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Coulomb impurity under magnetic field in graphene: A semiclassical approach
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We address the problem of a Coulomb impurity in graphene in the presence of a perpendicular uniform
magnetic field. We show that the problem can be solved below the supercritical impurity magnitude within the
WKB approximation. Without impurity the semiclassical energies correctly reproduce the Landau level spectrum.
For a given Landau level, the WKB energy depends on the absolute value of angular momentum in a way which
is consistent with the exact diagonalization result. Below the supercritical impurity magnitude, the WKB solution
can be expanded as a convergent series in powers of the effective fine structure constant. Relevance of our results
to the validity of the widely used Landau level projection approximation is discussed.
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I. INTRODUCTION

Graphene, a two-dimensional honeycomb lattice of carbon
atoms,1,2 at low energies can be described by massless
Dirac fermions.3,4 This is evident in graphene’s Landau level
structure which leads to anamolous integer quantum Hall
effect (QHE) with plateaus at σxy = 4(n + 1/2)e2/h (n =
0, ±1, ±2, . . .).3,4 As sample qualities improved, experiments
began to reveal a large number of additional Hall plateaus5

not expected from Landau quantization alone; the gaps
associated with these plateaus could only be induced by
electron-electron interactions.6 More recently the importance
of strong electron-electron interactions was firmly established
after fractional quantum Hall effects (FQHE) were revealed
by transport measurements on suspended graphene samples7,8

and graphene on hexagonal boron nitride9 (h-BN) substrates.10

Current theories of FQHE in conventional semiconducting
systems rely heavily on the notion of the projection of
interactions onto a single Landau level (i.e., in general cases
Landau level mixing is neglected). The appropriateness of
the Landau level projection is not trivially obvious for the
case of graphene. In semiconducting 2D electron gas this
is formally achieved in the limit of a large magnetic field
B → ∞. This is justified because the Coulomb interaction
Ve−e ∼ e2/εlB scales as

√
B while the single particle Landau

level gap h̄ωc scales as B. So it can be argued there that for
large magnetic fields, interactions between electrons in the
lowest partially-filled Landau level cannot induce transitions
to the higher Landau levels. The projection of the interactions
onto the lowest partially-filled Landau level is not as clearly
justified in graphene because the single particle Landau level
gaps in graphene also scale as ∼√

B, which is the same as
the interaction strength. Most FQHE theories for graphene
have nevertheless assumed that Landau level mixing is an
inessential complication that can be ignored.10

For this reason, it is important to study massless Dirac
fermions in the presence of Coulomb interaction and a
quantizing magnetic field, and to validate Landau level
projection approximation. If Landau level projection is a
valid approximation, effects of Landau level mixing can be
treated perturbatively. The simplest case would be a two-body
problem. For nonrelativistic particles with Galilean invariance,
a two-body problem is equivalent to a one-body problem
once we separate the center-of-mass and relative motions.

However such a separation is not possible for Dirac fermions,
and the two-body problem cannot be solved analytically.
In the absence of a magnetic field, solutions of two-body
problems with zero center-of-mass momentum are possible,11

but these solutions do not generalize to the present case with
a magnetic field. Therefore as a first step we study instead a
massless Dirac fermion in the presence of a Coulomb impurity
and a uniform magnetic field in this work, and address the
following question: Can Landau level mixing effects induced
by the Coulomb impurity be treated perturbatively or not?
In addition to the interest in its own right, we note many
features in this one-body problem, such as nonlinear screening
and supercritical instabilities have direct generalizations in
the many body case, for example exciton condensation or
spontaneous mass generation.12

Unlike the Coulomb impurity problem13,14 in the zero
magnetic field case, this problem can not be solved exactly
in closed analytic form when a uniform magnetic field is
present. We instead apply the semiclassical WKB method to
solve this problem. While approximate, the WKB method is
nonperturbative in the potential. As we will show, it gives
rise to the exact Landau level spectrum in the absence of
the Coulomb impurity, and numerically very accurate energy
spectra in its presence for most cases; the latter is established
by comparing with the exact diagonalization calculation using
a truncated Hilbert space that keeps a very large number of
Landau levels. By expanding the WKB solutions in the power
series of Coulomb impurity strength, we show that the series is
convergent as long as the Coulomb impurity strength is below
the supercritical instability critical point (to be discussed in
more detail later), thus establishing the perturbative nature of
the Coulomb-potential-induced Landau level mixing effects.
Our results thus lend support to the Landau level projection
approximation in this limited parameter range.

