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Unraveling the acoustic electron-phonon interaction in graphene
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Using a first-principles approach we calculate the electron-phonon couplings in graphene for the transverse
and longitudinal acoustic phonons. Analytic forms of the coupling matrix elements valid in the long-wavelength
limit are found to give an almost quantitative description of the first-principles matrix elements even at shorter
wavelengths. Using the analytic forms of the coupling matrix elements, we study the acoustic phonon-limited
carrier mobility and quasiparticle lifetime observable in photoemission spectroscopy for temperatures 0–200 K
and high carrier densities of 1012–1013 cm−2. We find that the intrinsic effective acoustic deformation potential of
graphene is �eff = 6.8 eV and that the temperature dependence of the mobility μ ∼ T −α in the Bloch-Grüneisen
regime increases beyond an α = 4 dependence even in the absence of screening when the true coupling matrix
elements are considered. The α > 4 temperature dependence of the mobility is found to originate in a similar
temperature dependence of the relaxation time at the Fermi level. The large disagreement between our calculated
deformation potential and those extracted from experimental measurements (18–29 eV) indicates that additional
or modified acoustic phonon-scattering mechanisms are at play in experimental situations.
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I. INTRODUCTION

Since the experimental realization of graphene,1 its elec-
tronic properties and their understanding have been studied
extensively both experimentally and theoretically.2–4 While the
intrinsic carrier mobility of graphene is predicted to be excep-
tionally high, the experimental reality in substrate supported
graphene involving charged impurities, electron-hole puddles,
surface-optical phonons of the substrate, and disorder typically
results in strongly reduced mobilities compared to the expected
intrinsic value.5,6 Together with scattering on acoustic phonons
which manifests itself in a linear temperature dependence of
the mobility at higher temperatures, these extrinsic scattering
mechanisms typically dominate the mobility in graphene
samples.

The linear temperature dependence characteristic for acous-
tic phonon scattering has so far been observed in both
supported5,7–10 and suspended11 graphene samples. With the
recent improvements in sample fabrication, the relative role
of acoustic phonon scattering must be expected to become
increasingly important in future devices. For example, samples
with the commonly used SiO2 substrate replaced by hexagonal
boron nitride (h-BN) which has a lattice constant very close
to that of graphene and an almost atomically flat surface with
strongly reduced disorder,12,13 have shown highly improved
transport characteristics with mobilities approaching that of
suspended graphene.8,14,15 Furthermore, the high energy of
the surface-optical phonons of h-BN results in a significant
reduction of surface-optical phonon scattering16–18 that for
commonly used gate oxides starts to dominate the mobility
around T ∼ 150–200 K.5,7

When the mobility is dominated by acoustic phonon scatter-
ing, two transport regimes separated by the Bloch-Grüneisen
(BG) temperature TBG = 2h̄kF cph/kB can be identified.19

Here, kF is the Fermi wave vector, cph the sound velocity, and
kB the Boltzmann constant (TBG ∼ 57 K

√
n for the longitudi-

nal acoustic phonon with the two-dimensional carrier density
n measured in units of 1012 cm−2). Below the BG temperature
which corresponds to the acoustic phonon energy h̄ωq = h̄cphq

for full backscattering at the Fermi level, short-wavelength
acoustic phonons are frozen out restricting scattering processes
to small scattering angles. The restricted phase space available
for phonon scattering at T < TBG results in a transition from
the linear ρ ∼ T high-temperature behavior of the resistivity
to a stronger ρ ∼ T α temperature dependence in the BG
regime where α = 4 (α = 6) in the absence (presence) of
screening by the carriers themselves.20,21 The BG behavior
in the temperature dependence of the mobility (resistivity) has
recently been observed experimentally.9

