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in the presence of decoherence
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We study the optically induced effective interaction between spins in micropillars. Our theoretical model
describes a circularly polarized cavity mode strongly coupled to two quantum-dot excitons, each of which
interacts with a localized spin. The decoherence effect inducing a finite lifetime to the cavity mode is included.
Using the master equation for the density matrix we investigate the dynamics under low-power excitation. In the
absence of decoherence, we recover the result obtained in a previous work (which uses conventional low-energy
reduction procedures) for an effective Hamiltonian containing a Zeeman term and an Ising interaction between
the localized spins. For finite cavity-photon lifetime we employ Fourier analysis on the time dependence of the
nondiagonal element of the reduced density matrix, obtained by tracing out the photons and excitons, to find a
quasieffective spin-spin Ising Hamiltonian. This Hamiltonian is a possible building block for two-qubit quantum
computing operation. We study how decoherence affects the construction of that effective interaction. Finally,
we discuss the possible application for transition-metal impurity spins embedded in CdTe quantum dots.

DOI: 10.1103/PhysRevB.85.165421 PACS number(s): 78.67.−n, 71.36.+c, 73.21.La, 03.65.Yz

I. INTRODUCTION

Hybrid (matter-photon) systems hold great promise for
the development of quantum communication and computing,
exploiting quantum states of spins or quantum dots (QDs)
for local storage and processing, and the long-distance
transmission of the photons.1–5 It has been demonstrated that
the state of a Mn spin in a CdTe QD can be manipulated
by suitable optical-induced exciton transitions,6–8 and the
effective light Mn interaction can be engineered using quantum
interference effects.9 Very recently, optical pumping and
nondestructive readout of a single ±1 spin an InAs/GaAs has
been demonstrated.10 In this system, the effective spin is an
acceptor state of the Mn atom. The dynamics of the impurity
spins can be followed by time-resolved Kerr rotation.11 An
interesting aspect of the photoluminescence decay of the
excitons (bound states of an electron and a hole) and trions
(bound states of two electrons and a hole)12,13 and the creation
of an exciton14 is the manifestation of the hybridization of the
spin localized in the QD with a continuum of extended states,
and the related Kondo effect.

When the coupling between excitons and photons is strong
compared to their decay rates times h̄, the system is in
the strong coupling (SC) regime. The SC between single
(In,Ga)As QDs and micropillar cavity modes15 has become
apparent in photoluminescence data which displayed anti-
crossings between the QD exciton and cavity-mode dispersion
relations.7,15,16 The luminescence spectra of QDs in microcav-
ities has been calculated taking into account dissipation effects
using master equations.17,18 The SC regime is also displayed
in resonant Raman scattering due to optical phonons in planar
II-VI-type semiconductor microcavities.19,20 Recent advances
include studies in the deep strong-coupling regime21,22 and the
exact solution of the Rabi model.23

Imamoglu et al.2 showed the possibility of inducing an
effective interaction between spins in QDs mediated by

photons. This interaction permits us to perform two-qubit op-
erations, essential for quantum computing. Later, the optically
induced interaction between 1/2 spins in a two-dimensional
(2D) microcavity4 and in a zero-dimensional one24 has been
calculated. Due to selection rules, the light mediated effective
spin-spin interaction is of the Ising type (ISz

1S
z
2).24 It has been

shown that this interaction is sufficient to perform two-qubit
operations.25

Recently, we have solved the energy spectrum of a model
that describes a circularly polarized cavity mode strongly
coupled to two exciton modes, each of which interacts with
a localized spin of arbitrary magnitude.26 In the SC regime,
the low-energy part of the spectrum can be described by an
effective spin model, which contains a magnetic field, an axial
anisotropy, and an Ising interaction between the localized
spins. Since decoherence effects were absent, the derivation
of the low-energy effective Hamiltonian at low temperatures
has been done mapping the low-energy spectrum, a method
widely known and used, for example, in cuprates and other
transition-metal compounds.27–34 At high temperatures, the
effective Hamiltonian was constructed in such a way that it
leads to the same reduced density matrix ρeff , obtained tracing
the excitonic and photonic degrees of freedom.26