We would like to stress the importance of supercritical
instabilities in the Coulomb impurity problem in a magnetic
field. Without the magnetic field, supercritical instabilities
have been investigated by many authors.13–15 For massless
Dirac fermions, it is accompanied with an infinite number
of quasilocalized resonances in the hole sector. When the
magnetic field is added, these supercritical instabilities are also
present at the same critical value of the impurity strength gc.
This is because supercritical instabilities are only determined
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by the short-range behavior of the effective potential. The
contribution to the effective potential induced by the presence
of a quantizing magnetic field vanishes as r → 0, hence it does
not influence the short-distance part of the effective potential.
Beyond gc, each Landau level mixes with the quasistationary
levels, and the whole Hilbert space can not be truncated
into a single Landau level. Below gc, we can use the WKB
approximation to solve for the wave functions and energy
spectrum of a massless Dirac fermion. This method also
captures the characteristic features of the supercritical insta-
bilities. Below gc it has discrete energy level solutions, which
become continuous beyond the critical point gc. This signals
the breakdown of Landau level projection. We notice Ref. 16
also discussed the Coulomb-impurity-induced supercritical
instabilities in graphene under magnetic field. Considering
the Coulomb impurity as perturbation, they arrived at the
conclusion that the supercritical instability critical point gc

tends to zero for massless quasiparticles under magnetic field
with any finite magnitude. We disagree with their conclusion,
because Coulomb impurity is essential to the supercritical
instabilities, and it should not be treated as a perturbation.

In Sec. II, we outline the WKB method for 2D massless
Dirac particles in a uniform magnetic field, and obtain the
WKB wave functions and Bohr-Sommerfeld (BS) quantization
condition for eigenenergies. The BS condition is compared
with its counterpart of a Schrodinger particle. In Sec. III, the
WKB results are shown for cases with and without Coulomb
impurity. We also compare the semiclassical energies with
energies obtained from exact diagonalization. Section IV ad-
dresses the convergence of the WKB energies when expanded
in powers of Coulomb impurity strength. Some discussion
about the local density of states based on our semiclassical
calculation, and the conclusions, are given in Sec. V. Finally,
we provide a detailed derivation (using Zwaan’s method) of
BS condition in the Appendix.

II. WKB METHOD FOR GRAPHENE

A. Outline of the Problem

Consider the problem of a single Coulomb impurity in a
homogeneous magnetic field perpendicular to the plane of
graphene. Define H

+(−)
K(K ′) as the Hamiltonian of the problem

with positive (negative) Coulomb impurity at the K (K ′) point
of the Brillouin zone. With negative Coulomb impurity, close
to the K point, the electron quasiparticle states are described
by the Dirac Hamiltonian

H−
K = h̄vF

(
1

h̄
σ · � + g

r

)
, (1)

where vF ≈ 106 m/s is the Fermi velocity, the canonical
momentum � = −ih̄∇ + (e/c)A includes the vector potential
A corresponding to the magnetic field, σi are the Pauli
matrices, g = Zα in which Z is the impurity charge, α =
e2/(κh̄vF ) is graphene’s fine structure constant, and κ is the
effective dielectric constant. Equation (1) does not involve
intervalley scattering, because in Fourier space the Coulomb
potential behaves like 1/q and is dominated by small q. For
conventional SiO2 substrates κ ≈ 2.4, giving α ≈ 0.92 which
is much larger than that in QED (α ≈ 1/137).

We use the symmetric gauge (Ax,Ay) = (B/2)(y, −x).
Resorting to the rotational symmetry of the system, the
eigenfunctions can be written in cylindrical coordinates as

�l(r,φ) = 1√
r

[
F (r)ei(l−1)φ

iG(r)eilφ

]
, (2)

and the radial eigenequation reads[
g

r
− ε

lB

(
∂r + l−1/2

r
− 1

2l2
B

r
)
$ − ∂r + l−1/2

r
− 1

2l2
B

r)
g

r
− ε

lB

]

×
[

F (r)
G(r)

]
= 0, (3)

where lB = √
h̄c/(eB) is the magnetic length, ε = ElB/(h̄vF )

in which E is the eigenenergy of the Hamiltonian (1) and ε

is dimensionless, and l = 0, ±1, ±2, . . . is the orbital angular
momentum quantum number.

Different signs of Coulomb impurity can be related by the
operation

σzH
±
K(K ′)σz = −H∓

K(K ′). (4)

It implies that, in a certain valley, a solution |�〉 to the
Dirac equation with energy E for positive (negative) Coulomb
impurity, has a conjugate partner σz |�〉 with energy −E

for negative (positive) Coulomb impurity. On the other hand,
different valleys can be related by the operation

σxH
±
K(K ′)σx = H±

K ′(K). (5)

Hence with the same Coulomb impurity, a solution |�〉 to the
Dirac equation with energy E in valley K (K ′), has a conjugate
partner σx |�〉 with energy E in valley K ′ (K). Therefore, it
is enough to solve the problem of negative Coulomb impurity
at the K point.

Introducing the functions u(r), v(r) by the relation[
F (r)
G(r)

]
=

(
ε

lB
− g

r

) 1
2
[

u(r)
v(r)

]
, (6)

Eq. (3) can be written as two Schrodinger-like equations,

−u′′(r) + U1(r)u(r) = ε2

l2
B

u(r),

(7)

−v′′(r) + U2(r)v(r) = ε2

l2
B

v(r),

where

U1(r) = j 2 − j − g2

r2
+ g(1 − j )

r3
(

ε
lB

− g

r

) + 3g2

4r4
(

ε
lB

− g

r

)2

+ 2gε

lBr
+ r2

4l4
B

− j + 1
2

l2
B

+ g

2l2
Br

(
ε
lB

− g

r

) , (8)

U2(r) = j 2 + j − g2

r2
+ g(1 + j )

r3
(

ε
lB

− g

r

) + 3g2

4r4
(

ε
lB

− g

r

)2

+ 2gε

lBr
+ r2

4l4
B

− j − 1
2

l2
B

− g

2l2
Br

(
ε
lB

− g

r

) , (9)
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and j = l − 1/2 is the total angular momentum quantum num-
ber. Although we have (seemingly decoupled) Schrodinger-
like equations (7), u(r) and v(r) are still related to each other.
The reason is that the final wave function [Eq. (2)] is a spinor,
which is the superposition of the states in sublattice A and B
(corresponding to u(r) and v(r) respectively). The ratio of the
two functions u(r) and v(r) is determined by Eq. (3).