As the resistivity is intimately connected to the lifetime
of the electronic quasiparticles at the Fermi level, a similar
BG behavior in the temperature dependence of the quasi-
particle lifetime is expected. The lifetime of the electronic
carriers in graphene can be probed with, e.g., angle-resolved
photoemission spectroscopy (ARPES) which provides de-
tailed information about the dominating decay mechanisms
of quasiparticles.22–24 Unlike transport measurements, this
technique can probe quasiparticles at energies far away from
the Fermi level. In order to explain experimental ARPES
spectra of graphene, theoretical works have focused on the
role of optical phonons and electron-electron interactions.25–29

However, as demonstrated by transport measurements, there
exist an energy window centered around the Fermi level where
acoustic phonon scattering may dominate, and hence where
BG behavior in the quasiparticle lifetime should be observable.
Indeed, ARPES is often carried out at low temperatures and
high carrier densities where BG physics appears.22,23

Existing theoretical20,21 and experimental5,7–9,11 studies
of acoustic phonon-limited transport in graphene often
parametrize the interaction with acoustic phonons in terms
of a coupling to a single effective acoustic phonon. The
associated deformation potential coupling constant is extracted
from the experimentally measured temperature dependence
of the resistivity and ranges from ∼18 to 29 eV.5,7–9,11 On
the other hand, theoretical studies of the acoustic electron-
phonon coupling yield much lower values on the order of
3.9–7.4 eV.30–32 At the same time, different forms of the
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coupling matrix element are used in theoretical studies20,32

making a direct comparison of the different values of the
deformation potential difficult.

Even though the effect of acoustic phonon scattering on
the transport properties of graphene has been studied widely
in the literature,20,30,31,33–37 a complete study considering the
full details of the coupling matrix element is still lacking. The
purpose of the present study is to fill out this gap and provide
a detailed analysis of the acoustic electron-phonon interaction
in graphene and at the same time establish the intrinsic value
of the effective deformation potential. We shall focus on
supported graphene where flexural phonons are quenched and
hence include only the transverse (TA) and longitudinal (LA)
acoustic phonons. We use a first-principles method to calculate
the electron-phonon interaction38,39 supported by the group-
theoretical considerations of Ref. 40 to derive analytic forms
of the coupling matrix elements. We then study the intrinsic
phonon-limited mobility using a Boltzmann equation approach
and the quasiparticle lifetime in the temperature regime 0–
200 K and for high carrier densities n ∼ 1012–1013 cm−2,
where screening by the carriers suppresses other scattering
mechanisms and BG physics appear. We shall restrict the
discussion to n-doped graphene where the Fermi level resides
in the upper Dirac cone and is given by εF ∼ 11.65

√
n meV

with the carrier density n measured in units of 1010 cm−2.

II. THEORY

In the following, the carriers in graphene are described
by massless Dirac fermions with linear dispersion εk =
h̄vF k, where vF ∼ 1.0 × 106 m/s is the Fermi velocity. The
electronic wave functions are given by χk(r) = 1/

√
Aeik·rχk,

where χk = 1/
√

2 (exp [−iθk/2], exp [iθk/2]) is the two-
component spinor of the atomic A,B sublattices of graphene
and θk is the angle of wave vector k.

Within the Boltzmann equation approach,6,34,41 the mobil-
ity in graphene in the presence of (quasi)elastic scattering
mechanisms is given by

μxx = σxx

ne
= ev2

F 〈τk〉
2

, (1)

where σxx is the conductivity and the density-of-states aver-
aged relaxation time (in units of time per energy) is defined by

〈τk〉 = 1

n

∫
dεkρ(εk)

(
− ∂f

∂εk

)
τk. (2)

Here, ρ(εk) = (gsgv/2πh̄2)εk/v
2
F is the density of states of

the graphene layer and gs = 2 and gv = 2 are the spin and
valley degeneracies, respectively. At low temperatures and
high carrier densities, where εF � kBT , this yields μxx ≈
ev2

F τ
kF

/εF .
In the case of acoustic phonon scattering which can be

treated as a quasielastic process, the relaxation time for each
of the acoustic phonons is given by20

1

τkλ

=
∑

k′

(
1 − cos θk,k′

)
P λ

kk′
1 − fk′

1 − fk
, (3)

where λ denotes the acoustic phonon branch, θk,k′ is the
scattering angle and fk = f (εk) the Fermi function. The

TABLE I. Material parameters for graphene used in the present
work. The phonon related parameters have been obtained from first
principles as described in the text. The calculated sound velocities
are in excellent agreement with the values reported in Ref. 35.

