Mz = Mz

B lo
1

+ Mz

Bhi
1

. We con-

clude that both the force and force gradient terms in Eq. (4)
survive the cyclic saturation protocol. The first term in
Eq. (10) dominates in the limit of strong microwaves and
A/zpk � ∂A/∂z, which holds true when the microwaves are
in resonance with spins in the middle of a comparatively
homogeneous sample. The first term in Eq. (10) is the result
derived by Lee et al. in Ref. 29 with φ = 0. The second
and third terms in Eq. (10) contribute to the signal as long
as the microwaves are on, whether unmodulated as in the
experiment of Ref. 26 or modulated anharmonically as in the
experiment of Ref. 31. It is notable that the second term in
Eq. (10) contributes to the signal only when microwaves are in
resonance with spins at the surface of a thin-filmed spin sample
where ∂A/∂z becomes large. The fourth term in Eq. (10) is
negligible when zpk is much smaller than the magnet diameter,

which has been the case in all cyclic-saturation FM-MRFM
experiments carried out to date.

IV. SINGLE-SPIN FREQUENCY-SHIFT CERMIT SIGNAL
IN THE FINITE-AMPLITUDE LIMIT

So far we have shown that Eqs. (6), (8), and (10) all
follow from Eq. (1) in the small-cantilever-amplitude limit.
Optimizing the signal-to-noise ratio in an FM-MRFM exper-
iment, however, demands carrying out experiments at finite
cantilever amplitude. There are several ways that one might
imagine deriving the full cantilever-amplitude dependence of
the FM-MRFM signal. One way would be to start with the
equations of motion for the cantilever-spin system and directly
integrate them. Although this would successfully capture the
relevant result, it would be difficult, time consuming, and error
prone. A better approach is to numerically integrate in Eq. (1),
as we now show.

Let us illustrate using Eq. (1) to numerically compute
the signal in an FM-MRFM experiment by calculating the
signal in a CERMIT experiment carried out at finite cantilever
amplitude on both single-spin and extended samples. For a
single spin located directly below the tip, �r = (0,0,z) and the
necessary integration can be carried out analytically. For a
spherical tip in the geometry of Fig. 1(a), the integration of
Eq. (1) involves only the x component of the force. For a spin
directly below the tip, the x component of the force is given by

Fon tip,x = −μ
∂Bz

tip

∂x
(11)

= −μμ0Mtipa
3 x(t)3 − 4z2x(t)

[z2 + x(t)2]7/2
(12)

with x(t) = −xpk cos(2πf t), a the tip radius, and Mtip the tip
magnetization. Inserting Eq. (12) into Eq. (1) and carrying
out the resulting integral, we find

�f = − f

2kxpk

μμ0Mtip

a

(
a

z

)4

I

(
z

xpk

)
, (13)

where

I (Z) = Z3

3π (Z2 + 1)3

{
4(2Z4 − 7Z2 − 1) E

(
− 1

Z2

)

− 8(Z4 − 1)K

(
− 1

Z2

)}
(14)

with K(m) and E(m) the complete elliptic integrals of the
first and second kind, respectively, and Z = z/xpk the ratio of
the tip-sample separation to the tip amplitude.5

In the limit that the tip amplitude goes to zero, xpk → 0 and
x−1

pk I (z/xpk) → −4/z + O(x2
pk). To leading order

�f ≈ f

2k

4μμ0Mtipa
3

z5
, (15)

which agrees with Eq. (8), taking Bz
tip for a spherical tip. So

although Eq. (12) involves the first derivative of the tip field
∂Bz

tip/∂x, according to Eqs. (8) and (15) the frequency shift is
proportional to the second derivative of the tip field ∂2Bz

tip/∂x2

at small amplitude.
Let us consider adjusting the radius of the magnetic tip

to optimize the CERMIT signal. Take z = h + a, with h the
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tip-sample separation, and let d = 0 for simplicity. Optimizing
�f in Eq. (15) with respect to a yields aopt = 3h/2 for the opti-
mal tip radius in a small-amplitude force-gradient experiment.
This result differs from the optimal tip radius of aopt = 3h

derived by Sidles et al.4 for a force-based experiment.
In an experiment, however, one must optimize not the signal

but the signal-to-noise ratio (SNR). Because the frequency
noise decreases with increasing cantilever amplitude, to
optimize the SNR in a single-spin experiment we need to
calculate the signal using Eq. (13). Let us assume that the
frequency noise is thermally limited, with a power spectrum
given by44,46

