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The general Lagrange-Euler formalism for the three memory circuit elements, namely, memristive,
memcapacitive, and meminductive systems, is introduced. In addition, mutual meminductance, i.e., mutual
inductance with a state depending on the past evolution of the system, is defined. The Lagrange-Euler formalism
for a general circuit network, the related work-energy theorem, and the generalized Joule’s first law are also
obtained. Examples of this formalism applied to specific circuits are provided, and the corresponding Hamiltonian
and its quantization for the case of nondissipative elements are discussed. The notion of memory quanta, the
quantum excitations of the memory degrees of freedom, is presented. Specific examples are used to show that
the coupling between these quanta and the well-known charge quanta can lead to a splitting of degenerate levels
and to other experimentally observable quantum effects.
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I. INTRODUCTION

Circuit elements with memory, namely, memristive, -2
memcapacitive, and meminductive® systems, are attracting
considerable attention in view of their application in diverse
areas of science and technology, ranging from solid-state
memories* to neuromorphic circuits’"'? and understanding
of biological processes.'>!* The general axiomatic definition
of memory elements considers any two fundamental circuit
variables, u(¢) and y(¢) [i.e., current [, charge ¢, voltage V/,
or flux ¢ = fioo V(t')dt'], whose relation, the response g,
depends also on a set, x = {x;}, of n-state variables describing
the internal state of the system. These variables could be,
e.g., the spin polarization of the sample'>'® or the position
of oxygen vacancies in a thin film.!” The resulting nth order
u-controlled memory circuit element is described by?

1)
@)

y(8) = g(x,u,t)u(t),
X = f(x,u,t),

where f is a continuous n-dimensional vector function. It
is assumed on physical grounds that, given an initial state
u(t = to) at time ty, Eq. (2) admits a unique solution. If u
is the current and y(¢) is the voltage, then Egs. (1) and (2)
define memory resistive (memristive) systems. In this case
g is the memristance (for memory resistance). In memory
capacitive (memcapacitive) systems, the charge is related to the
voltage so that g is the memcapacitance (memory capacitance),
while in memory inductive (meminductive) systems the flux is
related to the current with g, the meminductance (memory
inductance). These systems are characterized by a typical
“pinched hysteretic loop” in their constitutive variables when
subject to a periodic input (with exceptions as discussed in
Ref. 18). Indeed, we have recently argued that essentially all
two-terminal electronic devices based on memory materials
and systems, when subject to time-dependent perturbations,
behave simply as, or as a combination of, memristors,
memcapacitors, and meminductors.*!® This unifying descrip-
tion is a source of inspiration for novel digital and analog
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However, despite the wealth of applications and new ideas
these concepts have generated, it is nonetheless important to
stress that so far these memory elements have been discussed
only within their classical circuit theory definition, with quan-
tum mechanics entering at best in the microscopic parameters
that determine the state variables responsible for memory.>!72?
Howeyver, it seems that these features are common at the
nanoscale where the dynamical properties of electrons and
ions are likely to depend on the history of the system, at least
within certain time scales.”®?* Mindful of the trend toward
extreme miniaturization of devices of all sorts, it is thus natural
to ask whether true quantum effects can be associated with
the memory of these systems and which phenomena could
emerge from the quantization of memory elements. Of course,
examples of memory effects in quantum phenomena can be
found in the specialized literature (see, e.g., Ref. 25). Here
instead, we want to provide a general framework of study of
the quantum excitations (memory quanta) associated to general
degrees of freedom that lead to memory in these systems.

We then first introduce the general Lagrange-Euler formal-
ism for these systems. This is the nontrivial extension of the
corresponding formalism for the “standard” circuit elements.
Since it is well known that the Lagrangian formulation of
circuit elements offers great advantages in the analysis of
complex circuits,’® we expect that this generalization would
be of great value in itself. Moreover, our work extends
previous studies related to the formulation of Lagrange
and Routh equations for nonlinear circuits involving ideal
memristors?’ and to the port-Hamiltonian modeling for the
case of memristive components.”® In the present context
our work also sheds light on the general relation between
the internal degrees of freedom that lead to memory and
the constitutive variables—the charge, current, voltage, and
flux—that define the different elements. Along the way we
also define mutual meminductors, namely, mutual inductors
with memory, which add additional flexibility and hence new
functionalities to the field of memory elements.
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We finally proceed to quantize the corresponding equations
in the standard way. This leads us to consider the memory
excitations of these systems. In this paper we consider only
the quantization of nondissipative elements, and we will devote
a subsequent paper to the discussion of quantum effects in
dissipative memory elements. We will provide examples of
applications of the Lagrangian formalism to selected cases and
discuss experimental conditions under which these memory
quanta could be detected.

This paper is organized as follows. In Sec. II we introduce
a general scheme of the approach. Section III is dedicated
to the Lagrangian formulation of memristive systems, while
Secs. IV and V deal with memcapacitive and meminduc-
tive systems, respectively. We then show how to write the
Lagrangian (Sec. VI) and Hamiltonian (Sec. VII) of a circuit of
memory elements and also give the work-energy theorem and
generalized Joule’s first law for such a circuit. We introduce the
concept of memory quanta in Sec. VIII, focusing on specific
examples. Finally, in Sec. IX we report our conclusions.

II. LAGRANGE APPROACH

In the Lagrange formalism, each memory circuit element
is associated with m + 1 degrees of freedom [one related to a
circuit variable (g or ¢) and m to its internal state (generalized
coordinates, y;, j = 1,...,m)]. For convenience, we define two
multivariate vectors:

Yq Z(Q,)’l,n-a)’m)’ (3)

Y?® = (@D, ¥15-sYm)- 4

We note that there are two (in some cases, however, one)
internal state variables x; [entering Eqs. (1) and (2)] for each
v;. Quite generally then x = {y,y} [with y here not to be
confused with the output variable y(¢) in Eq. (1)].

A model of any particular memory circuit element consists
of three components: the kinetic energy 7', the potential energy
U, and the dissipation potential H. The m 4 1 Lagrange
equations of motion are given by

d oL 3L
droye oy

= O, &)

where £L = T — U is the Lagrangian; ¢ isq or ¢; j = 0,...,m;
and the generalized dissipation force Qyjex is defined as

oH
« = ——. 6
01 = ~3s ©)

While, generally, models of different memory circuit elements
involve similar terms related to internal degrees of freedom,
the contribution from the circuit variable g or ¢ is specific for
each type of memory circuit element as presented in Table I.
The kinetic energy T may have a contribution describing
the dynamics of internal degrees of freedom and a specific
contribution according to Table I. The contribution from
internal degrees of freedom, 7', can be written using symmetry
arguments. First of all, since dissipative effects are not included
in the kinetic energy, it is time-reversal invariant, and only
even powers of y; can exist. In order for the transformation to
canonical momenta to be invertible, however, we must leave
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TABLE 1. General scheme of Lagrange description of memory
circuit elements. Specific contributions listed in the columns 7', U,
and H are given by Eqgs. (16), (22), (34), (39), (50), and (57).

System type Variables T U H
V-controlled memristive system Ya HY
I-controlled memristive system Y¢ HY
V-controlled memcapacitive system Y U¢
g-controlled memcapacitive system Y? TC

¢-controlled meminductive system Y T¢L

I-controlled meminductive system Y? UF

only quadratic terms, and we find 7 = Y, ; CijYi Y- This form,
being symmetric, can be diagonalized to give

~2

T=T+1/=) ZL+1), @)

1
where ¢; are real positive numbers to be determined micro-
scopically, and Tf is the specific contribution, if it exists (see
Table I), to the kinetic energy for the u-controlled memory

circuit element, 8 = M,C, or L.
The potential energy U and dissipative potential H also
include a specific contribution from Table I and contributions

from internal degrees of freedom U and H:

U=U(y.unt)+UP, ®)

H =H(y,y.u.t) + HP, ©9)

where y = {y;}. It is important to consider the control variable
u as an independent parameter that can be replaced by an
(output) circuit variable [using, e.g., Eq. (1)] only in the final
equations of motion.