Parameter Symbol Value

Lattice constant a 2.46 Å (LDA)
Ion mass density ρ 7.6 × 10−8 g/cm2

Fermi velocity vF 1.0 × 106 m/s
Transverse sound velocity cTA 14.1 × 103 m/s
Longitudinal sound velocity cLA 21.2 × 103 m/s
Electron-phonon couplings
Transverse βTA 2.8 eV
Longitudinal αLA 2.8 eV
Longitudinal βLA 2.5 eV
Effective coupling parameters
Sound velocity ceff 20.0 × 103 m/s
Deformation potential �eff 6.8 eV

transition matrix element is given by

P λ
kk′ = 2π

h̄

∑
q

|gqλ|2[Nqλδ(εk′ − εk − h̄ωqλ)

+ (1 + Nqλ)δ(εk′ − εk + h̄ωqλ)], (4)

where the two terms account for absorption and emission of
phonons, respectively, h̄ωλ = h̄cλq is the phonon energy, cλ

is the acoustic sound velocity, and gλ
kq is the electron-phonon

coupling. In the following, these quantities have been obtained
from first principles. The resulting values are summarized
in Table I together with other parameters used in this work.
The phonons are assumed to be in equilibrium and populated
according to the Bose-Einstein distribution function Nqλ =
N (h̄ωqλ). As scattering on both the TA and LA phonon is
considered here, the total relaxation time for the K,K ′ valleys
is given by the sum of the individual phonon contributions
as τ−1

K,K ′ = ∑
λ τ−1

λ . As we show in the following section,
the matrix elements of the electron-phonon coupling differ in
the K and K ′ valleys (see Fig. 1). The Boltzmann equation
must therefore be solved explicitly in both valleys. In the
absence of intervalley scattering which couples the distribution
functions in the two valleys, this can be done by considering
the two valleys separately. In this case, the relaxation time
entering the expression for the mobility in Eq. (1) becomes
the valley-averaged relaxation time τ = (τK + τK ′ )/2, where
τK/K ′ is the total relaxation time in the individual valleys.
Screening of the electron-phonon interaction by the carriers
themselves42,43 has been considered elsewhere21 and will here
be neglected.

While analytic considerations have been given in Refs. 20
and 21, we will in the present work resort to a numerical
evaluation44,45 of the relaxation time in Eqs. (3) and (4).
This allows us to study the acoustic phonon-limited mobility
in graphene with the full angular dependence of the true
coupling matrix elements which is more complex than most
often assumed (see, e.g., Ref. 20). The numerical approach
also allows for a unified treatment of the high-temperature
(T > TBG) and Bloch-Grüneisen (T < TBG) regimes. We note,
however, that in the low-temperature regime where h̄ωq ∼
kBT , it is crucial that the phonon energy is retained in the
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Fermi function in Eq. (3). In the high-temperature regime this
requirement can be relaxed and the relaxation time can be put
on a simple analytic form.

III. INTERACTION WITH ACOUSTIC PHONONS

In the following, we use a first-principles DFT approach
to calculate the acoustic electron-phonon couplings in
graphene.38,39,46 It is based on fully microscopic description
of both the electronic states and the phonons. Due to their high
phonon energies (>100 meV), acoustic intervalley and optical
phonons do not play a role in the considered temperature
range and can therefore be neglected.