Morse and Feshbach17 classified the solutions of second-
order ordinary differential equations by types of singular
points of the equations. With two regular (r = 0, glB/ε)
and one irregular (r → ∞) singular points respectively,
Eq. (7)’s exact solutions can not be expressed in closed
form in terms of known special functions. At a short dis-
tance limit U1,2(r) → (j 2 − g2 − 1/4)/r2, the wave function
components have the form rγ+1/2, with γ =

√
j 2 − g2. For

g > gc ≡ |j |, the parameter γ becomes imaginary, and the
wave function oscillates dramatically toward the center. We
want to point out that this remarkable behavior of the wave
functions at short distance does not depend on the existence of
a magnetic field, because the magnetic-field-related potential
term has a higher order of r dependence than other terms
of the potentials in Eqs. (8) and (9), and is negligible when
r → 0. The above phenomenon is simply the supercritical
instability, which is already well known in the graphene
Coulomb impurity problem.13–15 For the impurity problem,
such instability signals the breakdown of the Dirac vacuum.
Virtual electron-hole pairs are created, with negatively charged
electrons going to infinity while the holes are bound to the
Coulomb center (our impurity has a negative charge). For the
same problem under magnetic field, the virtual electrons can
not go to infinity, because the effective potential is infinite
when r → ∞. When the supercritical instability happens, each
Laudau level mixes with the quasistationary levels to better
shield the large impurity charge, and we can not truncate the
whole Hilbert space into one Landau level.

B. WKB method

The WKB method is one of the basic and frequently-
used methods to solve quantum mechanics problems without
analytic solutions. Unlike perturbation theory, the WKB
method is not connected with the smallness of potential
and thus has a wider applicability range allowing one to
study the qualitative behavior of the system. It also gives
implicit or even explicit solutions for the energies as functions
of parameters of the system, through which we can judge
if the potential can be considered as perturbation from a
semiclassical view. The WKB method was originally created to
approximately solve one dimensional, or radial part of higher
dimensional Schrodinger particle problems. We formalize the
WKB method for the 2D massless Dirac particle problem
below. Coulomb potential and uniform magnetic field are
considered for our interest, but they can be replaced by any
scalar and vector potential for general consideration.

Introducing the spinor function

�(r) =
[

F (r)

G(r)

]
, (10)

the radial Eq. (3) becomes

�′(r) = 1

h̄
D�(r), (11)

where

D ≡
[

h̄j

r
− h̄

2l2
B

r −(
h̄ε
lB

− h̄g

r

)
h̄ε
lB

− h̄g

r
−(

h̄j

r
− h̄

2l2
B

r
)
]

=
[

J
r

− eB
2c

r −(
E
vF

− Ze2

κvF r

)
E
vF

− Ze2

κvF r
−(

J
r

− eB
2c

r
)

]
, (12)

with the total angular momentum J = h̄j . Within WKB, we
expand the solution of Eq. (11) in the form18,20

�(r) = eiy(r)/h̄
∞∑

n=0

(−ih̄)nϕ(n)(r), (13)

where y(r) is a scalar function and ϕ(n)(r) are spinor functions.
For the matrix D in Eq. (12), the total angular momentum J

and energy E are two conserved physical quantities, which are
independent of h̄. This may lead to some confusion because,
say, J equals to h̄j in the quantum mechanical treatment of
the system. However, when we make h̄ → 0 and the theory
returns to classical mechanics, the quantum number j ∼ 1/h̄

keeps the physical quantity invariant. Therefore, the matrix D

is independent of h̄.
Inserting Eq. (13) into Eq. (11) and equating the coefficients

of equal powers of h̄, the first two equations of this set are

iy ′(r)ϕ(0)(r) = Dϕ(0)(r), (14)

and

iϕ(0)′(r) + iy ′(r)ϕ(1)(r) = Dϕ(1)(r). (15)

iy ′(r) and ϕ(0)(r) are obtained as the eigenvalues and eigen-
vectors of the matrix D:

iy ′(r) ≡ h̄λi(r) = ±ih̄p(r),
(16)

p(r) =
√(

ε

lB
− g

r

)2

−
(

j

r
− 1

2l2
B

r

)2

,

ϕ(0)(r) ≡ ϕi(r) = Afi(r)

( √
sgn[S(r)][S(r) + λi]

s
√

sgn[S(r)][S(r) − λi]