III. MEMRISTIVE SYSTEMS

There are two types of memristive systems: voltage-
controlled and current-controlled ones.> From Egs. (1) and
(2), we define voltage-controlled memristive systems by the
equations

In(t) = R7'(x, Vi, ) Vi (1), (10)

X = f(x,Vu,1), an

where V) (#) and I(t) = q(¢) denote the voltage and current
across the device, and R is the memristance and its inverse
is the memductance (for memory conductance). A current-
controlled memristive system is such that the resistance and

the dynamics of state variables depend on the current:>!®
V() = R(x,In,0)In(2), (12)
i = fo It (13)

At this point we note that the above equations have been
introduced to define a wide class of systems collectively called
memristive,” while the name memristor' has been assigned
to the ideal case of these equations, when R depends only
on the voltage (or current) history. Although some authors
use the term memristor to represent any system that satisfies

165428-2



LAGRANGE FORMALISM OF MEMORY CIRCUIT ...

(a) (b)

FIG. 1. (a) Schematic of a voltage-controlled memristive system
connected to a time-dependent voltage source. (b) Schematic of a
current-controlled memristive system connected to a time-dependent
current source.

Egs. (10) and (11) or (12) and (13), we reserve this term
for the ideal case only.! (We will also see in Sec. VI C that
such systems, like ideal memcapacitors and meminductors,
require special care in the Lagrangian formulation.) We also
note that, often, current-controlled memristive systems can
be redefined as voltage-controlled ones and vice versa.'®
In addition, according to Thévenin’s theorem,>>** a voltage
source V(t) in series with a resistance R is equivalent to
a current source I(t) = V(t)/R with the same resistance in
parallel. We could then choose to work with either one of these
cases. However, for completeness, in the following we will
present the Lagrangian formalism for both voltage-controlled
and current-controlled memristive systems.

A. Voltage-controlled systems

We consider a voltage-controlled memristive system con-
nected to a time-dependent voltage source V(t) as shown in
Fig. 1(a). In addition to the term due to internal degrees of
freedom discussed in Sec. II, the total potential energy contains
the usual contribution from the battery —g V (¢), with g being
the charge that flows in the circuit. There are many mechanisms
for potential energy arising from the state variables which are
affected by the applied bias—an example of this is the change
of state due to electromigration (see, e.g., Ref. 24). The total
potential energy is thus given by

U =U(y,Vu,t) — qV(0), (14)

so that the Lagrangian is
L=T U—Zc"y."2 U, Vi) +qV(). (15
- - i 2 y7 M q .

Here, V), is considered as an independent parameter.

As shown in Table I, the dissipation potential of voltage-
controlled memristive systems includes a circuit variable
contribution HY. We write it similarly to the well-known
Rayleigh’s “dissipation potential” (for a constant value resis-
tor) of the type H = RG> /2, which gives rise to a “dissipation
force” Q, = —V;H = —Rq.>! Specifically, we will use

R(y,Vu.1)g*
—

At this point we stress that the memristance (as well as the
memcapacitance and meminductance we will discuss later)
may also depend on generalized velocities, y, which are also
included into x. This would simply modify the Lagrange
equations of motion without changing the overall formalism.
To simplify the notation, however, we will not include this

HY = (16)

PHYSICAL REVIEW B 85, 165428 (2012)

dependence explicitly here, and we give an explicit example
of this case in Sec. V B.
For the total dissipation potential we write

R(y,Vu,0)g?
2

where the last term is to be determined phenomenologically
or from a microscopic theory.

It is straightforward to show that the equation of motion (5)
for Y = g can be written as

V()= Vu@) =R(y,Vu.0)q. (18)

This equation is of the type of Eq. (10). The corresponding
equations of motion for the state variables x are

AHO, Y, Vart) 0 (v, Vag,t)
. + =
hY ay;

which show explicitly two possible physical origins of memris-
tance due to a dissipative component and/or a potential-energy
component.

Equation (19) can be rewritten as two first-order differential
equations of the form of Eq. (11) considering both y; and y;
as internal state variables. Moreover, in the final equations we
can substitute V), by its expression in terms of the current
q. For this purpose, Eq. (10) can be solved with respect to
V. The same final procedure can also be used in the case of
memcapacitive and meminductive systems considered below.

H = +H(y,y, Var,b), a7

¢ yi + 0, (19)

B. Current-controlled systems

As a simple example of a closed circuit with a current-
controlled memristive system, we consider a source of current
I(t) connected to a memristive system [Fig. 1(b)]. Here, as
indicated in Eqgs. (12) and (13), the output circuit variable is
the voltage across the memristive system, ¢ = Vj,(¢). That
is why we use Y? set of variables in this case. The kinetic
energy, potential energy, and total dissipation potential in the
Lagrangian formalism are now

1 "
T = E E CiYis (20)
U=0U(y.Iy.t)—pl1), @21)
- pe -
_ M _ .
H=H"+H= +Hy. 3. 1), (22)

2R(y,Im,t)

where —@1(t) is the battery term. Although not a necessary
step (if their values are known), R(y,Iy,?), Uy, Iy,t),
H(y,y,1m,t) can be obtained from R(y,Vi,t), U(y,Vy,t),
and H(y,y,Vu,t), correspondingly. However, the solution
may be multiple valued in 1), so that R(y,y, I ,t) may have
multiple branches with the correct choice of branch depending
on the history of the memristive system.

The equation of motion (EOM) for ¢ follows from Eq. (5)
for Yg’ = ¢, taking into account Eqgs. (20)—(22), leading to

¢ = R(y, I, t)Iu, (23)

which is just Eq. (12). The EOM for x is similarly found from
Eq. (5), resulting in Eq. (19) except for the substitution of Vj,
by Iy.
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C. Example

Here we provide a specific physical example to clarify
both the formalism and the different terms that appear
in Egs. (18) and (19). For this we consider a thermistor,
namely, a temperature-dependent resistor. The memristive
model of thermistor®'® utilizes a single internal state variable,
the absolute temperature of the thermistor, x = y = Tiherm,
and can be formulated as a first-order voltage-controlled
memristive system.'® Mathematically, the Lagrangian model
of the thermistor involves the following kinetic and potential
energies and dissipation potentials:

T =0, 24
U =0, (25)
22
HY = R(yz)q , (26)
~  [1.. Vi
H= y|:2Chy - m - ( env y)8i| (27)

where R(y) = Roef1/y=1/T0) is the temperature-dependent
resistance, Ry denotes the resistance at a certain temperature
Ty, B is a material-specific constant, Cj, is the heat capacitance,
3 is the dissipation constant of the thermistor,? and T, is the
background (environment) temperature.

Using Eq. (5) for a circuit consisting of a thermistor
connected to a voltage source V (¢) [see Fig. 1(a)], we recover
the equations of the memristive model of the thermistor:'8

I = [Roeﬂ(l/)’*l/To)]*lvM’ (28)

d ,
Cig = [Roe" TV 4 (T, = 8. (29)
Note that although other forms of potential- and kinetic-energy
terms could produce the same Eqs. (28) and (29) this particular
one also satisfies the Joule’s first law discussed in Sec. VII C.

This puts severe constraints on the choice of Lagrangian.