The interaction between charge carriers and the acoustic
phonons in graphene can be written in the general form,

gλ
kq =

√
h̄

2Aρωqλ

Mλ
kq, (5)

where A is the area of the graphene layer, ρ is the mass density,
and Mλ

kq = 〈k + q|δVqλ|k〉 is the coupling matrix element for
scattering between the two Bloch states k and k + q due
to a phonon with wave vector q and branch index λ. The
coupling is mediated by the change δVqλ in the microscopic
crystal potential due to a unit displacement of the atoms along
the mass-scaled normal mode vector eqλ. Due to the full
microscopic treatment of both electrons and phonons, the full
symmetry of both the electronic states and the phonon modes
as well as umklapp processes involving reciprocal lattice vec-
tors are included in the calculated coupling matrix elements.

Figure 1 shows the absolute value of the calculated coupling
matrix elements Mλ

kq for the TA and LA phonons in the K,K ′
valleys as a function of the two-dimensional phonon wave
vector q. The matrix elements in the two valleys are related
through time-reversal symmetry as MKλ

kq
∗ = MK ′λ

−k,−q. This
implies that carriers in the two valleys traveling in the same
direction experience different electron-phonon couplings, and
that the Boltzmann equation must be solved explicitly in both
valleys.

In order to emphasize the effect of the chirality of the
carriers in graphene, the initial carrier state k is located on the
right side of the Dirac cones ∼300 meV above the K,K ′ points
as indicated by the sketch in the top of Fig. 1. As is evident,
both the TA and LA phonons couple to the carriers with
similar coupling strengths. However, while backscattering is
suppressed for the LA mode, the situation is reversed for the
TA mode where forward scattering is suppressed. In addition
to suppression of forward and backscattering, other directions
with complete suppression of scattering also appear. This is a
consequence of the inclusion of the symmetry of both phonons
and electronic states.

In the following, the first-principles coupling matrix el-
ements are analyzed using the group-theoretical analysis of
the electron-phonon interaction presented in Ref. 40. In the
long-wavelength limit, the TA and LA phonons are strictly
transverse and longitudinal, respectively,47 and the electron-
phonon interaction has a simple analytic representation in
the two-dimensional pseudospin basis.40 Using the results of
Ref. 40, the coupling matrix elements can be expressed in
terms of the angles θk, θq, and θk+q of the involved wave

K
kk+q k

−

−
− −−−

−

−

−

−
− −

−

−
− −

k+q

K′

FIG. 1. (Color online) Electron-phonon couplings to the acoustic
TA and LA phonons in the K,K ′ valleys (left and right columns,
respectively) of graphene. The contour plots show the absolute value
of the coupling matrix elements |Mλ

kq| for a carrier energy of εk =
300 meV as a function of the two-dimensional phonon wave vector q.
The (white) circles correspond to k + q vectors lying on the constant
energy surfaces of the Dirac cones with energy εk as sketched in the
top row.

vectors. Including contributions of order O(q), we find that
the coupling matrix elements in the long-wavelength limit take
the following form in the K valley,

∣∣MTA
kq

∣∣ = qβ

∣∣∣∣sin

(
2θq + θk + θk+q

2

)∣∣∣∣ (6)

and ∣∣MLA
kq

∣∣ = q

∣∣∣∣α cos

(
θk+q − θk

2

)

+β cos

(
2θq + θk + θk+q

2

)∣∣∣∣ , (7)

for the TA and LA phonons, respectively. For the LA phonon,
the first and second terms originate from the deformation
potential and the gauge field coupling mechanisms, respec-
tively. The TA phonon couples only through the latter.40,48,49

Since both mechanisms are Coulombic in nature, the overall
couplings in Eqs. (6) and (7) are here referred to as deformation
potential couplings.

With the coupling parameters listed in Table I, we find that
the analytic expressions for the electron-phonon interaction in
Eqs. (6) and (7) to a high degree reproduce the first-principles
matrix elements for electron energies up to ∼750 meV. As the
analytic coupling matrix elements are based on the phonon
modes in the long-wavelength limit, the agreement is slightly

165440-3



KAASBJERG, THYGESEN, AND JACOBSEN PHYSICAL REVIEW B 85, 165440 (2012)

worsened at shorter wavelengths where the mode vectors
deviate from the long-wavelength modes.47 This is most
pronounced for the TA phonon. As the LA phonon retains
its long-wavelength character far out in the Brillouin zone, the
agreement between the coupling matrix elements here remains
quantitative even at shorter wavelengths. In the BG regime
where short-wavelength phonons are frozen out, we note that
it is the long-wavelength limit of the coupling matrix elements
that governs the scattering of carriers.