)
, (17)

where subscript i = ± represents the two eigenvalues
and their corresponding eigenvectors, S(r) ≡ j

r
− 1

2l2
B

r ,

s ≡ sgn( ε
lB

− g

r
) · sgn( j

r
− 1

2l2
B

r), A is any constant, and fi(r)
is the r-dependent common factor which has not yet been
determined. For a complex number z in this paper, we choose
arg(z) in the region (−π,π ], and arg(z1/2) = arg(z)/2. For this
reason, sgn[S(r)] inside the square roots of Eq. (17) can not be
factored out in order to keep the phase difference of the wave
functions in two sublattices. Since matrix D is not symmetric,
left eigenvector ϕ̃(0)(r) satisfying ϕ̃(0)(r)iy ′(r) = ϕ̃(0)(r)D is
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introduced:

ϕ̃(0)(r) ≡ ϕ̃i(r) = Bgi(r) × (
√

sgn[S(r)][S(r) + λi],

− s
√

sgn[S(r)][S(r) − λi]), (18)

where B is any constant and gi(r) is any r-dependent common
factors, and they are not important for our WKB results.
Multiplying Eq. (15) by ϕ̃(0)(r) on the left helps us to cancel
the ϕ(1)(r) depended terms. Then Eq. (15) becomes

ϕ̃(0)(r)ϕ(0)′(r) = 0. (19)

Substituting Eqs. (17) and (18) into Eq. (19), we obtain

fi(r) = λi(r)−
1
2 . (20)

In WKB approximation, we only keep functions y(r) and
ϕ(0)(r) in Eq. (13). The WKB approximate solution of Eq. (11)
is obtained as

�i(r) = Cλ
− 1

2
i e

∫ r
λidr

( √
sgn[S(r)][S(r) + λi]

s
√

sgn[S(r)][S(r) − λi]

)
, (21)

where C is a constant. The general solution �(r) could be
written as the linear combination of �+(r) and �−(r):

�(r) = c1�+ + c2�−

= c1p
− 1

2 e−i
∫ r

pdr

[ √
sgn(S)(S − ip)

s
√

sgn(S)(S + ip)

]

+ c2p
− 1

2 ei
∫ r

pdr

[ √
sgn(S)(S + ip)

s
√

sgn(S)(S − ip)

]
, (22)

where r is redefined as a dimensionless number
representing the ratio of the distance from
origin to magnetic length lB . We also redefine
S(r) = j/r − r/2, p(r) =

√
(ε − g/r)2 − (j/r − r/2)2,

and s ≡ sgn(ε − g/r) · sgn(j/r − r/2) using the new
dimensionless r; c1,2 are constants fixed by boundary
condition and normalization.

To further obtain the BS condition for eigenenergies, we
need to distinguish between classically allowed and forbidden
regions. Defining WKB effective potential and WKB effective
energy

Ueff ≡ (j 2 − g2)/r2 + 2εg/r + r2/4, (23)

εeff ≡ ε2 + j, (24)

the WKB wave number can be written as

p =
√

εeff − Ueff. (25)

Ueff captures quantitatively the behavior of the supercritical
instability, which is originally reflected by the wave-function
limiting behavior rγ+1/2 at r → 0 when the Schrodinger-like
equations (7) are considered above. As shown in Fig. 1, for
0 � g < gc = |j |, the WKB effective potential Ueff is positive
infinite at both r → 0 and r → ∞, which allows us to use

1 2 3 4

2

4

6

8

10

r

Ueff

FIG. 1. WKB effective potentials Ueff ≡ (j 2 − g2)/r2+
2εg/r + r2/4 for j = 1/2. The solid line is for subcritical value
g = 0.49; the dashed line is for supercritical value g = 0.7 (gc = 0.5
when j = 1/2). The energy ε is chosen to be 1.729, which is
approximately the WKB energy of the first Landau level when
g = 0.49, calculated in Sec. III.

BS condition to obtain quantized energy levels, and the WKB
wave function vanishes at r → 0. For g > gc = |j |, Ueff is
still positively infinite at r → ∞ but negatively infinite at
r → 0, so the WKB wave function will oscillate as r → 0. Just
like what we can see from Eqs. (7)–(9), the original Landau
level states mix with the quasistationary states near the origin,
and get the chance to be closer to the impurity to screen the
impurity charge when the supercritical instability happens.
For the following WKB calculation, we will only consider
the weak coupling region (g < gc) and address the question:
When are the electron states perturbatively connected to the
states in a single Landau level?

There are four solutions for the quartic equation
p2(r) = 0: r = ε +

√
ε2 − 2g + 2j , −ε +

√
ε2 + 2g + 2j ,

ε −
√

ε2 − 2g + 2j , and −ε −
√

ε2 + 2g + 2j . In the weak
coupling region 0 � g < gc = |j |, they are all real numbers.
Two of the four real solutions are positive while the other
two are negative. The two negative solutions have no physical
meaning, but we want to keep them for the calculation in
Sec. III. We can label the four solutions a, b, c, d and
require a > b > 0 > c > d. Using Zwaan’s method (in the
Appendix), BS condition is obtained as∫ a

b

p(r)dr =
(

nBS + 1 − θ (j )

2

)
π, (26)

where nBS = 0,1,2, . . ., θ (j ) is the step function, θ (j ) = 1 for
j > 0, and θ (j ) = 0 for j < 0. For the special case of nBS = 0,
the classically allowed region disappears; this corresponds
to the zeroth Landau level and will be discussed in detail
later. The BS condition of the same case for the Schrodinger
particle was obtained in Ref. 19. Besides the different forms
of p(r), the Dirac particle BS condition has additional terms
π/2 − θ (j )π/2, instead of π/2.