IV. MEMCAPACITIVE SYSTEMS

We now consider memcapacitive systems® (Fig. 2),
which—unlike memristive systems—store also energy. In par-
ticular, voltage-controlled memcapacitive systems are defined
by Eqgs. (1) and (2), with u being the voltage, V¢ (¢), across
the memcapacitive system, and y(¢) being the charge, g¢ (%),

FIG. 2. (a) Schematic of a voltage-controlled memcapacitive
system connected to a time-dependent voltage source. (b) Schematic
of a charge-controlled memcapacitive system connected to a time-
dependent current source.
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stored in the device, leading to

gc(t) = C(x,Ve,0)Ve (1), (30)

X = f(x,Ve,0), €19

where C is the memcapacitance. As in memristive systems,
the above equations define a large class of systems, with ideal
memcapacitors being those for which the memcapacitance
depends only on the voltage history (or, for charge-controlled
memcapacitive systems, only on the charge history).’> In
addition, it is often important to consider the energy added
to or removed from a memcapacitive system, namely, the
quantity Uec = ft; Ve (t)I(t)dt which helps understanding of
whether a memcapacitive system is nondissipative, dissipative,
or active.> Of these, the nondissipative and/or dissipative
memcapacitive systems are the most interesting for potential
applications, and we will therefore focus here on these cases
only.

A charge-controlled memcapacitive system is defined by
the set of equations’

c = C7'(x,qc.)qc(t), (32)

X = f(-xqu7t)' (33)

A. Voltage-controlled systems

The Lagrange model of voltage-controlled memcapacitive
systems is based on the Y7 set of variables (see Table I).
The specific contribution from the g degree of freedom to the
potential energy is

c _ '

Uy = ——.
VT 2C(y, Veot)

Taking into account a voltage source connected to the system
[Fig. 2(a)], the total potential energy is written as

(34)

2
q ~
=———+ U, Vc,t) —qV(2). 35
ZC(y,VC,t)+ (v, Ve.t) —q V(1) (35)
Consequently, the Lagrangian is given by
2
L=T-U-= Zﬂ——
2C(y,Ve.n)
—U(y.Ve.t)+qV (@) (36)

The dissipative potential contains only the internal state
variables contribution H(y,y, V¢,t).

The Lagrange EOMs for voltage-controlled memcapacitive
systems have the form

q(t)
— 1 —V@) = Ve, 37
COVe) )= Ve(@) 37)
AH(, v, Ve,t) AUy, Ve, t
e + (yy.c)Jr (y,Vc,t)
i ay;
_V_gaC(y,vc,t) —o 38)
2 dyi ’

where in writing the last term in Eq. (38) we have made
use of Eq. (37). Its clear that Eqs. (37) and (38) are of the
form of Egs. (30) and (31) In fact, Eq. (38) clearly shows
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that the memory may arise from both a conservative potential
contribution as well as a dissipative one.

Equation (38) describes an effective dynamical system and,
together with Eq. (30), tells us that, in the presence of a periodic
input of frequency w, charge dynamics can be out of phase with
the voltage across the memcapacitive system. Indeed, there
might be a delay in response of the internal state variables
to the applied voltage leading to the above-mentioned effect.
Experimentally, it can be seen as a pinched hysteresis loop in
the g-V¢ plane.>'®

B. Charge-controlled systems

We consider a circuit consisting of a current source and a
current-controlled memcapacitive system [Fig. 2(b)]. Here, as
seen in Egs. (32) and (33), the circuit variable is the voltage
across the memcapacitive system, ¢ = V(¢), instead of the
current through it, ¢ = I¢(t), as in voltage-controlled systems
[c.f. Egs. (30) and (31)]. Consequently, our analysis should be
based on the Y? set (Table I). The kinetic energy, potential
energy, and total dissipation potential in the Lagrangian
formalism are now

~ 1 1 .
_ C __ ) - 2
T=T+T5 =5 §i ciyi +5C0.qc.08%  (39)
U = U(y.qc.t) — ¢1(t), (40)

H = H(y.y.qc.1). (41)

The EOM for ¢ is derived by applying Eq. (5) to Egs. (39)—
(41), leading to Eq. (32). The EOM for x is similarly obtained
and results in Eq. (38) except for the substitution of V¢ by gc.

C. Example

As an example of a voltage-controlled memcapacitive sys-
tem we consider a parallel-plate capacitor with an elastically
suspended upper plate and a fixed lower plate.'® When a charge
is added to the plate, the separation between plates changes as
oppositely charged plates experience an attractive interaction.
The internal degree of freedom of the elastic memcapacitive
system is the position of the upper plate y measured from
an equilibrium uncharged plate separation, dy. The Lagrange
model of elastic memcapacitive system connected to a voltage
source consists of the following kinetic and potential energies
and dissipation potentials:

my
T =—, 42
5 (42)

2 2

~ q ky
U=U+U-= = —qV@), 43
R R e AL )

-2
Hzﬂzynzly, (44)

supplemented by the expression for the memcapacitance,
C(y) = Co/(1 + y/dp). Here, m is the mass of the upper
plate, y is a damping coefficient representing dissipation of
the elastic oscillations, k is the spring constant, Co = £5/d is
the equilibrium value of capacitance, S is the plate area, and ¢
the permittivity of the medium.

The first equation of motion is of the form of Eq. (37); the
second, Eq. (31), is obtained by substituting Egs. (42)—(44) into
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(a) (b)

FIG. 3. (a) Schematic of a flux-controlled meminductive system
connected to a time-dependent voltage source. (b) Schematic of
a current-controlled meminductive system connected to a time-
dependent current source.

Eq. (38). Explicitly, we obtain the classical harmonic-oscillator
equation including damping and driving terms:

d2y dy ) VC2 Co
&y by e B0 g 45
a2 TV a T e Uy do) 45)

Here, wy = +/k/m. To emphasize the similarity of Eq. (45)
with Eq. (31) we note that Eq. (45) can be written as two
first-order differential equations and the internal state variables
are x; = yand x, = y.

V. MEMINDUCTIVE SYSTEMS

Let us finally consider meminductive systems® (Fig. 3). A
flux-controlled meminductive system satisfies the relations®

I = L7 (x,¢1,0)¢1(2), (46)

¥ = f(x, 1), (47)

with L~! being the inverse meminductance. A current-
controlled meminductive system is defined by the set of
equations®

L = L(x,IL.0)IL(1), (48)

X = fuI0). (49)

As in the case of memcapacitive systems, meminductive
elements may represent nondissipative, dissipative, or active
devices. We are interested only in the first two types since they
are the most important for technological applications.

A. Flux-controlled systems

Consider a circuit composed of a voltage source connected
to a meminductive system as in Fig. 3(a). The circuit degree
of freedom ¢ in flux-controlled meminductive systems is
taken into account by the following contribution to the kinetic
energy:

L(y9¢Lst)qz

The contributions to T, U, and H from internal state degrees
of freedom are written in the general form [Eqgs. (7)-(9)].
Consequently, taking also a voltage source in Fig. 3(a) into
account, the Lagrangian and dissipative potential are written
as

Ty = (50)

ciy? 9~
L= Z Tl + L(%¢LJ)7 —UW,¢r.t) +qV (@), (51)

H =H,y,¢r.1). (52)
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The EOM for the g degree of freedom is

d[L(y.pL.1)q]

=V@) = V(@) 33
7 (1)=V.(@) (53)
Integrating this equation in time assuming that ¢(t = —o0) =
0 we find
t
L(y.¢r.1)q =/ dr'Vi(t) = ¢1(1), (54
—00

which is Eq. (46).
The EOMs for the state variables are written as

IH(y,9,01,1) N AU (y,dr.1)

it ayi dyi
2 9L(y, ¢yt
_ $r AL dLD) _ 0, (55)
202 oy,

which again, since x = {y,y}, can be written in the form of
Eq. (47).