The goal of this work is to obtain the parameters of the
effective Hamiltonian and to study the dynamics of the system
in the presence of decoherence caused by the leaking of the
cavity mode, which decays into radiative modes. We have not
included the decay of the excitons and impurity spins because
they are smaller in present experimental setups. Extension
of the method to include this effect is straightforward. Since
the standard methods mentioned above to obtain effective
Hamiltonians do not work in the presence of decoherence, we
have determined the effective parameters from the evolution
of the nondiagonal terms of ρeff , starting from initial states
suitably prepared. The time evolution of the full density matrix
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ρ(t) is obtained solving a master equation that includes the
effects of decoherence.35 For an infinite lifetime of the cavity
photon, the results coincide with those obtained previously,26

while for short lifetimes, the method to derive the effective
parameters [from peaks in the Fourier transform of ρeff(t)] fails
due do lack of definition of any peaks in the nondiagonal term
of ρeff(ω). However, for intermediate values of the lifetime,
our method yields the desired parameters, together with an
estimate of the uncertainties. Moreover, for short lifetimes, for
which our method fails, the system is not useful for quantum
computation.

In Sec. II we present the model and method. In Sec. III
the results for the determination of the parameters of the
effective model are presented. In Sec. IV we analyze possible
applications of the system to quantum computing. Section V
contains a summary and a discussion.

II. MODEL AND METHODS

The model describes a cavity photon mode, interacting with
the excitonic degrees of freedom of two QDs (represented by
spins 1/2). In addition, the electron and hole of each exciton
have a spin exchange interaction with a localized spin, and the
photon mode interacts with a continuum of radiative modes.
A scheme of the system is shown in Fig. 1.

From the above considerations, the Hamiltonian takes the
form

Hr = H +
∑

k

εkb
†
kbk +

∑

k

(Vka
†bk + H.c.),

H = Eca
†a +

2∑

i=1

[
Exσ

z
i + g(σ−

i a† + H.c.) (1)

+ J
(
σ z

i + 1/2
)
Sz

i

]
,

where a† is the creation operator of the cavity mode, σ z
i , σ+

i ,
and σ−

i are spin operators for the two-level system of QD i,
with ground (|i ↓〉) and excited (|i ↑〉) states which represent
zero and one exciton, respectively, Sz

i is the spin projection of
the localized spin i, and bk is the destruction operator mode
k inside a continuum of radiative modes. The first three terms

FIG. 1. (Color online) Scheme of the system: a 0D cavity encloses
two QDs, each coupled to a single impurity spin of arbitrary
magnitude.

of H are a generalization of the Jaynes-Cummings model35 to
two excitonic degrees of freedom. A similar model was used
to study entanglement and bistability in coupled quantum dots
inside a driven cavity.36 The fourth one contains the Ising
interaction between the excitons and the spins. The reason
that only Ising interactions are present is the following. The
symmetry of the cavity splits heavy holes (HHs) with angular
momentum projection jz = ±3/2 from the light holes (LHs)
with jz = ±1/2, which lie at higher energy. We assume that
the light is circularly polarized with spin projection jz = 1.
Thus there is only one low-lying possible bright exciton which
can be excited by this light, and corresponds to jz = −1/2
(3/2) for the electron (HH) (the polarization subscripts are
trivial and were dropped). The dark excitons with total angular
momentum projection jz = ±2 do not mix with the light and
can be disregarded at low enough temperature. The spin-spin
interaction between excitons and localized spins includes two
types of exchange interactions, the anisotropic (Ising) one
between the heavy hole and the localized spin, and the isotropic
(Heisenberg) one between the electron and the localized spin.37

The spin-flip terms lead to a mixing of the bright excitons with
others (dark or containing LHs) lying at higher energies and
can be neglected. It is interesting to note that the interaction
J in CdTe QDs can be controlled using quantum interference
effects.9

In this work we consider only two spin projections for
Mn, namely Jz = ±5/2, since they are enough for quantum
computing, and specific transitions can be controlled.38 In
III-V QDs, however, the Mn impurities form acceptor states
with effective spin Jz = ±1.10 Our model is of course directly
applicable to this case with obvious changes.