Compared to Zwaan’s method used in the Appendix, there is
a more elegant way20,21 to deduce the Bohr-Sommerfeld condi-
tion (26) without connecting boundary conditions. Moreover,
this method helps us to see the origin of θ (j ) in Eq. (26)
straightforwardly. In Fig. 2, we draw the two branches of
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C

r

p

0
ab

FIG. 2. Schematic diagram of the two branches of momenta ±p

in phase space. The two branches merge continuously at the turning
points a, b.

momenta ±p as functions of r . They join at the turning
points a, b to form a single clockwise closed curve C in
phase space. Considering any term of the WKB wave function
[Eq. (22)], say �−(r), it must be single valued after a full
cycle along C. First consider the exponent containing

∫ r
pdr .

In one complete cycle, the phase change is
∮
c
p(r)dr . There

are additional phases introduced at each turning point by the
amplitude factor p− 1

2 . At each turning point, p will change
sign, which equals to adding a phase π since exp(iπ ) = −1.
Therefore �−(r) gets an additional phase of −π/2 at each
turning point. Another kind of additional phase is introduced
at each point where S(r) = 0 by the spinor factor of �−(r). At
each such point, sgn[S(r)]ip(r) inside the square root changes
sign. Each S(r) = 0 point gives an additional phase of π/2.
Overall, the single-valuedness of the wave function demands

∮
c

p(r)dr − μ
π

2
+ κ

π

2
= nBS2π, (27)

where μ is the number of turning points and κ is the number of
points where S(r) = 0 in one complete cycle. For negative j ,
S(r) = j/r − r/2 is always negative. For positive j , S(r) is a
monotonically decreasing function, which equals to zero at one
point in the classically allowed region. Overall, for our case,
μ = 2 and κ = 2θ (j ), so Eq. (27) returns to the BS condition
[Eq. (26)] directly.

III. WKB RESULTS

A. WKB approximation without Coulomb impurity and the
zeroth Landau level

In this subsection, we first turn off the Coulomb potential
and consider the problem of one 2D Dirac particle in a perpen-
dicular constant magnetic field. With exact solutions available,
this problem enables us to compare WKB energies to exact
solutions, and find the relationship between WKB quantum
nBS and energy quantum n. In the units we have chosen, the
exact eigenenergies of this problem are ε = ±√

2n, where
n = 0, 1, 2, 3, . . ., and l � −n + 1.

In the Bohr-Sommerfeld quantization condition
(26), p(r) =

√
ε2 − (j/r − r/2)2 without Coulomb

impurity and the integral can be carried out as∫ a

b
p(r)dr = (ε2 + j )π/2 − |j |π/2. For j > 0, Eq. (26) gives

ε = ±√
2nBS; thus the WKB energies are identical to the exact

energies! This also tells us nBS = n is the Landau level index.
For j < 0, Eq. (26) gives ε = ±√

2(nBS − l + 1), which
reproduces the Landau level spectrum when nBS = n + l − 1.
Therefore, semiclassical energy correctly reproduces the
Landau level spectrum.

From the argument above, we see WKB energy for the
zeroth Landau level is obtained when nBS = 0. However, in
this case the two positive real roots of p2(r) = 0 equal to
each other, and the classically allowed region becomes one
point, thus the integral in Eq. (26) is zero. Such a situation
never occurs for Schrodinger particles as the presence of the
1/2 shift in the BS condition. For Dirac particles, such a shift
is zero for some cases. This is related to the π Berry phase
associated with their cyclotron motions (see the Appendix of
Ref. 6 for a discussion of this point).

B. WKB approximation with Coulomb impurity

When the Coulomb impurity is added (finite g), we
can only carry out the energy calculation numerically. The
integral in Eq. (26) can be expressed in terms of complete
Legendre elliptic integrals of the first, F (χ ), second, E(χ ), and
third, �(υ,χ ), kinds.22 The Bohr-Sommerfeld quantization
condition (26) then gives the transcendental equation

1

2
(−I3 + ζI1 − βI0 − m2I−1) =

[
nBS + 1 − θ (j )

2

]
π,

(28)

with ζ = 4j + 4ε2,β = 8gε,m2 = 4j 2 − 4g2,

I−1 =
∫ a

b

1

R(r)
dr = 2√

(a − c)(b − d)bc

[
bF (χ ) − (b − c)�

(
c

b
ν,χ

)]
,

I0 =
∫ a

b

1

R(r)
dr = 2√

(a − c)(b − d)
F (χ ), I1 =

∫ a

b

r

R(r)
dr = 2√

(a − c)(b − d)
[cF (χ ) + (b − c)�(ν,χ )],

T2 = − 1

2(1 − ν)
F (χ ) − ν

2(χ2 − ν)(1 − ν)
E(χ ) + χ2(3 − 2ν) + ν(ν − 2)