B. Current-controlled systems

When one considers circuits involving current-controlled
meminductive systems (and current sources instead of voltage
sources), one should employ the Y? set of variables (see
Table I). Let us then consider a simple circuit composed
of a current source directly connected to a meminductive
system [Fig. 3(b)]. The contribution from the circuit degree
of freedom ¢ comes from the potential-energy UJ term. The
kinetic energy, potential energy, and total dissipation potential
in the Lagrangian formalism are now

- 1 >
T:T:EZciy,-, (56)
~ ~ ¢
U= U"‘UIL -l =U(y,Ip,t)+ m —@l(2),
(57)
H=H(y.3.1..0). (58)

The EOM for ¢ is the same as Eq. (48). The EOMs for y;
are similarly derived and result in Eq. (55) except for the
substitution of ¢, by 1.

C. Example

We here provide an instructive example of an effective
meminductive system consisting of an LC R contour induc-
tively coupled to an inductor (Fig. 4). In this scheme, the two
inductors L; and L, interact with each other magnetically.
From the point of view of the voltage source V(t), the
total system can be seen as a second-order flux-controlled
meminductive system described by the general Eqs. (46) and
(47). The charges on the capacitor C and the current through
the inductor L, play the role of internal state variables. It is
convenient to select y = g¢. Consequently, I, = y.

We start by considering the circuit presented in Fig. 4 using
the Lagrange formalism for usual circuit elements. The circuit
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FIG. 4. Flux-controlled meminductive system based on the in-
ductive coupling of a coil L, with a LC R contour. Here, the mutual
inductance M is equal to k+/L,L,, where 0 < k < 1 is the coupling
coefficient.

is described by

1o, 1, .
T = §L1q + §Lzy + Myq, (59)
y2
U= - q V), (60)
H, =0, (61)
He = RTyz. (62)

The EOMs for x and g are then found to be
Lig+My—V(@)=0, (63)

LN e My Y Lri—0. 64
2 L y L C y==u

One can easily verify that Eqgs. (63) and (64) describe the
electric circuit from Fig. 4.

Next, integrating Eq. (63) (the constant of integration is
taken to be zero), we can rewrite it in the form

Lig@)
o) — My

which shows that the meminductance L depends on the
generalized velocity x = y.

P(t) = q(t) = L1y, ¢(O]q (1), (65)

D. Mutual meminductance

After the generalization of self-inductance to meminduc-
tance, one wonders if mutual inductance can be generalized to
memory situations as well. We consider two coupled inductors,
as in Fig. 4, but now assume the mutual inductance to have
memory. Here, we want to describe that part of the memory
that cannot be included in two (self-)meminductive systems.
This memory can be stored in the medium between the
inductors with a state affected by the two magnetic fluxes of the
inductors. It could also be stored in the geometry of the system
by having, e.g., two elastic coils that can either attract or repel
each other. Since the memory mechanism does not belong
solely to one inductor, the relation M = k+/LL,, applicable
to mutual inductance of two coils, does not apply for mutual
meminductance: k is not generally a constant independent of
Ly, Ly, x, and possibly some other parameters.
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FIG. 5. Symbol for a mutual meminductor.

In analogy with Egs. (46) and (47), we then define a flux-
controlled mutual meminductive system via the following set
of equations:

G1 = M~ (x.Pu1.Pm2.Dwo, (66)
G = M (x,0m1,Pm2.)Pu, (67)
x = f(xv¢Mlv¢M2vt)a (68)

where M (x,$p1,Pm2,t) is the mutual meminductance, ¢y, is
the magnetic flux defined by ¢, = fioo Var (£)dt', V() is
the voltage on the first inductor [¢» and V,,(¢) are similarly
defined], and g and ¢, are the currents in the first and second
inductors, respectively. The circuit symbol we propose for this
element is shown in Fig. 5.

Regarding the Lagrangian formulation, the additions to the
kinetic energy, potential energy, and dissipation potential as a
result of introducing this memory element are

1 . ..
T=3 Zc,-x,? + M(x.$u1,bm2.Dd1d2, (69)
U = U(-xs¢M11¢M21t)v (70)
H = H(x,X,dpm1,Pm2,1). (71)

The corresponding current-controlled mutual meminductive
systems are instead defined by the set of equations

¢M1 = M(X,IM1,1M2,I)IM2, (72)
dmz2 = M(x, Iy Ivo ) I, (73)
X = f(x1[M171M27t)7 (74’)

where [);; is the current in the ith inductor and M (x, Iy, Iy2,1)
is the mutual inductance that can be obtained by plugging in

dm1(Iy2) and @po(Iy1) in M(x,pp1,¢Pm2,1). The Lagrangian
formulation of this system is given by

1
T =3 Zc,-fcf, (75)
~ Om1Pm2
U=Ux,MIy,MIy,t)+ ————, (76)
R VN N 1))
H :Hx(x’stIM21MIMlst)v (77)

where both U and ‘H,. are the same functions as defined in the
above flux-controlled case.

VI. LAGRANGIAN OF A GENERAL CIRCUIT

We now have all the ingredients to write down the
Lagrangian for a general circuit network composed of an
arbitrary combination of memristive, memcapacitive, and
meminductive systems and their standard counterparts. These
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circuits may be powered by an arbitrary set of voltage sources
Vi(t) (Sec. VI A), for which the fluxes ¢ (¢) are defined as,
e.g.,in Eq. (54), or by a set of current sources I;(¢) (Sec. VI B).
When both voltage sources and current sources are present, one
can convert the latter to the former using Thévenin’s theorem or
the former to the latter using Norton’s theorem, > thus ensuring
only one type of power source is present. Below we briefly
outline the recipe to write the Lagrangian of a general circuit
for both cases.

A. Circuits with voltage sources

A general electronic circuit powered by voltage sources can
be described as a combination of / indivisible loops, i.e., ones
that do not contain internal loops. Withinthe jth(j =1, ...,])
loop one should consider the charge ¢g; as the circuit variable
and take into account generalized coordinates of elements
involved in this loop. For simplicity, we rename the generalized
coordinates for the whole circuitas y; i = 1, ... ,k).

The current in each branch of the circuit is the sum of
contributions from indivisible loops it belongs to. Using this
fact, we can write the Lagrangian for each element in the
branch. The element’s Lagrangian is taken in the voltage-
controlled form for memristive and memcapacitive systems
and in the flux-controlled form for meminductive ones.

The sum of the Lagrangians of individual elements of the
circuit gives the circuit’s Lagrangian, while the sum of the
dissipation potentials gives the circuit’s dissipation potential.
The circuit’s Lagrangian and dissipation potential depend on
qj.4j,Yi,and y; and resultin / + kK EOMs. The EOM obtained
for q; gives Kirchhoff’s voltage law (KVL) for the jth loop
because of the linearity of the Euler-Lagrange equations and
because each component in the loop was shown above to give
the correct voltage term. Kirchhoff’s current law (KCL), on
the other hand, is automatically satisfied by the choice of loop
current variables.

B. Circuits with current sources

When a circuit is powered by current sources, the circuit
variable is the flux ¢; in the jth (j =1, ... ) junction, while
é ; 1s the electric potential at the junction. Using this definition,
the flux or voltage across each element in the network can
be found via the difference of the fluxes or potentials in
the junctions at its ends, enabling one to write the element’s
Lagrangian and dissipation potential in the current-controlled
formalism for memristive and meminductive systems and
in the charge-controlled formalism for memcapacitive ones.
As in the voltage-controlled case, the circuit’s Lagrangian
or dissipation potential is the sum of the circuit element’s
Lagrangians or dissipation potentials, respectively.