P th
δf = kbT

π2kx2
pkτ0

, (16)

with kb Boltzmann’s constant, T temperature, and τ0 the
cantilever ring-down time. The SNR is

SNR�f = �f(
P th

δf b
)1/2 , (17)

with b the measurement bandwidth. Let us convert the
frequency shift to an effective spring constant using �k =
2k�f/f . Substituting Eq. (16) into Eq. (17) yields

SNR�f = f

2k

(
π2kτ0

kbT b

)1/2

�k xpk︸ ︷︷ ︸
�Feff

. (18)

The underbraced term is an effective force. The effective
force associated with the single-spin frequency-shift signal
of Eq. (13) is

�Feff = −μμ0Mtip

a

(
a

z

)4

I

(
z

xpk

)
. (19)

We find that �Feff , and therefore SNR�f , is optimized at
x

opt
pk = 0.47z and aopt = 3h. The effective force is plotted in

Fig. 3 as a function of xpk and a for a nickel tip (μ0Mtip =
0.6 T) interacting with a single electron at a tip-sample
separation of h = 25 nm. Interestingly, the radius which
optimizes the SNR in a force-gradient experiment is 3h and
not 3h/2.

In the following section we calculate the frequency-shift
signal for various experiments. As above, we present our
results in terms of an effective force �Feff = �kxpk. The
signal presented in this way is independent of cantilever spring
constant and frequency. Moreover, optimizing �Feff (not �f )
will maximize the signal-to-noise ratio.

V. NUMERICAL CALCULATIONS

The frequency shift due to a spin located at an arbitrary
location �r = (x,y,z) is computed by substituting x(t) = x −
xpk cos(2πf t) in the tip-field derivative in Eq. (11). The
resulting Eq. (1) integral can be expressed in terms of an
integral over an angle variable θ :

�f = − f

2πkx2
pk

∫ +π

−π

μ(x,y,z,θ )

×∂Bz
tip(x − xpk cos θ,y,z)

∂x
xpk cos θ dθ. (20)

FIG. 3. Plot of the Eq. (19) effective force on a cantilever from a
single spin located at a distance h = 25 nm below the surface of the
cantilever’s spherical nickel tip. The central plot presents contours of
constant effective force, �Feff = �kxpk, as a function of tip radius a

and cantilever amplitude xpk. The contours range from �k xpk = 1 to
25 aN in steps of 3 aN. Slices through the effective-force surface are
shown in the upper plot and right plot for xpk = 47 nm and a = 75 nm,
respectively. The slice positions are indicated by dashed lines in the
contour plot (left).

This integral must be computed numerically and summed
over all spins in the sample. In the cantilever-synchronized
OSCAR and cyclic-saturation FM-MRFM protocols, the spin
magnetic moment μ depends parametrically on cantilever
position through the local magnetic field. In all of the numerical
calculations discussed below, the integral in Eq. (20) was
approximated using 41 points and the trapezoid rule.

To begin, a numerical calculation was carried out for a
single electron spin located at �r = (0,0,75 nm) directly below
a spherical nickel tip of radius a = 50 nm and magnetization
μ0Mtip = 0.6 T. The calculated single-electron CERMIT
signal is plotted as a function of the cantilever amplitude on the
left-hand axis of Fig. 4. The calculated frequency-shift signal
is expressed as an effective force. The numerical result agrees
with the exact analytical result of Eqs. (13) and (19) to within
a relative error of better than 1 part in 105, indicating that our
simulation code is performing as expected.

Numerical calculations of the CERMIT signal were next
carried out for an extended sample chosen to mimic the
nitroxide radical sample of Ref. 11. Sample magnetization
density was computed using the Curie law, assuming a spin
density of ρ = 2.41 × 1025 m−3, a sample temperature of
T = 4.2 K, an electron g-factor of g = 2.00572 (the average
g value of tempamine47), and a polarizing field of 0.62 T.
The sample had dimensions Lx = 1 μm, Ly = 1 μm, Lz =
0.25 μm, and was approximated by a grid with the following
numbers of points in each dimension: Nx = 300, Ny = 550,
and Nz = 80. When summing Eq. (20) over spins in the
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sample, only one half of the y dimension was contained
in the sample mesh; the full-scale signal was recovered by
scaling the simulated signal by 2. A spherical magnetic tip with
radius a = 25 nm and magnetization μ0Mtip = 0.6 T located
at h = 25 nm was used. Bloch equations with T1 = 1 ms and
T2 = 0.45 μs were used to calculate μ as a function of the tip
field, longitudinal applied field B0, and the applied transverse
microwave magnetic field amplitude B1 and frequency fMW.