2(χ2 − ν)(1 − ν)
�(ν,χ ),
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T3 =
(

χ2

4(χ2 − ν)(1 − ν)
− 3[χ2(3 − 2ν) + ν(ν − 2)]

8(χ2 − ν)(1 − ν)2

)
F (χ ),

+
(

3[χ2(3 − 2ν) + ν(ν − 2)]2

8(χ2 − ν)2(1 − ν)2
− 3χ2 − ν(1 + χ2)

2(χ2 − ν)(1 − ν)

)
�(ν,χ ), − 3ν[χ2(3 − 2ν) + ν(ν − 2)]

8(χ2 − ν)2(1 − ν)2
E(χ ),

I3 =
∫ a

b

r3

R(r)
dr = 2√

(a − c)(b − d)
[c3F (χ ) + 3c2(b − c)�(ν,χ ) + 3c(b − c)2T2 + (b − c)3T3],

where ν = (a − b)/(a − c), χ = √
ν (c − d)/(b − d) and

R(r) =
√

−(r4 − ζ r2 + βr + m2).
The semiclassical spectra as functions of g for Landau

levels from the negative third to the third and j up to
9/2 are shown in Fig. 3. For g = 0, the WKB solution
coincides precisely with the exact solution, and the Landau
level degeneracy of different angular momenta is lifted by
finite g. For fixed g, the smaller |j |, the higher the energy.
The reason is that j ± 1/2 stands for the Dirac particle’s
orbital angular momentum in sublattice A(B). The particle
with smaller angular momentum is closer to the impurity and
feels stronger Coulomb potential.

To assess the accuracy of the semiclassical spectra, we use
the exact diagonalization (ED) method to obtain the energies
of the same cases. For each total angular momentum labeled by

j , the bases are from the −500th to the +500th Landau level’s
states when there is no impurity. We observe that WKB energy
levels are quite close to the ED energy levels in Fig. 3 except
for the zeroth Landau level. First fix the value of impurity
magnitude g. For smaller values of |j | and energy quantum
|n|, the deviations from ED energy become larger. We make
the assumption that ED results are accurate results, because the
dimension of the bases is so large (1001 D) and we are only
considering the first few Landau levels. The WKB method
supposes the potential varies rather slowly in comparison to
the de Broglie wavelength of the particle. In a certain Landau
level (fixed n), the particle with smaller |j | is closer to the
impurity, and feels a steeper potential, so the WKB method
becomes more inaccurate. On the other hand, with certain j ,
the particles with smaller |n| have less kinetic energy (larger

1 2 3 4

2

1

1

2

3

g

FIG. 3. (Color online) WKB energy and exact diagonalization (ED) energy levels from the negative third to the positive third Landau level
and quantum number j from its minimum value in each Landau level up to 9/2. The lines are semiclassical energies. Negative j are in dashed
lines and positive j are in regular lines. The circles (triangles) label the ED energies of positive (negative) j . For both WKB and ED energies,
the spectra of |j | = 1/2, 3/2, 5/2, 7/2, and 9/2 are in red, brown, magenta, green, and blue respectively. Energy spectrum with quantum
number j has the range g ∈ [0,|j |).
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de Broglie wavelength), then the WKB method becomes more
inaccurate too. For g = 0, WKB energy coincides with ED
energy, with increasing g and fixed quantum numbers j and
n, the difference becomes larger because potential becomes
steeper. Since the classically allowed region is only one point
for the zeroth Landau level, wavelength becomes infinite and
semiclassical approximation is not able to give accurate results.

IV. CONVERGENCE OF THE WKB SOLUTIONS

In this section, we will consider the convergence of
semiclassical solved energy in the region 0 � g < |j |. Based
on the transcendental equations (26) and (28) and the analytic
implicit function theorem,23 we will argue that semiclassical
energy levels do converge in the region 0 � g < |j |.

f (g,ε) ≡ ∫ a

b
p(r)dr = (−I3+ζI1−βI0 − m2I−1)/2. By

analytic implicit function theorem, if we can prove for
all the points satisfying g ∈ [0,|j |) and ε �= g/

√
2|j | that

function f (g,ε) is analytic and ∂f (g,ε)/∂ε �= 0, then it can be
concluded that there exists an explicit function ε(g) satisfying
{[g,ε(g)]|g ∈ [0,|j |)} = {(g,ε) ∈ (0 � g < |j |,ε �= g/

√
2|j |),

|f (g,ε) = [nBS + [1 − θ (j )]/2]π}, and ε(g) is analytic in
the region [0,|j |). ε = g/

√
2|j | is a set of lines which make

f (g,ε) = 0 (corresponding to the zeroth Landau level and
being analytic obviously). The WKB results of nonzeroth
Landau levels are definitely not in these lines.

It can be easily seen from Eq. (28) that f (g,ε) is
analytic in the region (0 � g < |j |,ε �= g/

√
2|j |), since

a, b are two positive numbers while c, d are negative
numbers. From the integral form of f (g,ε), we obtain
∂f (g,ε)/∂ε = ∫ a

b
[(ε − V )/p]dr . Because ε − V �= 0 in the

classically allowed region, ∂f (g,ε)/∂ε �= 0. Therefore, semi-
classical energy functions ε(g) are analytic, then convergent
in the region 0 � g < |j |.