If we denote again the internal degrees of freedom of
the whole circuit as y; (i = 1,...,k), we have a circuit’s
Lagrangian and dissipation potential that depend on ¢;, ¢ s
vi, and y; and result in / + k¥ EOMs. The EOM obtained for
¢; gives KCL for the jth junction due to the linearity of the
Euler-Lagrange equations and because each element ending
on the junction was shown above to give the correct current
term. KVL, on the other hand, is automatically satisfied by the
choice of junction potential variables.
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FIG. 6. (Color online) Schematic of flux-controlled inductively-
coupled charging circuits with a dc voltage source

This formalism has a complementary nature and can be
viewed as the dual formalism to that for circuits with voltage
sources. This conclusion will be reinforced in Sec. VII, where
we will show the canonically conjugate momenta of the
voltage-controlled and current-controlled formalisms to be
fluxes and charges, respectively.

C. Lagrangian multipliers

When a circuit, voltage-controlled or current-controlled,
has additional constraints—missing from the EOMs—relating
state variables to circuit variables, the form of their dependence
should be added to the Lagrangian. This is achieved by the
method of Lagrange multipliers. In particular, the Lagrange
multipliers are convenient for describing ideal memory circuit
elements such as the ideal memristor,!® in which the state
variable y equals the charge g flowing through the device.
Examples for such constraints appear in Sec. VID.

D. Examples

Consider two inductively coupled RC circuits as shown
in Fig. 6. Initially, both capacitors are not charged and there
are no currents in the circuits. The circuits are coupled via
mutual inductance M, which results in periodic charging and
discharging of the right-hand side capacitor as will be seen
below. We take a memristor with R(y) (y = ¢g) qualitatively
similar to the one fitted recently to experiments on TiO, thin
films,” namely, of the form

Roff - Ron
L+y%/q5’

where Ron, Rofr, and go are parameters defined for each
memristor. The resistance is seen to decrease from Ry to
Ron as charge flows through the memristor. Denoting the left
and right loop charges as g, and g, respectively, and applying
the results of Secs. III-V, we obtain the following Lagrangian
and dissipation potentials for the network:

R()’) = Ron + (78)

L . . L. q2+q2
L= E(qlz +‘1§) —Magig +q1 Vi — 12—C2 — Ay —q1),
(79)
1 o1
Hy = ER()’)CI% + Equz’ (80)
Hy =0, (81)

where A is the Lagrange multiplier corresponding to the circuit
holonomic constraint, y = ¢; [a different constraint would
lead to a different corresponding term in Eq. (79)]. These
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FIG. 7. Graphs of q,(¢) (top) and ¢,(¢) (bottom) for the system
described in Fig. 6. The solid line corresponds to the behavior with
the memristor and the dashed line to the behavior with the memristor
replaced by a normal resistor of resistance R,g. The parameters used
were Vi =1V, R = 10k, Ryx = 100k, R,, = 100 2, C =3 pF,
M = L = 0.3 mH, gy = 10~'2 C. The initial conditions were set to
no charge or current in any of the circuit elements.

expressions lead to the following EOMs for the total system:

Lijy — Mij + R(q1)d1 + % V=0, (82
Léj, — My + Rga + % —0, (83)

where the EOM for y, giving A =0, and the EOM for A,
giving y = g, were substituted. The solution of these EOMs
for certain values of the parameters is shown in Fig. 7. We
note that the insertion of the memristor produces an almost
constant current instead of an exponentially decreasing one in
the left loop of the circuit. The stabilization of the current is
achieved by the decline in the characteristic charging time
R(q1)C as the capacitor is charged. The memristor also
modifies the exchange of energy between the two circuits,
giving pronounced oscillations in the charge of the right loop of
the circuit, which are absent when the memristor is substituted
with a normal resistor.

As a second example, consider the circuit shown in
Fig. 8. The circuit consists of a 3 x 3 network of memristors
connected to a voltage source. Each memristor has resistance
R(y;), where y; is the cumulative charge that flows through the
memristor. The indivisible loops’ charges are denoted by g;.
The EOMs can be readily obtained from the Lagrangian and
dissipation potential of the circuit that read

L=qV(Qt)— 1 —q1) — (2 —qg2) — 2303 — qo + q1)
—2(s — g1+ q2) — As5(ys — q2) — A6(Y6 — g3 + q1)
—A(y7 — g4 + q2) — As(ys — qo + q3)
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FIG. 8. Schematic of a voltage-controlled 3 x 3 network of
memristive systems with a voltage source.

—Ao(¥9 — g3 +q4) — A1o(yi0 — g4)
= X111 — qo + g3) — A12(y12 — qo + q4), (84)

H = H[ROD4} + R(»)d3 + R(y3)(Go — 41)>
+ R(ya)(G1 — ¢2)* + R(ys)d3 + ROye)(G3 — 41)°
+ R(y1)(Ga — §2)* + R(y8)(Go — G3)* + R(y9)(gs — Ga)°
+ R(y10)4; + R(y11)(Go — ¢3)> + R(y12)(go — G4)*].
(85)

where A; are the Lagrange multipliers. These two functions
can be easily generalized for the case of a N x M network
of different memristors, greatly facilitating the attainment of
the EOMs, the solution of which can be used to solve, e.g.,
optimization problems such as mazes in a massively parallel

way.?!

VII. HAMILTON FORMALISM

The counterpart of the Lagrange formalism is the Hamilton
one, which is also generally the starting point for quantization.
For nondissipative systems, one can easily transform the
Lagrangian to the Hamiltonian. In the presence of dissipation
instead, this task requires particular care.

Dissipation is the result of the tracing out of certain degrees
of freedom resulting in an effective (reduced) description of
the system of interest in interaction with these degrees of
freedom. However, the microscopic procedure of tracing out
these degrees of freedom is most of the time difficult to carry
out exactly, and dissipation is then introduced with physically
plausible ad hoc strategies.

There are several ways to add dissipation at the level of
circuit Hamiltonians which range from complex Lagrangians
(resulting in complex Hamiltonians)*® to the addition of
linear dissipative elements modeled by an infinite network
of capacitors and inductors (see, e.g., Ref. 34). Since the dis-
cussion of dissipation in Hamiltonian dynamics would require
an extensive treatment by itself, here we limit our analysis
to nondissipative systems and (except for the work-energy

PHYSICAL REVIEW B 85, 165428 (2012)

theorem discussed below) leave the Hamiltonian formalism of
dissipative memory elements for a future publication.

A. Canonically conjugate momenta

Consider a nondissipative network of memory elements.
In order to write the Hamiltonian, we need to determine
the momenta p; canonically conjugate to the variables ¢;.
These momenta are defined for circuits of voltage-controlled
elements by

Pj =7 (86)

with the same definition for circuits of current-controlled
elements except for ¢; being replaced by ¢;. Looking at
the expressions for the Lagrangians of the memory elements
discussed above, one easily finds the physical meaning of
p;. In voltage-controlled circuits p; is the total of the fluxes
generated by the inductors in the jth loop, while in current-
controlled circuits it is the charge in the jth junction. In
addition, if we define the canonically conjugate momentum
to the internal degree of freedom y; as z;, we readily find that
for both voltage-controlled and current-controlled circuits

oL .
i = T =0GC)i. (87)
ayi

The Hamiltonian equations for voltage-controlled circuits
then read

oH

qj = 7—, (88)
Bpj
oH

pj=—5, (89)
g

with g; replaced by ¢; for current-controlled circuits.