The last term of Hr in Eq. (1) is responsible for a finite
decay time of the cavity mode. Under general assumptions (see
Chap. 15 of Ref. 35), the effect of this term can be incorporated
in the form of a finite lifetime τ in the master equation that
describes the evolution of the density matrix ρ of the system:

dρ

dt
= − i

h̄
[H,ρ] + 1

2τ
(2aρa† − a†aρ − ρa†a), (2)

where

1

τ
= 2πd(Ec)|Vk(Ec)|2, (3)

d(E) is the density of the modes bk at the energy E,
and |Vk(E)|2 is the average strength of the hybridization
at the same energy. However, τ might be considered as a
phenomenological parameter which includes other sources of
decoherence as well.

We solve the set of differential equations (2) using Taylor’s
expansion in ρ up to second order. In the numerical calculation,
it takes the form

ρi+1 = ρi + dρi

dt
�t + 1

2

d2ρi

dt2
�t2, (4)

where dρi/dt is taken from Eq. (2) and d2ρi/dt2 is obtained
differentiating the second member of Eq. (2). Here i is the time
index and �t is the step, which in the present study is taken
as �t = 0.05 ps. For each time, we calculate the effective
spin-density matrix taking the partial trace Trx over exciton
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and photon variables,

ρeff(t) = Trxρ(t), (5)

and the Fourier transform of the nondiagonal matrix element
of ρeff(t) was calculated by the routine “four1” of “Numerical
Recipes in C.”39 The total time to make the numerical Fourier
transform was 100 ns, and no difference in the results was
observed by taking a smaller �t .

As we have discussed before in absence of decoherence
(τ → ∞),26 one can restrict the Mn states to Sz

i = ±5/2, and
the low-energy effective Hamiltonian for the spin dynamics
takes the form (except for a constant)

Heff = B(Sz
1 + Sz

2) + ISz
1S

z
2, (6)

where B and I are effective parameters, and the spin-density
matrix at zero temperature ρ0

eff becomes very simple in terms of
eigenstates |l〉 and the corresponding eigenvalues El of Heff . In
particular 〈k|ρ0

eff(t)|l〉 = 〈k|ρ0
eff(0)|l〉 exp[−iωklt], with ωkl =

(Ek − El)/h̄. Then, if for example, at time t = 0, a state (|α〉 +
|β〉)/√2 is prepared, where |α〉 = |↑↑〉 (Sz

1 = Sz
2 = 5/2), and

|β〉 = |↑↓〉 (Sz
1 = 5/2, Sz

2 = −5/2), the Fourier transform of
〈β|ρ0

eff(t)|α〉 (defined as
∫ 〈β|ρ0

eff(t)|α〉 exp(iωt)dt) yields a
linear combination of δ functions δ(ωβα − ω), and thus the
difference Eα − Eβ = 5B + 25I/2 can be extracted from the
position of the corresponding peak. Repeating the procedure
with the state |α〉 replaced by |↓↓〉, the result changes to
−5B + 25I/2. Then, the Fourier transform of two experiments
like these allows us to obtain the parameters B and I .

In the presence of decoherence, we repeat this procedure
and calculate the Fourier transform of ρeff(t), starting from two
spin states, linear combinations of two different eigenstates
of Heff , and a given occupation of photons and excitons as
described below. It is also possible to select a single time
evolution at the cost of losing accuracy (see Sec. V). Now,
instead of δ functions, the spectrum has several broad peaks,
and many of them correspond to high-energy excitations which
are not of interest. In any case, from the whole spectrum in the
absence of decoherence, we can identify the peak of interest
and (unless τ is too short, as discussed below) calculate B

and I with an error which depends on the magnitude of the
decoherence time τ .