V. DISCUSSION AND CONCLUSIONS

Below the supercritical instability critical point
(0 < g < 1/2), based on our semiclassical calculation [ε(g)
is convergent in the region 0 � g < |j | and |j |min = 1/2], the
profile of the local density of states (LDOS) is just several
Landau level bands. We call them Landau level bands because
the large degeneracy of each Landau level is lifted by finite g,
and each level broadens into a band. The energy scale of two
neighboring Landau bands is proportional to h̄vF / lB . Beyond
the supercritical instability critical point (g > 1/2), the LDOS
has already been calculated by several authors13,14 without a
magnetic field. The supercritical instability modes (|j | < gc)
bring rearrangements of the spectrum close to the impurity.
As shown in Figs. 2(a)–2(c) of Ref. 13, several resonances
are exhibited in the negative energy region (their impurity
has positive charge), which dominate the profile of the LDOS
at low energies and decay away from the impurity. As we
have discussed in Sec. II, the existence of magnetic field does
not affect supercritical instabilities. The energy and length
scales corresponding to this phenomenon are not affected

by magnetic field, which are t and a respectively, where
t ≈ 2.8 eV is the hopping energy between nearest carbons
and a ≈ 1.42 Å is the carbon-carbon spacing. Thus, when
the supercritical instability happens, in the LDOS profile, we
anticipate to see the appearance of resonances in the energy
range ∼ t (much larger than h̄vF / lB), and the distance to
origin r ∼ a (much smaller than lB). STM technique can be
used to probe such resonances in the LDOS profile. Using
κRPA ≈ 5, Zc ∼ 1 is convenient for the experiment.14

To summarize, in this paper we have used WKB approx-
imation to study Coulomb impurity in the presence of a
perpendicular uniform magnetic field in graphene. We find
the solutions are smoothly (or perturbatively) connected to
the states of isolated Landau level states when the impurity
strength is below the supercritical instability critical point, thus
lending support to the widely used Landau level projection
approximation when treating many-electron problems in the
quantum Hall regime. The WKB solutions are quantitatively
accurate, except for the zeroth Landau level states. On the other
hand, Landau level mixing becomes a nonperturbative effect
beyond the supercritical instability critical point, signaling the
breakdown of Landau level projection approximation.
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APPENDIX

To obtain the Bohr-Sommerfeld quantization condition, we
first need to connect the WKB wave functions in classically
allowed and forbidden regions. In this work we use the method
named after Zwaan (see Ref. 24 for an example), which is very
instructive and does not make use of the exact solution (like
Airy function). In Sec. II A, we defined the WKB effective
potential [Eq. (23)] and the energy [Eq. (24)], and write p in
terms of them [Eq. (25)]. The schematic diagram of Ueff and
εeff is plotted in Fig. 4.

region I region II  region III r

Ueff

eff

ab

FIG. 4. Schematic diagram of WKB effective potential Ueff and
WKB effective energy εeff as functions of r .
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(b)

a

a

(a)

FIG. 5. Two different paths of WKB wave function pass from
region III (classically forbidden region) to region II (classically
allowed region) in the complex plane.

Recalling Eq. (22), the WKB wave functions in the
classically forbidden regions I and III are

�I (r) = Aq− 1
2 e

∫ r

b
qdr

[ √
sgn(S)(q + S)

s
√

sgn(S)(−q + S)

]
, (A1)

�III(r) = Cq− 1
2 e− ∫ r

a
qdr

[√
sgn(S)(−q + S)

s
√

sgn(S)(q + S)

]
, (A2)

where q(r) ≡ ip(r), and the WKB wave function in the
classically allowed region II can be written as

�II(r) = B1(−ip)−
1
2 e−i

∫ r

b
pdr

[√
sgn(S)(−ip + S)

s
√

sgn(S)(ip + S)

]

+B2(−ip)−
1
2 ei

∫ r

b
pdr

[ √
sgn(S)(ip + S)

s
√

sgn(S)(−ip + S)

]
, (A3)

or

�II(r) = B ′
1(−ip)−

1
2 e−i

∫ r

a
pdr

[√
sgn(S)(−ip + S)

s
√

sgn(S)(ip + S)

]

+B ′
2(−ip)−

1
2 ei

∫ r

a
pdr

[ √
sgn(S)(ip + S)

s
√

sgn(S)(−ip + S)

]
.

(A4)

The above two forms of the WKB wave functions in the
classically allowed region differ due to a different choice of the
lower limits in the integral, which correspond to the two turning
points. This is done in order to match the wave functions in
the classically forbidden regions I and III.