Often scattering on acoustic phonons is described by
coupling to a single effective phonon mode with a coupling
matrix element given by20,34

Meff
kq = �effq cos

(
θk,k+q

2

)
, (8)

where �eff is the effective deformation potential and the
angular part corresponds to the bare spinor overlap 〈χk+q|χk〉
of the electronic wave function. In contrast to the more
complex angular dependence of the coupling matrix element
predicted by the full microscopic treatment presented here, the
angular dependence of the effective coupling matrix element
above suppresses only backscattering. In the high-temperature
regime where equipartitioning of the acoustic phonons Nq ∼
kBT/h̄ωq applies, the relaxation time and the resistivity take
the following simple forms:9,20

1

τk
= 1

h̄3

�2
effkBT

4ρv2
F c2

eff

εk, ρ = π�2
effkBT

4e2h̄ρv2
F c2

eff

, (9)

where the factor of 4 in the denominators stems from the
chiral nature of the carriers through the assumed form of the
coupling matrix element in Eq. (8). These expressions are used
almost exclusively to extract the value of the effective acoustic
deformation potential in experimental situations.5,7–9,11

IV. RESULTS

In the following, we study the intrinsic acoustic phonon-
limited mobility and quasiparticle lifetime of electronic carri-
ers in graphene in both the BG and linear resistivity regime
using the full coupling matrix elements as given by Eqs. (6)
and (7). This allows us to establish the value of the intrinsic
effective acoustic deformation potential in graphene.

A. Mobility

In Fig. 2 we show the inverse of the valley-averaged relax-
ation time as a function of energy for different temperatures
and a carrier density of n = 1012 cm−2 corresponding to
εF ∼117 meV and TBG ≈ 57 K for the LA phonon. Above
the BG temperature, the inverse relaxation time has the linear
energy dependence of Eq. (9) and a slope proportional to the
temperature. As the temperature is decreased below TBG, the
freezing out of short-wavelength phonons and the sharpening
of the Fermi surface result in limited phase space for phonon
scattering and an increased lifetime of the carriers at the
Fermi energy. In the expression for the relaxation time in
Eq. (3), this effect is accounted for by the Fermi and Bose
distribution functions. The limited phase space available for
phonon scattering manifests itself in the characteristic dip at
the Fermi energy that evolves in the inverse relaxation time

l
l

FIG. 2. (Color online) Inverse relaxation time (valley-averaged)
for acoustic phonon scattering on the TA and LA phonon in the
BG regime at n = 1012 cm−2 (TBG ≈ 57 K for the LA phonon). The
full lines show the results obtained with the full matrix elements
given in Eqs. (6) and (7) and coupling constants extracted from ab
initio calculations. The dashed lines show the result obtained with a
single effective acoustic phonon with the coupling matrix element in
Eq. (8), a deformation potential of �eff = 6.8 eV, and sound velocity
ceff = 20 × 103 m/s.

with decreasing temperature.20 For all temperatures, the linear
energy dependence of the high-temperature result in Eq. (9) is
recovered in the ε → 0 limit.

By inspecting the individual contributions, we find that
the inverse relaxation time to a large extent is dominated by
the TA phonon both in the high-temperature and the BG
regime. In the high-temperature regime, the domination of the
TA phonon can be attributed to a number of factors. First of all,
from Eq. (9) it follows directly that the lower sound velocity
of the TA phonon leads to a higher scattering rate. Secondly,
the coupling matrix element for the TA phonon allows for
backscattering which is suppressed for the LA phonon. In the
BG regime, the domination of the TA phonon stems from the
suppression of the coupling matrix element for the LA phonon
in the long-wavelength limit (see Fig. 1). Also, the lower BG
temperature of the TA phonon allows for full backscattering
below the BG temperature of the LA phonon. The observed
dominance of the TA phonon reported here is in contrast to
the often used assumption that only the LA phonon couples to
charge carriers in graphene.20