Without loss of generality we assume g > 0 (the phase of a†

can be changed), and we define the detuning as the difference
between cavity and exciton energies δ = Ec − Ex .

III. RESULTS

In this section we apply the method described above
to particular situations. Two different cases are considered,
according to the initial state of the system dynamics having
(i) one photon, (ii) one exciton. For each case, two different
spin configurations of the initial state are considered. We have
used the following parameters: δ = 1 meV, g = 0.5 meV, and
J = 0.1 meV.

A. Initial state with one cavity photon

In this subsection, we start at time t = 0 from a state
with one cavity photon and no excitons (|100〉 where the
numbers inside the ket denote the occupation of the cavity

FIG. 2. Fourier amplitude of matrix element 〈↓↓|ρeff (t)|↑↓〉 with
photonic initial state and coherence time of 500 ps.

photon, exciton 1, and exciton 2, respectively) and two possible
spin-wave functions: (i) (|↓↓〉 + |↑↓〉)/√2, and (ii) (|↓↓〉 +
|↑↑〉)/√2.

In case (i), starting from the state |100〉(|↓↓〉 + |↑↓〉)/√2,
we have let the system evolve during 100 ns, and the
Fourier transform of matrix element A(t) = 〈↓↓|ρeff(t)|↑↓〉
defined as A(ω) ∝ ∫

A(t) exp[iωt]dt was calculated. We
have normalized the Fourier component in such a way that∫

A(ω)dω = 1. In Fig. 2 we show the Fourier amplitude
for τ = 500 ns. One can see several peaks, the frequencies
of which correspond approximately to differences between
eigenenergies of the Hamiltonian H , Eq. (1). The broadening
and shift of the peaks are due to the effect of decoherence. H

conserves Sz
1 and Sz

2 and has three eigenvalues for each value
of Sz

1 and Sz
2. The solution of H was discussed in a previous

publication.26 Because of symmetry, the state |100〉|↓↓〉 has
overlap only to the lowest (|1〉) and highest (|3〉) eigenstates in
the sector of Sz

1 = Sz
2 = −5/2. Instead, the state |100〉|↑↓〉 has

a nonvanishing overlap with the three eigenstates (|j ′〉) of H

in the sector of Sz
1 = 5/2, Sz

2 = −5/2. Then, for τ → ∞, one
has six δ function peaks at frequencies ωij ′ = (Ei − Ej ′ )/h̄.
They are ω11′ = −147 Ghz, ω12′ = −1010.3 Ghz, ω13′ =
−2954.4 Ghz, ω31′ = 2720.6 Ghz, ω32′ = 1857.3 Ghz, and
ω33′ = −86.7 Ghz. We are interested only in the first peak,
which gives information on the effective Hamiltonian [Eq. (6)],
as described in the previous section. In addition, there is a
peak at ω = 0, which is entirely due to decoherence, because
it introduces states with no particles (excitons or photons).
Note that in the absence of particles and an external magnetic
field, the energy of the different spin states is zero and then
leaking of the photons gives rise to contributions to ρeff(ω) at
frequency ωii ′ = 0 [like Eq. (7)].

In Fig. 3 we show an expansion of the previous figure
for small frequency, and we add also the corresponding
information for two other decoherence times. As expected,
the peaks broaden as τ decreases, although still for τ = 50 ns,
a broad peak near the frequency ω11′ of the ideal case τ → ∞
is still present. From the two points at which this peak
reaches half of its maximum value, we can estimate the
transition energy �E = h̄ω11′ from |↓↓〉 to |↑↓〉 of Heff in the
presence of decoherence. We obtain �E = −97 ± 3 μeV for
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FIG. 3. (Color online) Fourier amplitude of matrix element
〈↓↓|ρeff (t)|↑↓〉 for small frequency with photonic initial state and
different coherence times.

τ = 500 ns, �E = −97 ± 6 μeV for τ = 250 ns, and �E =
−100 ± 35 μeV for τ = 50 ns. This energy corresponds to
�E = −5B + 25I/2 in Heff [see Eq. (6)].