In this simulation we first assume that the sample spins
are flipped via adiabatic rapid passage before the cantilever
motion is initiated; in this case, μ in Eq. (20) is time
independent. Immediately following the frequency-chirped
microwave pulse, we assume that the cantilever is driven
to a large amplitude, for instance by a voltage pulse to a
nearby wire. The difference between the cantilever’s spring
constant before and after the microwave pulse will be the
signal. Carrying out the numerical experiment in this way
allows us to independently adjust the cantilever amplitude and
the volume of spins contributing to the signal in order to isolate
and understand the dependence of the frequency-shift signal
on the cantilever amplitude.

The CERMIT signal was computed for two distributions or
“sensitive slices” of inverted spin magnetization created by a
frequency-chirped microwave pulse. The slices were created
by applying an adiabatic rapid passage of center frequency
fMW = 17.5 GHz and width �B = 1 mT = 28 MHz/γe in an
external field of B0 = 0.6973 T and 0.6710 T for slice 1 and
slice 2, respectively. The sensitive slices are plotted to scale
in the inset of Fig. 4, where shading has been used to indicate
spins whose magnetization changed by 5% or more due to
the rapid passage, �μ/μinitial � 0.05. Slice 1 was chosen to
give a signal analogous to the “local peak” of Ref. 11; the
apparent slice radius, measured from the front edge of the
magnet, is r = 53.7 nm and the slice depth, measured from

FIG. 4. Numerical simulation of frequency-shift CERMIT mag-
netic resonance signals using Eq. (20), with spins flipped prior to
cantilever motion via an adiabatic frequency sweep. Left axis: Exact
analytic result [solid line; Eq. (19)] and a numerical simulation
(open diamonds) of the signal from a single electron spin located
25 nm directly below the magnetic tip’s front edge. Right axis:
Numerically simulated electron spin resonance signal from two
sensitive slices of inverted magnetization (inset) from a semi-infinite
sample of a 40-mM nitroxide radical at T = 4.2 K in resonance with
17.5-GHz microwaves. Simulation parameters: tip radius a = 50 nm,
tip magnetization μ0Mtip = 0.6 T, and tip-sample separation h = 25;
sample parameters are given in the text.

the sample surface to the upper edge of the slice, was d =
25.3 nm. Slice 2 had a radius of r = 84.0 nm and a depth of
d = 53.8 nm.

The calculated CERMIT signal for the two slices is plotted
as a function of the cantilever amplitude on the right-hand
axis of Fig. 4. The signal from slice 1 (solid circles) reaches
a maximum at xpk = 65 nm, whereas the signal from slice
2 (solid triangles) reaches a maximum at xpk = 100 nm.
Interestingly, the slice 2 signal is smaller than the slice 1
signal at small amplitudes but becomes larger than the slice
1 signal at large cantilever amplitudes, xpk � 45 nm. These
results establish that the CERMIT signal is optimized at a

(a)

(b) (c)

(d) (e)

FIG. 5. Numerical simulation of frequency-shift CERMIT mag-
netic resonance signals using Eq. (20). Spins were flipped via contin-
uous application of fixed-frequency microwaves during cantilever
motion. (a) Electron-spin resonance signal simulated at selected
cantilever amplitudes. The solid line is a guide to the eye. (b–e)
Scale diagrams of the simulated sensitive slices for four cantilever
amplitudes indicated by unfilled circles in (a): xpk = 42, 163, 197,
and 296 nm. The overhanging nickel magnet is shown as a white
rectangle and the silicon body of the cantilever as a dotted rectangle,
the sample film is colored light gray, and the sensitive slice is colored
black as in Fig. 4. The arrow indicates the cantilever’s position at
either extrema of its motion. See text for simulation parameters.
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finite cantilever amplitude which is proportional to, but not
exactly equal to, the effective radius of the sensitive slice.