Using the results for the canonically conjugate momenta,
we see that for voltage-controlled circuits Eq. (88) gives the
current in the jth loop in terms of the magnetic flux in the
inductors in each loop, while Eq. (89) gives the change in the
magnetic flux in the inductors in the jth loop in terms of the
charges in the loops. For current-controlled circuits, on the
other hand, Eq. (88) gives the potential in the jth junction
in terms of the charges in the circuit junctions, and Eq. (89)
gives the current flowing into this junction in terms of the
fluxes in the circuit junctions. The EOMs obtained here—while
representing the same physics—are distinctly different from
the ones in the Lagrangian formalism, and therein lies their
value.

With these results in mind, the Hamiltonian is defined as
the Legendre transformation of the Lagrangian, namely,

H=Zp,~q,-+21,‘y'i—£ (90)
j i

for voltage-controlled circuits, and with g; substituted by ¢;
for current-controlled circuits. Since the kinetic energy in both
cases is quadratic in g; (¢ ; for current-controlled circuits), it
is easy to see that Eq. (90) reducesto H =T + U.
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B. Work-energy theorem

If we consider an arbitrary circuit with a number of voltage
sources Vj; (of the kth voltage source in the jth loop), we can
define the work done by these sources, at any given time in an
interval of time dt, on infinitesimal charges dg; in each of the
indivisible loops. The total work done by all sources (which is
not an exact differential) is then

W= Vydg;. 1)

For nondissipative circuits all this work goes into the
variation of the internal energy d E, which can be computed
from T + U by subtracting the contribution from the voltage
sources. The work-energy theorem in this case thus reads

W =dE. (92)
In the presence of current sources the work done is
SW =) L(dgy — dg;), 93)
k.j

where I;; is the current of the source between the kth and jth
junctions (or O if none such source exists) and d¢ — d¢; is
the difference in flux on the two sides of the source. This work
accounts for the change d E of internal energy which derives
from T 4 U by subtracting the contribution from the current
sources to give a balance formally equal to Eq. (92).

C. Generalized Joule’s first law

In the dissipative case, on the other hand, we need to
take into account the part of the work done by the voltage
sources that goes into a “generalized heat” which accounts
for the heat generated in the resistances (if present) and the
“heat” generated from the dissipative components of the state
variables.

Mathematically, this amounts to

oH . aH .
SW —dE = Z %qjdt + Z 75, 7id! (94)
J 1

for voltage-controlled circuits. On the other hand, in the
presence of current sources, Eq. (94) needs to be changed

into
SW —dE = Z

Equations (94) and (95) are the generalized Joule’s first laws
for dissipative systems and are important yardsticks, together
with the Euler-Lagrange EOMs, to test the validity of a
given Lagrangian formulation. We note, in particular, the
identification of the energy loss due to memory, given by the
last terms on the right-hand side of Egs. (94) and (95), which
are not present in the formulation of standard circuit elements.

¢,dt + Z y,dt (95)

VIII. QUANTIZATION

Having shown the Hamiltonian formulation for classical
nondissipative circuits, we now embark on the quantization
of these Hamiltonians, which will be of importance at
low temperatures and mesoscopic/nanoscopic length scales.
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Instead of proceeding with a general circuit, in this case we
find it more instructive to first work out explicit examples.
We consider first a voltage source connected in series with
a memcapacitive system and a meminductive system. Then
we look at a current source connected in parallel with these
systems. These two circuits can be realized experimentally
(see, e.g., Ref. 35) and are therefore ideal test beds for the
concept of memory quanta, namely, quantized excitations of
the memory degrees of freedom of these circuits.

A. Example: series LC circuit

We consider a voltage source connected in series with a
memcapacitive system and a meminductive one as depicted
in Fig. 9(a). The case of such a circuit with no memory was
quantized in previous works’®* and will be generalized here.
The Hamiltonian for this circuit is found using Egs. (7) and
(35) for the memcapacitive system and Egs. (50) and (8) for
the meminductive one and reads

1 1,2 —-1_2
H=T+U=§ZC11 le+ ZClezl

2 2

q ¢
T 2CGVi T 2L0ondD)
+ D) — gV (O, (96)

where the index 1 corresponds to the capacitor and the index
2 to the inductor. y;; is the ith memory coordinate of the
jth memory element, and zj; is its canonically conjugate
momentum as defined in Eq. (87). ¢ is the charge flowing
through the circuit, and ¢ is the flux on the inductor. V| is the
voltage on the capacitor, and V() is the voltage of the source.
Under reasonable assumption of stability of the values of
y1 and y,, we expand Ul(yl Vi,t) and Uz(yz ¢o,1) at their
minima with respect to y; and y,, respectively. Several such
minima can exist for y; or y, in certain memory elements.?’ In
this case we should choose one minimum based on the initial
conditions. The definitions of y; are shifted by constants to
make them zero at their respective minima. This shift does
not affect the form of the other terms in the Hamiltonian. In
addition, we define A(C~))(y1,Vi,t) and A(L™")(y2,¢,1) by

+l71(y1,V1,t)

B B 1

A(C )()’I,Vlvt) == C(yl,Vl,t) CO(Vl,t)’ (97)
B _ 1

AL D=0y T ey 0D

where for brevity we have defined Cy(V,,t) = C(0,V},t) and

Lo(p,t) = L(0,p,1).

FIG. 9. (a) Schematic of a series voltage-controlled memory
element LC circuit. (b) Schematic of a parallel current-controlled
memory element LC circuit.

O

(a) (b)

L.oo,
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Discarding constant terms in U; and neglecting higher

~

order terms in x;, we can write U; ~ Z d,,yjl/2 and the
Hamiltonian takes the form

H = Hq + H, + Hyy, (99)
¢2

H=—43 _sve, (100)

17 2L, 2c0 a

1 _

Hy=5) cildi+s Zdﬁy?i’ (101)

ij ij

A L—l 2 A C—l 2

Hig = 2 2)¢ + A 5 Ly (102)

where the Hamiltonian was divided into the “charge” part H,,
the “memory” part H,, and the “interaction” part Hiy,.

We next introduce the bosonic creation and annihilation
operators defined by

)
al = @ <q - Llio)’ 1
by = C,';;;)ji (yji + %), (105)
bjl Cj;:ji <y_ii - Cj:jjl_)’ (106)

where af and a (b}i and bj;) create and destroy charge
(memory) quanta, respectively.

The frequency of the charge oscillator, wy, is the circuit
resonance frequency, (LoCp)~'/?, while the frequencies of the
memory quanta oscillators are analogously given by

Cji

(107)

wj; =

Plugging these relations into the Hamiltonian in Eq. (99) finally
gives the quantized form:

| h
H, = ha)o(a'a + E) R ET (a +aHv), (108)

1
_ Aptp. o 2
H, = Zhwﬂ(bﬁbﬂ + 2), (109)
ij
hLow o~
Hiy = ——— A(L™)32.6.0(a — a'?
+ ACTHG Vi@ +al),  (110)
4L0a)0
where V) is quantized by solving the equation V) =

Z/C(yl,Vl,t) to give Vi = Vi(y1,q,t), which translates to
Vi = V1(31,4,1) after quantization.

It is now clearly seen that H, includes only terms cor-
responding to the charge quanta, while H, includes those
corresponding to memory. Hi, couples the two quanta with
a coupling term that has at least three ladder operators.

A simple example'® that illustrates this result is a circuit
involving a normal inductor of inductance L in series with a
memcapacitor that has its upper plate of mass m hanging on
a spring with spring constant k (Fig. 10). This memcapacitor
could be a representation of, e.g., a nanoelectromechanical
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q() L?;%d

d,| L
-q(0)

FIG. 10. Elastic memcapacitive system connected to a normal
inductor.

system.*®#0 If the displacement of the upper plate from its

equilibrium position is denoted by y and its distance from the
lower plate at this position is dy, the capacitance can be easily
seen to be given by'®

Co

=T

(111)
where Cy is the capacitance at equilibrium. Using the above
formalism to quantize the Hamiltonian and keeping only
energy-conserving terms, we find Eq. (110) is reduced to

3/2

YW

This type of interaction is of the same kind as the one
encountered in the quantum treatment of second-harmonic
generation in optics.*!