In order to determine the intrinsic value of the effective
deformation potential in graphene, we also calculate the
relaxation time using the coupling matrix element in Eq. (8).
The dashed lines in Fig. 2 show the inverse relaxation
time calculated with an effective deformation potential and
sound velocity of �eff = 6.8 eV and ceff = 20.0 × 103 m/s,
respectively. It is seen to reproduce the relaxation time based
on the full matrix elements very well for the energy range
shown. While the extracted value for the acoustic deformation
potential is much smaller than experimental values,5,7–9,11 it
is in better agreement with other ab initio results yielding
4.5 eV.31 We also note that our findings for the value of the
effective deformation potential are in stark contrast to those
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l

FIG. 3. (Color online) Mobility vs temperature (upper plot) for
carrier densities 1012–1013 cm−2 corresponding to TBG ∼ 57–180 K
for the LA phonon. The lower plot shows the temperature dependence
of the exponent α in the temperature dependence μ ∼ T −α of the
mobility. The dashed lines show the result obtained with coupling to
a single effective acoustic phonon (see caption of Fig. 2).

of Ref. 37, where the combined coupling to the TA and LA
phonons is found to yield a deformation potential of 10–20 eV.

Figure 3 summarizes the calculated acoustic phonon-
limited mobility as a function of temperature for carrier
densities 1012–1013 cm−2 which correspond to BG temper-
atures TBG ∼ 57–180 K for the LA phonon. The mobility
calculated with the above-mentioned effective coupling param-
eters (dashed lines) reproduces the full calculation extremely
well. For all carrier densities the mobility shows a transition
from the linear μ ∼ T −1 high-temperature behavior to a more
pronounced μ ∼ T −α temperature dependence with α > 1 in
the BG regime. The decrease in the mobility with increasing
carrier density stems from the linear density of states which
provides more phase space for phonon scattering at larger
values of the Fermi energy. At low temperatures T � TBG

where scattering on the full Fermi surface is frozen out, the
local value of the coupling matrix element becomes important
and the mobilities for the different carrier densities approach
a common value.

The lower plot in Fig. 3 shows the temperature dependence
of the exponent α for the same set of carrier densities. From
this plot it is more clear that the departure away from the linear
high-temperature dependence happens at T ∼ TBG. Surpris-
ingly, the exponents obtained from the mobility calculated
with the full coupling matrix elements do not saturate at α = 4
as predicted by the effective coupling matrix element (dashed
lines).20,21 Hence the intrinsic phonon-limited carrier mobility
cannot be accounted for by an effective acoustic phonon in
this temperature regime. Even in the absence of screening,
the mobility of graphene should take on a temperature
dependence with α > 4 at sufficiently low temperatures. With
carrier screening taken into account, this behavior should be
reinforced.21 Our findings for the temperature dependence
of the mobility in the BG regime implies that experimental
observations of temperature dependencies with α > 4 do
not necessarily indicate that the deformation potentials in
graphene are screened by the carriers.

The purely intrinsic mobilities calculated here are signif-
icantly higher than previously reported theoretical values.20

For example, for a carrier density of n = 1012 cm−2, a
room-temperature mobility in excess of 106 cm2 V−1 s−1 is
here predicted. Since there is a one-to-one correspondence
between the mobility and the deformation potential, this is
reflected directly in the extracted deformation potential which
is considerably lower than commonly used values.

B. Quasiparticle lifetime

So far, theoretical studies of the phonon-induced lifetime
broadening of the electronic quasiparticles in graphene have
focused on the intrinsic optical phonons of graphene and
surface optical phonons of the substrate.16,25–27 However, at
low temperature where thermal broadening is small, opti-
cal phonon scattering is suppressed in the vicinity of the
Fermi level by Pauli blocking via the electronic occupation
factors.25–27 As the range of energies where optical phonon
scattering is suppressed is limited by the thresholds for
absorption and emission of optical phonons with energy h̄ωO at
ε = εF ± h̄ωO , this leaves a large energy window spanning up
to several hundreds of meV (depending on the optical phonons
in play) where acoustic phonon scattering can dominate the
quasiparticle decay rate.