Before connecting the wave functions of different regions,
we need to have a mathematical interlude:√

ip + S

ε − V
= e

−i
∫ r

a,b
1

2p
( V ′S

ε−V
+S ′)dr+ica,b ,

(A5)√−ip + S

ε − V
= e

i
∫ r

a,b
1

2p
( V ′S

ε−V
+S ′)dr−ica,b ,

where the two equations are complex conjugate to each other;
V (r) = g/r for our case. Constants ca,b correspond to the two
different lower limits a and b of each integral. It is easy to check
that these constants should be imaginary, so we write them as
ica,b where ca,b are real numbers. The relations between the
square roots in the wave functions [Eqs. [(A1)–(A4)] to the

ones in Eq. (A5) are√
sgn(S)(ip + S) = e−it

√
|ε − V |

√
ip + S

ε − V
, (A6)

√
sgn(S)(−ip + S) = eit

√
|ε − V |

√−ip + S

ε − V
, (A7)

where t = [sgn(ε − V ) − sgn(S)]π/4.
Now, we begin to use Zwaan’s method to connect the

wave functions in region II and III. Near r = a, we can
make the linear approximation q = √|F0|(r − a), where
F0 = ∂[(ε − V (r))2 − S(r)2]/∂r|r=a . Write everything in the
complex plane

r − a = ρeiφ,

∫ r

a

√
r − adr = 2

3
ρ

3
2

(
cos

3

2
φ + isin

3

2
φ

)
.

(A8)

When regions III and II’s wave functions are connected
through the upper semicircle path as in Fig. 5(a),

q(r) → ip(r), −
∫ r

a

q(r)dr → −i

∫ r

a

p(r)dr, (A9)

�III(r) = Cq− 1
2 e− ∫ r

a
qdr

[√
sgn(Sa)(−q + S)

s
√

sgn(Sa)(q + S)

]

→ C(ip)−
1
2 e−i

∫ r

a
pdr

[√
sgn(Sa)(−ip + S)

s
√

sgn(Sa)(ip + S)

]

= C
√

|ε − V |(ip)−
1
2 e−i

∫ r

a
pdr

⎛
⎝ eita

√
−ip+S

ε−V

se−ita

√
ip+S

ε−V

⎞
⎠ ,

(A10)

where Sa,b = S(r = a,b). When we connect region III and
II’s wave functions through the lower semicircle path as in
Fig. 5(b),

q(r) → −ip(r), −
∫ r

a

q(r)dr → i

∫ r

a

p(r)dr, (A11)

�III(r) = Cq− 1
2 e− ∫ r

a
qdr

[√
sgn(Sa)(−q + S)

s
√

sgn(Sa)(q + S)

]

→ C(−ip)−
1
2 ei

∫ r

a
pdr

[ √
sgn(Sa)(ip + S)

s
√

sgn(Sa)(−ip + S)

]

= C
√

|ε − V |(−ip)−
1
2 ei

∫ r

a
pdr

⎛
⎝ e−ita

√
ip+S

ε−V

seita

√
−ip+S

ε−V

⎞
⎠ ,

(A12)

where ta = [sgn(ε − Va) − sgn(Sa)]π/4 and Va,b =
V (r = a,b). Let B ′

1 = e−iπ/2C, B ′
2 = C, and Eq. (A1)

becomes

�II(r) = C

( |ε − V |
p

) 1
2

(
cos

[ ∫ r

a

[
p − 1

2p

(
V ′S
ε−V

+ S ′)]dr + ca − ta + π
4

]

sgn
(
ε − g

r

)
cos

[ ∫ r

a

[
p + 1

2p

(
V ′S
ε−V

+ S ′)]dr − ca + ta + π
4

]

)
. (A13)
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Similarly, by connecting the wave functions of regions I and II, we obtain

�II(r) = A

( |ε − V |
p

) 1
2

(
cos

[ ∫ r

b

(
p − 1

2p

(
V ′S
ε−V

+ S ′))dr + cb − tb − π
4

]
sgn

(
ε − g

r

)
cos

[ ∫ r

b

(
p + 1

2p

(
V ′S
ε−V

+ S ′))dr − cb + tb − π
4

]
)

, (A14)

where tb = [sgn(ε − Vb) − sgn(Sb)]π/4.
Equations (A13) and (A14) then give us the Bohr-

Sommerfeld quantization condition

∫ a

b

[
p − 1

2p

(
V ′S

ε − V
+ S ′

)]
dr − ca + cb + ta − tb

=
(

nBS + 1

2

)
π, (A15)

where nBS = 0,1,2, . . . , p(r) ≡ −iq(r) = [(ε − g/r)2 − (j/r

−r/2)2]1/2. In region II where p2(r) = (ε − V )2 − S2 =

(ε − V )2 − (j/r −r/2)2 > 0, ε − V (r) can not be zero, so
the signs of ε − V (r) at point r = a and b are the same. It is
also easy to see that for j < 0, S(r) is always negative; for
j > 0, Sb is positive and Sa is negative. Overall, we obtain
ta − tb = θ (j )π/2, where θ (j ) = 1 for j > 0 and θ (j ) = 0 for
j < 0. Analyzing Eq. (A5) by substituting r = a and b, we can
always get − ∫ a

b
[V ′S/(ε − V ) + S ′]/2pdr − ca + cb = 0.

Finally, Eq. (A15) is simplified as

∫ a

b

p(r)dr =
[
nBS + 1 − θ (j )

2

]
π. (A16)
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