If the circuit can be built to satisfy (k/m)"/? = 2(LCy)~!/?
the interaction will produce a splitting of the degeneracy of
the levels that is of first order in Hi, and which may be
large enough to be detected experimentally. (See also the
Conclusions for an order of magnitude estimate of when to
expect quantum effects to dominate.)

Hie = ——dy (LCo) " (mk)""*a"’b + bla?).  (112)

B. Example: parallel LC circuit

As a second example let us consider a parallel memory LC
circuit as plotted in Fig. 9(b). In this circuit a current source
is connected in parallel with a memcapacitive system and a
meminductive system. The Hamiltonian for this system can be
found utilizing Egs. (39) and (40) for the former and Egs. (56)
and (57) for the latter, resulting in

1 -1 -1
H:T+U:§ zi:cli Zi +35 Zczz Z%;

2
n ¢
2L(y2,15,1)

2

2C(y1,¢ 9]

+U,(0n1,C7' ¢,0)+ Us(ya, LIy, 1) — 91 (1),
(113)

with the same definitions as in Eq. (96), except for ¢ being the
flux in the inductor and ¢ being the charge on the capacitor.
I, is the current through the inductor and () is the current of
the source.

Proceeding in a completely analogous way to the previous
subsection with the definitions of the ladder operators in
Egs. (103)-(106) modified by the substitutions Ly — C, and
q — ¢, we find the quantized Hamiltonian of this system to
be

H = H, + Hy + Hy, (114)
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1 h
H, = ha)o(aTa + E) -/ 2Cowo(a +ahi(),

(115)
. 1
¢
H, = %:hwji (bﬁbﬁ- + 5), (116)
hC PN
it = — AL D)@ — a)?
+ ACTHELG D@ +aD?,  A17)
4C0a)0

where I is quantized by solving the equation I, =
¢/L(yp,1»,1) to give I, = I(y2,¢,t), which reduces to I, =
I, (3,¢,1) after quantization. This Hamiltonian is very similar
to the one obtained for the series LC circuit. We will now show
these two Hamiltonians to be the basic building blocks for the
quantized Hamiltonian of a general circuit with nondissipative
elements.

C. General circuit

We now proceed to find the quantized Hamiltonian for a
general circuit network of memcapacitive systems, meminduc-
tive systems, and voltage sources. Such a circuit can be divided
into indivisible loops, each with charge g, as noted in Sec. VL.
Using the methods of that section to find 7 and U, one can
write the Hamiltonian for the network as H = T + U, which,
after the substitution of g; and ¢, with ladder operators using
Egs. (103)—(106), reduces, apart from the interaction part, to
a bilinear combination of them which is known to be exactly
diagonalizable by, e.g., a linear canonical transformation.

With regard to the quantization of the Hamiltonian of
current-controlled circuits, the process is similar. We denote
the flux in each junction of the network with ¢, with a
corresponding ¢, being the charge in the junction. Using the
methods of Sec. VI, we write the Hamiltonian H =T + V
and then quantize it by writing ¢, and py in terms of ladder
operators using the transformation from the previous subsec-
tion. As in the voltage-controlled case, the noninteracting part
of the Hamiltonian is again bilinear and can be diagonalized.

IX. CONCLUSIONS

To summarize, in this work we introduced the general
Lagrangian formulation for the three basic memory
elements—memristive, memcapacitive, and meminductive
systems—and defined a fourth memory element, a mutual
meminductive system, for which we also gave the Lagrange
formalism. We showed how to write the Lagrangian for
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a general circuit, including one with current sources. The
examples given for the Lagrangian formalism demonstrated
that writing the Lagrangian and dissipation potential should
be the preferred choice for finding the EOMs of large memory
element networks.

The Hamiltonian formalism for electric circuits was also
generalized to include memory, although only for nondissi-
pative elements. As in previous works,”® we have found that
the canonically conjugate momentum of charge is the flux
and vice versa. The generalized Joule’s first law was given
for general circuits including ones with memory elements.
This law can be used to verify the correctness of a given
Lagrangian formulation. Lastly, we presented a scheme for
the quantization of a general nondissipative memory element
circuit.

The quantum treatment of memory elements, and in
particular the example given in the text of a memcapacitor
in series with an inductor (Fig. 10), begs the question of
under which conditions one can measure quantum effects in
these systems. For quantum effects to be easily measurable,
both the thermal fluctuation energy and the width of the
energy levels should be smaller than the oscillator energy
quantum,’ ie., kT < hw and Q > 1, where Q = wyR/L
is the quality factor of the oscillator, R is the loop resistance,
and L is the inductance. Possible values for the capacitance and
inductance in mesoscopic circuits can be taken to be 1015 F*?
and 107!° H,* respectively. If one assumes a temperature
of T =20 mK and circuit resistance of 10 Q or less, both
conditions mentioned above are satisfied. As noted for the
example above, the degeneracy condition, satisfiable by a
memcapacitor,** will lead to an experimentally detectable
splitting of the degenerate energy levels as a result of the
interaction between the memory quanta and charge quanta.

Future research in this field may include extending the
Hamiltonian formalism to dissipative circuits. One way to
do this is, e.g., via a path-integral formulation® of memory
elements. Along a parallel line, we expect the Lagrangian
formalism discussed here to be of great value in the analysis of
complex networks with memory, which offer both fundamental
and applied research opportunities.

ACKNOWLEDGMENTS

M. D. is grateful to the Scuola Normale Superiore of Pisa,
for the hospitality during a visit where part of this work was
written, and to S. Pugnetti and R. Fazio for useful discussions.
This work has been partially funded by the National Science
Foundation Grant No. DMR-0802830.

“gcohen@physics.ucsd.edu

fpershin@physics.sc.edu

idiventra@physics.ucsd.edu

L. O. Chua, IEEE Trans. Circuit Theory 18, 507 (1971).

’L. O. Chua and S. M. Kang, Proc. IEEE 64, 209 (1976).

3M. Di Ventra, Y. V. Pershin, and L. O. Chua, Proc. IEEE 97, 1717
(2009).

4]J. E. Green, J. W. Choi, A. Boukai, Y. Bunimovich, E. Johnston-
Halperin, E. Delonno, Y. Luo, B. A. Sheriff, K. Xu, Y. S. Shin,

H.-R. Tseng, J. F. Stoddart, and J. R. Heath, Nature (London) 445,
414 (2007).

’S.E. Karg, G. I. Meijer, J. G. Bednorz, C. T. Rettner, A. G. Schrott,
E. A. Joseph, C. H. Lam, M. Janousch, U. Staub, F. La Mattina,
S. F. Alvarado, D. Widmer, R. Stutz, U. Drechsler, and D. Caimi,
IBM J. Res. Dev. 52, 481 (2008).

®A. Sawa, Mat. Today 11, 28 (2008).

7Y. V. Pershin and M. Di Ventra, Neural Networks 23, 881
(2010).

165428-12


http://dx.doi.org/10.1109/TCT.1971.1083337
http://dx.doi.org/10.1109/PROC.1976.10092
http://dx.doi.org/10.1109/JPROC.2009.2021077
http://dx.doi.org/10.1109/JPROC.2009.2021077
http://dx.doi.org/10.1038/nature05462
http://dx.doi.org/10.1038/nature05462
http://dx.doi.org/10.1147/rd.524.0481
http://dx.doi.org/10.1016/S1369-7021(08)70119-6
http://dx.doi.org/10.1016/j.neunet.2010.05.001
http://dx.doi.org/10.1016/j.neunet.2010.05.001

LAGRANGE FORMALISM OF MEMORY CIRCUIT ...