To gain insight into the effects of decoherence, we plot
in Fig. 4 the evolution of Trρ2 as a function of time. This
quantity is 1 for a pure state, and since we have started
from such a state (and a pure quantum evolution in a closed
system conserves Trρ2), a deviation from 1 is a measure of
the effects of decoherence. One sees a first decay of Trρ2 with
a characteristic time of the order of τ . For longer times, as
the photon leaks away, some states disappear in the quantum
mixture and Trρ2 increases again. For the largest decoherence
times τ of Fig. 2, the density matrix at long times has
approximately the form

ρ � 1
2 |000〉〈000|(|↓↓〉〈↓↓| + |↑↓〉〈↑↓|), (7)

which explains why Trρ2 � 1/2 at long times. Instead for the
smallest τ the photon decays fast before a large decoherence
in the spin system takes place and therefore a large portion of
the pure state |000〉(|↓↓〉 + |↑↓〉)/√2 is present in the system
at long times.

FIG. 4. (Color online) Trace of ρ2 as a function of time with
photonic initial state and different coherence times.

FIG. 5. (Color online) Fourier amplitude of matrix element 〈↓↓|
ρeff (t)|↑↑〉 for small frequency with photonic initial state and and
different coherence times.

We have repeated the procedure in case (ii), for an initial
state |100〉(|↓↓〉 + |↑↑〉)/√2. The low-frequency spectra of
matrix element 〈↓↓|ρeff(t)|↑↑〉 are shown in Fig. 5.

The resulting numerical values of the corresponding ex-
citation energy are �Ẽ = −394 ± 3 μeV for τ = 500 ns,
�Ẽ = −394 ± 6 μeV for τ = 250 ns, and �Ẽ = −397 ±
35 μeV for τ = 50 ns. According to Heff [see Eq. (6)],
�Ẽ = −10B. Combining with the previous results for the
energy difference in case (i), we can obtain B = −�Ẽ/10 and
I = (2�E − �Ẽ)/25. The resulting values of the interaction
are showed in Table I. Note that there is no significant change
in I as the decoherence increases.

B. Initial state with one exciton

We have repeated the procedure above starting from an
initial state with only one exciton excited. Specifically, we
performed two calculations for an initial state (i) |010〉(|↓↓〉 +
|↑↓〉)/√2, and (ii) |010〉(|↓↓〉 + |↑↑〉)/√2. In Fig. 6 we show
the resulting low-energy part of the spectrum A(ω) for the first
case. The peaks are approximately at the same position as
before (compare with Fig. 3), but the intensity is different
due to the different overlap of the (evolving) state of the
system with the eigenstates of H . The relevant peak near
ω11′ = −147 Ghz is more intense and better resolved.

The low-energy part of the spectrum in case (ii) is displayed
in Fig. 7. Comparison with Fig. 5 again shows that when the
initial state has excitonic character, the peaks of A(ω) are better
resolved. This results in values of the effective interaction I

with smaller errors. The resulting values of the interaction are

TABLE I. Spin-spin effective interaction with its error for
different lifetimes and with photonic initial state.

I (μeV) Error (μeV) τ (ps)

8 ±3.1 50
8 ±0.5 250
8 ±0.2 500
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FIG. 6. (Color online) Fourier amplitude of matrix element 〈↓↓|
ρeff (t)|↑↓〉 for small frequency with excitonic initial state and
different coherence times.

shown in Table II. Note that there is not a significant change
in I as the decoherence increases.

In contrast to the case with photonic initial state (see Figs. 2
and 5), A(ω) displayed in Fig. 7 contains an extra peak (very
narrow and high) at −759.64 Ghz. This peak is due to a
transition between antisymmetric eigenstates of H , which do
not mix with states containing a photon, and therefore they are
not affected by decoherence. The half width at half maximum
of the peak in the figure (0.3 ns) is entirely due to the finite
time (100 ns) used in the Fourier transform. In addition, the
results are less affected by decoherence due to the fact that they
only included photonic decay. Therefore, when no photons
are present in the initial state, a photon should be created by
the dynamics of the system before any decoherence process
becomes possible. This is apparent also in the evolution of Trρ2

when the initial state is |010〉(|↓↓〉 + |↑↓〉)/√2, displayed in
Fig. 8. The decay times are longer than in the previous case
(compare with Fig. 4).