The lifetime τk of the quasiparticles is related to the
linewidth broadening �k of the spectral features through the
imaginary part of the (on-shell) electronic self-energy �k

as τ−1
k = −2 Im�k/h̄ = �k/h̄, where τ−1

k is the decay rate.
Within the Born approximation for the self-energy, the decay
rate τ−1 is given by the expression for the inverse relaxation
time in Eq. (3) with the replacement (1 − cos θk,k′ ) → 1.50

Using the identities in Ref. 45, it can be recast in the more
familiar form

1

τk
= 2π

h̄

∑
qλ

|gqλ|2[(Nqλ + fk+q)δ(εk+q − εk − h̄ωqλ)

+ (1 + Nqλ − fk−q)δ(εk+q − εk + h̄ωqλ)], (10)

where, as in Eq. (4), the two terms account for absorption and
emission of acoustic phonons. In the high-temperature regime
and with the coupling given by the effective matrix element in
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Eq. (8), this reduces to

1

τk
= 1

h̄3

�2
effkBT

2ρv2
F c2

eff

εk = 2πλkkBT/h̄, (11)

which differs from the corresponding expression for the inverse
relaxation time in Eq. (9) by a factor of 1/2 and where the
connection to the often used dimensionless coupling parameter
λk is given in the last equality.50 Hence, for T > TBG, the
acoustic phonon-limited decay rate is proportional to both
the temperature τ−1 ∼ T and the carrier energy τ−1 ∼ εk.
In the BG regime, the energy dependence of the decay rate is
similar to the one shown in Fig. 2 for the inverse relaxation
time, i.e., it develops a dip at the Fermi level for T < TBG

resulting in extremely long-lived quasiparticles in the BG
regime.

The temperature dependence of the quasiparticle decay rate
τ−1
k at (k = kF ) and away from (k = 0.9kF ) the Fermi energy

is summarized in Fig. 4 for both the effective (dashed lines)
and the full coupling matrix elements. Interestingly, we here
find that the effective deformation potential �eff = 5.3 eV (cor-
responding to λkF

= 0.3,1.0 × 10−3 for n = 1012,1013 cm−2,
respectively) obtained by fits to the full decay rate, differs
from the effective deformation potential extracted from the
relaxation time and mobility in Figs. 2 and 3. This difference
stems from the fact that the angular dependence of the
matrix elements in Eqs. (6) and (7) is weighted differently
in the inverse momentum relaxation time and the decay
rate due to the appearance of the factor (1 − cos θk,k′) in
Eq. (3) for the former. Care must therefore be taken when
comparing deformation potentials extracted from transport and
photoemission experiments.

For temperatures T > TBG, the temperature dependence
of the decay rate in Fig. 4 shows the linear T dependence
in Eq. (11) where the offset between the different curves
originates from the density dependence of the Fermi level.

FIG. 4. (Color online) Temperature dependence of the quasipar-
ticle decay rate τ−1

k at the Fermi level k = kF and k = 0.9kF for
acoustic phonon scattering on the TA and LA phonons. The dashed
lines show the result obtained with the effective coupling matrix
element in Eq. (8), a deformation potential of �eff = 5.3 eV, and
sound velocity ceff = 20 × 103 m/s.