8S.H. Jo, T. Chang, 1. Ebong, B. B. Bhadviya, P. Mazumder, and
W. Lu, Nano Lett. 10, 1297 (2010).

°H. Choi, H. Jung, J. Lee, J. Yoon, J. Park, D.-J. Seong, W. Lee,
M. Hasan, G.-Y. Jung, and H. Hwang, Nanotechnology 20, 345201
(2009).

19Q. Lai, L. Zhang, Z. Li, W. F. Stickle, R. S. Williams, and Y. Chen,
Adv. Mater. 22, 2448 (2010).

I'E Alibart, S. Pleutin, D. Guerin, C. Novembre, S. Lenfant,
K. Lmimouni, C. Gamrat, and D. Vuillaume, Adv. Funct. Mater.
20, 330 (2010).

12M. P. Fontana (private communication).

13Y. V. Pershin, S. La Fontaine, and M. Di Ventra, Phys. Rev. E 80,
021926 (2009).

4G. K. Johnsen, C. A. Liitken, O. G. Martinsen, and S. Grimnes,
Phys. Rev. E 83, 031916 (2011).

15Y. V. Pershin and M. Di Ventra, Phys. Rev. B 78, 113309 (2008).

16X, Wang, Y. Chen, H. Xi, H. Li, and D. Dimitrov, El. Dev. Lett. 30,
294 (2009).

"D, B. Strukov, G. S. Snider, D. R. Stewart, and R. S. Williams,
Nature (London) 453, 80 (2008).

13Y. V. Pershin and M. Di Ventra, Adv. Phys. 60, 145 (2011).

19M. Di Ventra and Y. V. Pershin, Materials Today 14, 584 (2011).

20Y. V. Pershin and M. Di Ventra, Proc. IEEE (in press), e-print
arXiv:1009.6025.

2lY. V. Pershin and M. Di Ventra, Phys. Rev. E 84, 046703 (2011).

22T. Driscoll, Y. V. Pershin, D. N. Basov, and M. Di Ventra, Appl.
Phys. A 102, 885 (2011).

M. Di Ventra, Y. V. Pershin, and L. O. Chua, Proc. IEEE 97, 1371
(2009).

%M. Di Ventra, Electrical Transport in Nanoscale Systems (Cam-
bridge University Press, Cambridge, 2008).

2H. Breuer and F. Petruccione, The Theory of Open Quantum Systems
(Oxford University Press, Oxford, 2002).

26M. Devoret, in Quantum Fluctuations (Les Houches Session LXIII),
edited by S. Reynaud, E. Giacobino, and J. Zinn-Justin (Elsevier,
New York, 1997).

PHYSICAL REVIEW B 85, 165428 (2012)

?7E. Shragowitz and E. Gerlovin, Int. J. Circuit Theory Appl. 16, 129
(1988).

2D, Jeltsema and A. J. van der Schaf, Mathematical and Computer
Modelling of Dynamical Systems 16, 75 (2010).

2H. Helmholtz, Ann. Phys. (Berlin) 89, 211 (1883).

30L. Thévenin, Annales Télégraphiques 10, 222 (1883).

3H. Goldstein, C. P. Poole, and J. L. Safko, Classical Mechanics (3rd
Edition) (Addison-Wesley, Reading, 2001).

32A. Sedra and K. Smith, Microelectronic Circuits (Oxford University
Press, Oxford, 2009), 6th ed.

3H. Dekker, Z. Phys. B 21, 295 (1975).

3A. Caldeira and A. Leggett, Annals of Physics 149, 374
(1983).

35J. Johansson, S. Saito, T. Meno, H. Nakano, M. Ueda, K. Semba,
and H. Takayanagi, Phys. Rev. Lett. 96, 127006 (2006).

367 M. Zhang, L.-S. He, and S.-K. Zhou, Phys. Lett. A 244, 196
(1998).

37J. Martinez-Rincon and Y. V. Pershin, IEEE Trans. Electron Devices
58, 1809 (2011).

38G. M. Rebeiz, RF MEMS: Theory, Design, and Technology (Wiley-
Interscience, New York, 2002), 1st ed.

¥V. K. Varadan, K. J. Vinoy, K. A. Jose, and U. Zoelzer, RF MEMS
and Their Applications (Wiley, New York, 2002), 1st ed.

403, Evoy, M. Duemling, and T. Jaruhar, in Introduction to Nanoscale
Science and Technology, edited by M. Di Ventra, S. Evoy, and J. R.
Heflin (Springer, New York, 2004), pp. 389—416.

“IL. Mandel and E. Wolf, Optical Coherence and Quantum Optics
(Cambridge University Press, Cambridge, 1995).

“2M. Watanabe and D. B. Haviland, Phys. Rev. B 67, 094505
(2003).

43]. Clarke and A. Braginski, The SQUID Handbook, Volume 2:
Applications of SQUIDs and SQUID Systems (Wiley-VCH, New
York, 2006), 1st ed.

4M. B. Partensky, e-print arXiv:physics/0208048.

“A. Altland and B. Simons, Condensed Matter Field Theory
(Cambridge University Press, Cambridge, 2010), 1st ed.

165428-13


http://dx.doi.org/10.1021/nl904092h
http://dx.doi.org/10.1088/0957-4484/20/34/345201
http://dx.doi.org/10.1088/0957-4484/20/34/345201
http://dx.doi.org/10.1002/adma.201000282
http://dx.doi.org/10.1002/adfm.200901335
http://dx.doi.org/10.1002/adfm.200901335
http://dx.doi.org/10.1103/PhysRevE.80.021926
http://dx.doi.org/10.1103/PhysRevE.80.021926
http://dx.doi.org/10.1103/PhysRevE.83.031916
http://dx.doi.org/10.1103/PhysRevB.78.113309
http://dx.doi.org/10.1109/LED.2008.2012270
http://dx.doi.org/10.1109/LED.2008.2012270
http://dx.doi.org/10.1038/nature06932
http://dx.doi.org/10.1080/00018732.2010.544961
http://dx.doi.org/10.1016/S1369-7021(11)70299-1
http://arXiv.org/abs/arXiv:1009.6025
http://dx.doi.org/10.1103/PhysRevE.84.046703
http://dx.doi.org/10.1007/s00339-011-6318-z
http://dx.doi.org/10.1007/s00339-011-6318-z
http://dx.doi.org/10.1109/JPROC.2009.2022882
http://dx.doi.org/10.1109/JPROC.2009.2022882
http://dx.doi.org/10.1002/cta.4490160203
http://dx.doi.org/10.1002/cta.4490160203
http://dx.doi.org/10.1080/13873951003690824
http://dx.doi.org/10.1080/13873951003690824
http://dx.doi.org/10.1007/BF01313310
http://dx.doi.org/10.1016/0003-4916(83)90202-6
http://dx.doi.org/10.1016/0003-4916(83)90202-6
http://dx.doi.org/10.1103/PhysRevLett.96.127006
http://dx.doi.org/10.1016/S0375-9601(98)00295-3
http://dx.doi.org/10.1016/S0375-9601(98)00295-3
http://dx.doi.org/10.1109/TED.2011.2126022
http://dx.doi.org/10.1109/TED.2011.2126022
http://dx.doi.org/10.1103/PhysRevB.67.094505
http://dx.doi.org/10.1103/PhysRevB.67.094505
http://arXiv.org/abs/arXiv:physics/0208048