Using adiabatic rapid passage to invert the electron-
spin magnetization of a nitroxide radical is experimentally
challenging because of the hardware required to deliver a
frequency-chirped pulse and because of the large-amplitude
(B1 � 0.1 mT) transverse magnetic field needed to maintain
the adiabatic condition. Moore et al. have demonstrated using
spin saturation to create a large CERMIT signal.11 In their
experiment, large regions of saturated magnetization were
created below the cantilever tip using the time-dependent local
field provided by the moving cantilever in conjunction with
irradiation by fixed-frequency small-amplitude (B1 ∼ μT)
microwaves. We have used Eq. (20) to simulate the cantilever
frequency shift in such an experiment.

The simulation assumed the cantilever-sample geometry of
Fig. 1(a). The external polarizing field was, however, applied
along the y axis as in the experiments of Refs. 11, 12, and 24
rather than along the z axis as depicted in Fig. 1. The magnetic
field below the tip was calculated by modeling the tip as
a uniformly magnetized nickel prism having magnetization
μ0Mtip = 0.6 T and dimensions lx = 78 nm, ly = 78 nm,
and lz = 1478 nm. The sample had dimensions Lx = 2.5 μm,
Ly = 1.25 μm, and Lz = 0.23 μm and was approximated by
a grid with the following number of points in each dimension:
Nx = 1320, Ny = 330, and Nz = 95. A tip-sample separation
of h = 91 nm was used. To calculate spin magnetization,
we set fMW = 17.6 GHz, B0 = 0.6287 T, and B1 = 0.3 μT.
These simulation parameters were chosen to mimic the
experiment of Ref. 12.

The simulated signal as a function of cantilever amplitude
xpk is shown in Fig. 5(a). In contrast with the results of
Fig. 4, at low amplitude the signal rises supralinearly as xpk is
increased. This rise is accounted for by considering the change
in the volume of saturated spins that results from increasing
the cantilever amplitude. As in Fig. 4, the signal reaches
a maximum as xpk increases, but now the signal changes
sign at large amplitude. To understand this new behavior, it
is helpful to consider the scale diagrams of the cantilever
and spin magnetization shown in Figs. 5(b)–5(e). When the
cantilever amplitude is smaller than the inner radius r inner

slice of
the sensitive slice, as in Figs. 5(b) and 5(c), the effective
force is negative and there is a net outward force on the
cantilever. As the cantilever amplitude is increased, Fig. 5(d),
the effective force reaches a peak of �kxpk = −144.9 aN at
an amplitude of xpk = 197 nm, which is just slightly less

than r inner
slice = 211 nm. As the cantilever amplitude is further

increased the net force decreases because of cancellation
between regions of positive and negative ∂2B

y
tip/∂x2, until

at xpk = 280 nm the effective force becomes zero and
xpk ≈ r inner

slice . With the cantilever amplitude increased to xpk =
296 nm, as in Fig. 5(e), xpk > r inner

slice and the signal becomes
positive. The effective force continues to be positive and grows
nearly linearly until the largest simulated cantilever amplitude
of xpk = 330 nm.

Comparing the results of Figs. 4 and 5(a), we see that the
peaking of the signal at finite cantilever amplitude is a general
feature of the CERMIT signal. The behavior of the signal
at small and large cantilever amplitudes, however, is quite
sensitive to the spin-modulation details.

VI. CONCLUSIONS

We have presented a unified treatment of three distinct
frequency-modulation MRFM protocols. The formalism re-
lieves the finite-cantilever-amplitude approximation limiting
previous descriptions of FM-MRFM experiments and is well
adapted for numerical calculations. We have used the new
formalism to numerically compute the signal for both single
spin and extended samples. These simulations demonstrate
that the signal in a CERMIT experiment is optimized at a finite
cantilever amplitude. Although we have only simulated CER-
MIT experiments, we believe this to be a general finding and
that any FM-MRFM protocol will produce a peak frequency
shift at a finite cantilever amplitude. Experimental evidence
of this expectation for interrupted OSCAR can be seen in
the experiments described in Ref. 25, where signal magnitude
versus cantilever amplitude curves were measured and were
qualitatively similar to those shown in Fig. 4. This finding, in
combination with the general result of Eq. (20), will be useful
in designing and optimizing MRFM experiments including
virus-scale proton imaging6 and proposed single-electron-spin
MRFM experiments on spin-labeled biomolecules.11–14
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