FIG. 7. (Color online) Fourier amplitude of matrix element 〈↓↓|
ρeff (t)|↑↑〉 for small frequency with excitonic initial state and
different coherence times.

TABLE II. Spin-spin effective interaction spin-spin with its error
for different lifetimes and with excitonic initial state.

I (μeV) Error (μeV) τ (ps)

8 ±2.4 50
8 ±0.4 250
8 ±0.2 500

IV. APPLICATIONS

Micropillar cavities based on II-VI materials are promising
systems for technological applications, for the elevated tem-
peratures at which they can operate and the strong light-exciton
coupling which they may have.40 Naturally suited to these
system are magnetic impurities like Mn2+ or Co2+, which have
spin 5/2 and 3/2, respectively. Among the II-VI materials,
CdTe has been extensively studied, and important progress in
the fabrication of micropillar systems embedding QDs and Mn
impurities has been achieved.

Hereafter we apply our model to the particular case of two
CdTe/ZnTe QDs, each one containing (or having in its vicinity)
a single Mn (S = 5/2) magnetic impurity, all embedded in
a II-VI semiconductor-based micropillar. These micropillar
structures, of a diameter of a few micrometers, can be made
to embed CdTe/ZnTe QDs and exhibit large Q factors.41 Due
to their size, the separation between different photon modes
is large enough to consider them as single-mode systems, for
example, a micropillar of height h = 0.1 μm and diameter
φ = 2 μm has energy levels separated by about E = 10 meV,
larger than any energy of the system.

We focus on applications to quantum computing. Opti-
cally excited solid-state systems are considered as possible
candidates for quantum computing, because they promise
easy scalability, e.g., micropillars contain usually hundreds
of QDs.42 However, the main drawback is the large number
of degrees of freedom interacting with the system, and thus
the study of decoherence that may degrade the operation,
and possible control of it, is a must. Systems such as the
one considered in this work present different decay channels:
exciton recombination, excitonic-spin decoherence, photon
leakage, and Mn-spin decoherence. In the case of excitons,

FIG. 8. (Color online) Trace of ρ2 as a function of time with
excitonic initial state and different coherence times.
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the radiative lifetime is reported to be 290 ps,43 while the
dephasing of the excitonic spin may be taken as 30 ps, but
can be drastically increased by the application of a static
magnetic field.44 Photon leakage can be estimated from Q

factors; assuming a conservative value of Q � 5000 yields a
τph = 2Q/ω � 5 ps; it is worth mentioning that cavities built
from other materials can reach values of Q = 160 000.15,40

The decoherence time of Mn spins is larger or of the order of
10 μs.45 Because photon leakage is the predominant decoher-
ence channel, it was added to our model.

More precisely, we want to use the indirect interaction
between Mn spins sitting in different QDs to realize two-qubit
operations. Quantum computing with qubits larger than 1/2
is demonstrated by Bertaina et al.,38 where a pair of states,
for instance, Sz = ±5/2, can be chosen and the transitions
between them controlled.

There are different ways to produce two-qubit operations;
we have in mind the following sequence of operations on
single spins plus an Ising interaction, that realizes a CNOT

gate: Ra
y (−π/2) × Rb

z (−π/2) × Ra
z (−π/2) × U × Ra

y (π/2),
where Ri

j (θ ) is a rotation of θ around the j axis of the qubit i.25

From it, it is clear that an evolution operator U = exp(iπSa
z Sb

z )
can be written once an Ising Hamiltonian is given. In the
absence of decoherence, it was shown that such Hamiltonian
can be deduced from the more general one after tracing out
the auxiliary excitons and photons degrees of freedom.26 In
the presence of decoherence, the reduction of the system
plus bath to system still retaining information of the bath,
hinders in general the construction of a Hamiltonian, and thus
the ideal construction of the CNOT given above. However, as
explained in previous sections, we can determine the effective
parameters from the dynamics of the reduced density matrix.
In any case, the presence of errors in the procedure yielding
the Hamiltonian parameters propagates into the error of the
CNOT gate.