At T < TBG, the decay rate at the Fermi level acquires a
stronger temperature dependence τ−1 ∼ T α . As was the case
for the mobility, the effective and full phonon couplings give
quantitatively different results in the BG regime. First of all, the
different curves for the effective coupling all collapse into one
curve for T < TBG, indicating that the decay rate at the Fermi
energy is independent of the density. For the full coupling, this
is not the case. Secondly, while the temperature dependence
for the effective coupling saturates at α = 2 for T < TBG,
the exponent for the full coupling does not saturate and
increases up to a value of α ∼ 3.6. Similar observations hold
for the inverse relaxation time where the exponent saturates
at α = 4 and α ∼ 5.7, respectively. This is the origin of the
discrepancy in the temperature dependence of the mobilities
shown in Fig. 3. Away from the Fermi level (k = 0.9kF ),
the effective and full couplings agree and the quasiparticle
decay rate approaches a density-dependent constant value in
the BG regime, i.e., 0 < α < 1. At even lower carrier energies
k � kF (not shown), the high-temperature behavior in Eq. (11)
is recovered for all carrier densities. We note that a similar
temperature dependence of the acoustic phonon-limited decay
rate has been predicted for chiral carriers in topological
insulator thin films.51

Since the quasiparticle decay rates in Fig. 4 correspond to
very small linewidth broadenings � < 0.1 meV, the reported
linewidth signatures from acoustic phonon scattering can be
hard to identify in practice where the energy resolution in
photoemission spectroscopy is an order or two magnitudes
higher. Furthermore, competing inelastic scattering due to
electron-electron interactions also contributes to the decay
rate.52 To which extent this dominates acoustic phonon
scattering depends on the temperature, the carrier density, and
the value of the effective deformation potential in graphene
which experimentally seems to be a factor of ∼3–5 larger than
the theoretical value determined here.

As a final remark, the high-temperature scattering rate at the
Fermi level of τ−1 ∼ 1011 s−1 reported in Fig. 4 corresponds to
a mean-free path of λ = vF /τ ∼ 1000 nm. Such an extremely
large mean-free path may open the opportunity to study
coherent transport in relatively large graphene structures.

V. CONCLUSIONS AND DISCUSSIONS

In the present study the acoustic electron-phonon interac-
tion in graphene has been analyzed in detail. The exact analytic
forms of the coupling matrix elements in the long-wavelength
limit were found to match the calculated first-principles matrix
elements almost quantitatively even at shorter wavelengths.
As previously predicted,20,21 the mobility shows a transition
from a μ ∼ T −1 to a μ ∼ T −α temperature dependence with
α > 1 below the BG temperature. However, contrary to earlier
studies we found that the full coupling matrix elements cause
the temperature dependence of the mobility to increase beyond
a α = 4 dependence which is otherwise only expected when
screening is included.21 A similar BG transition was shown
to occur in the quasiparticle decay rate which goes from a
τ−1 ∼ T temperature dependence at T > TBG to a τ−1 ∼ T α

dependence with α ∼ 2–3.6 (0 < α < 1) at (away from) the
Fermi level for T < TBG.
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By replacing the coupling to the TA and LA phonons
with a coupling to an effective acoustic phonon, the intrinsic
acoustic deformation potential extracted from fits to the
mobility (decay rate) was found to be �eff = 6.8 eV (5.3
eV). For the mobility it was shown that the effective acoustic
phonon reproduces the temperature dependence correctly in
the high-temperature regime, while quantitatively different
results were obtained in the BG regime. This discrepancy
was shown to originate in different temperature dependen-
cies of the decay rate/inverse relaxation time at the Fermi
level.

Since the inferred acoustic deformation potential is much
lower than the experimentally determined values (�eff ∼ 18–
29 eV), our results suggest that the acoustic phonon-limited
transport in substrate-supported graphene is at present not fully
understood. Possible explanations for the large experimental
deformation potentials could be (i) substrate-induced modifi-
cations of the band structure53,54 that modifies the chirality of
the electronic states (and thereby the angular dependence of

the coupling matrix element) or the Fermi velocity, and (ii)
the existence of additional acoustic phonons not considered in
the present work as, for example, surface-acoustic phonons on
the substrate which have previously been studied in 2DEGs.55

The relatively large variations in the experimental deformation
potentials indeed indicate that the acoustic deformation poten-
tial is highly dependent on experimental factors such as the
substrate.
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