From experimental studies, we take the values of the
coupling constants as J = 0.11 meV, g < 0.5 meV.46–49 Our
calculation of Sec. III shows that the coupling can be as large as
I = 8 μeV, that will require an operation time of τI = 20.8 ps.
Also, we showed that the effective Hamiltonian can be found
in the case of a photonic and an excitonic initial state, despite
the fact that the former introduces more uncertainty in the
Hamiltonian and thus the gate. We understand this difference
in terms of antisymmetric (dark) states as explained in Ref. 50
and in Sec. III.

One observes that, for the time required to perform
the operation τI , the purity of the state does not deviate
substantially from 1 when the photon lifetime is above 250 ps
(see insets of Figs. 4 and 8). This indicates that the state is
only slightly nonpure. This ensures that we can approximately
represent the problem using an effective Hamiltonian.

V. SUMMARY AND DISCUSSION

We have studied the dynamics of a system consisting of
two quantum-dot excitons, each of which interacts with a
localized spin, and strongly interacts with the main mode of
a microcavity. This generates an effective Ising interaction
I between the spins. We have included a finite lifetime of

the cavity mode due to the leaking of the mode out of the
cavity, which at present is the main source of decoherence in
a number of systems with technological relevance. However,
the extension to other sources of decoherence is trivial within
our formalism and the results can be inferred from the present
ones. The inclusion of decoherence effects seems essential to
describe systems that can be assembled at present.

To extract I from the dynamics of the system, we have
followed the time evolution of the reduced spin density matrix
ρeff obtained after tracing out the photon and exciton degrees
of freedom, for two different initial states which differed in
the spin configuration.

An alternative procedure is the use of a stochastic
Schrödinger equation (SSE),51 in which the dynamics consists
of a series of quantum trajectories, each composed by a non-
Hermitian Hamiltonian evolution in between random sudden
jumps. As expected from a non-Hermitian Hamiltonian, the
probability is not conserved, and even in between jumps, the
operator U = exp(−iH ) will contain decay.50 Because of this
and the need to introduce quantum jumps, the SSE procedure
does not provide a satisfactory solution to our present problem.
Thus we have adopted the more practical procedure explained
in Secs. II and III. From our analysis it becomes clear that, even
at moderate photon decay times, we are able to resolve peaks
that can be matched with certainty to those corresponding to
the ideal case (no decoherence), allowing us to extract the
parameters of a (quasi)effective Hamiltonian. We showed that
there is an uncertainty on these parameters, which can be
quantified from the width of the peaks. The broadening of the
energy peaks points to decay, and so we obtain a result that
qualitatively agrees with that of SSE. For the case of strong
photon decay, adjacent peaks merge and the preceding analysis
becomes unfeasible.

Instead of following the evolution of ρeff(t) for two different
linear combinations of two eigenstates of Heff , another
possibility is to choose one single linear combination of three
eigenstates of Heff and Fourier transform different off-diagonal
elements of ρeff(t). This saves time but the price to pay is a
smaller amplitude of the relevant peaks and therefore a larger
error in the parameters of Heff .

For simplicity we have assumed a symmetric system and
spin 5/2 as for Mn ions. The extension of the results when
the excitonic energy Ex and the couplings g and J depend on
i, and for arbitrary spin (in particular the effective spin ±1
of Mn acceptors in II-V systems),10 is straightforward. Our
predictions for the parameters of the effective Hamiltonian
might be tested using time-resolved Kerr rotation.11

Possible applications of the system were discussed in
the previous section. At present it seems that the highest
possible values of the cavity quality factor Q, or higher
values of the Mn-exciton interaction J are needed to have
a two-qubit operation not sensibly affected by the photon
decoherence.
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