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Quantum Hall effect in exfoliated graphene affected by charged impurities:
Metrological measurements
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Metrological investigations of the quantum Hall effect (QHE) completed by transport measurements at low
magnetic field are carried out in a-few-μm-wide Hall bars made of monolayer (ML) or bilayer (BL) exfoliated
graphene transferred on Si/SiO2 substrate. From the charge carrier density dependence of the conductivity and
from the measurement of the quantum corrections at low magnetic field, we deduce that transport properties in
these devices are mainly governed by the Coulomb interaction of carriers with a large concentration of charged
impurities. In the QHE regime, at high magnetic field and low temperature (T < 1.3 K), the Hall resistance is
measured by comparison with a GaAs-based quantum resistance standard using a cryogenic current comparator.
In the low-dissipation limit, it is found quantized within 5 parts in 107 (one standard deviation, 1σ ) at the
expected rational fractions of the von Klitzing constant, respectively, RK/2 and RK/4 in the ML and BL devices.
These results constitute the most accurate QHE quantization tests to date in monolayer and bilayer exfoliated
graphene. It turns out that a main limitation to the quantization accuracy, which is found well above the 10−9

accuracy usually achieved in GaAs, is the low value of the QHE breakdown current being no more than 1 μA.
The current dependence of the longitudinal conductivity investigated in the BL Hall bar shows that dissipation
occurs through quasielastic inter-Landau-level scattering, assisted by large local electric fields. We propose that
charged impurities are responsible for an enhancement of such inter-Landau-level transition rate and cause small
breakdown currents.
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I. INTRODUCTION

The discovery of the quantum Hall effect (QHE) in 19801

has revolutionized resistance metrology by establishing a
universal quantum resistance standard at rational fractions
of the von Klitzing constant RK ≡ h/e2 where e is the
electron charge and h is Planck’s constant. Although the
QHE was first observed in Si-MOSFETs, the cleaner two-
dimensional electron gas (2DEG) made by epitaxial growth of
GaAs/AlGaAs heterostructure provided more practical quan-
tum resistance standards. They give accurate and reproducible
representations of RK within an uncertainty below one part in
109 when operated at low temperature (T = 1.5 K) and high
magnetic induction (B = 10 T).2,3 Following observation of
the QHE in graphene4,5 with a sequence of Hall resistance
plateaus at RH = ±RK/[4(n + 1/2)] (with n an integer �0)
that survive even at room temperature,6 an application to
resistance metrology was considered.7 The peculiar QHE
originates from the honeycomb lattice of carbon atoms in
which charge carriers at low energy behave like chiral massless
relativistic fermions with Berry’s phase π .8 Under magnetic
field, the density of states becomes quantized in Landau
levels (LLs) with a 4eB/h degeneracy (valley and spin) that
occurs at energies9 ±vF

√
2h̄neB/c. The robustness of the

QHE on the first plateau comes from the energy spacing
36

√
B[T] meV between the first two LLs being larger than in

GaAs (1.7B[T] meV). In bilayer graphene, which consists of
two graphitic monolayers with Bernal stacking, the dispersion
relation becomes parabolic and carriers behave like chiral
massive (m = 0.033 × me with me the electron mass)10 Dirac
fermions with Berry’s phase 2π .8 This leads to QHE4

with resistance plateaus at RH = ±RK/[4(n + 1)], with n

an integer �0. The energy gap between LLs occurring at11

±h̄ωc
√

n(n − 1) (ωc = eB/m is the cyclotron pulsation) is
smaller than in single graphene layer, especially at low
magnetic field, but is larger than in GaAs systems. Larger
energy gaps give much hope that a more practical resistance
standard operating at a lower magnetic field or a higher
temperature could be developed in both graphene systems. In
the short term, comparison of the Hall resistance in graphene
systems and in GaAs would constitute a stringent test of the
QHE universality. This would support ongoing efforts to make
a historic evolution toward a Système International of units
directly linked to fundamental constants of physics.12 More
generally, the metrological approach can supplement the un-
derstanding of physics to the limits of instrumentation. Lastly,
meeting the very demanding metrological requirements for the
QHE application in graphene (quality of electrical contacts,
control of electronic properties such as mobility, and density
over large mm-size scale) further enhances the severeness of
the benchmark test offered by the QHE for the quality of
any two-dimensional material, and makes it very significant
and useful for the development of industrial applications such
as microelectronics. The metrological investigation has started
shortly after the discovery of the QHE in graphene. Previously,
the Hall resistance RH was demonstrated to agree with RK/2
on the plateau corresponding to Landau-level filling factor
ν = nsh/(eB) = 2 in exfoliated monolayer graphene within a
relative uncertainty of 15 parts in 106 (one standard deviation,
1σ ), probably limited by the high resistance of contacts
(>1 k�).13 More recently, Tzalenchuk and co-workers have
reported an agreement within an uncertainty as low as 9 parts in
1011 (1σ ) in a large sample (160 × 35 μm2) made of epitaxial
monolayer graphene grown on the Si-terminated face of silicon
carbide (SiC), with a mobility of about 7500 cm2 V−1 s−1 when
placed at B = 14 T and T = 0.3 K.14,15 Achieving the QHE
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quantization in graphene with similar uncertainty at a few
teslas magnetic induction and higher temperature, which is
required to develop a quantum resistance standard challenging
the GaAs ones, is still a critical issue.

In this paper, we report on the accurate investigation of
the QHE quantization in monolayer and bilayer exfoliated
graphene lying on Si/SiO2 substrate. Measurements were
performed with a cryogenic current comparator (CCC)
based resistance bridge. The objective was to determine
limitations to the quantized Hall resistance accuracy that can
be experienced in exfoliated graphene, which however turned
out to be the reference technique enabling to unveil most
of chiral Dirac fermions electronic transport properties. The
understanding of these limitations could even be useful to
overcome likely obstacles in the development of quantum
resistance standards with higher performances in graphene
grown either on SiC or by chemical vapor deposition (CVD).

The paper is organized as follows. In Sec. II, we report
on electronic transport properties of graphene investigated
by means of conductivity measurements at low magnetic
field. In both the ML and BL samples, the analysis of the
conductivity dependence on charge carrier density shows
that carriers are mainly scattered by a large concentration of
charged impurities located about 1 nm close to the graphene
flakes. The major impact of charged impurities responsible
for strong spatial fluctuations of the carrier density, which
survive at finite density, is also confirmed by measurements
of quantum corrections to conductance (weak-localization
and universal conductance fluctuations) in the BL sample.
Section III reports on quantization tests performed by means
of comparing the QHE in GaAs and in graphene systems. For
monolayer and bilayer graphene, the Hall resistance of the
first plateau (Landau levels are spin and valley degenerated)
in the zero-dissipation limit is found quantized within 5
parts in 107 (1σ ) to RK/2 and RK/4, respectively. One main
limitation to accuracy is the low value of the QHE breakdown
current limited to about ∼1 μA. In Sec. IV, we show that the
mechanism of dissipation (or backscattering) in the BL sample,
which ends up in the QHE breakdown, is based on quasielastic
inter-Landau-level scattering (QUILLS) assisted by large local
electric fields. This leads to discussing the role of charged
impurities in enhancing inter-Landau-level transitions.

II. ELECTRONIC TRANSPORT PROPERTIES AT LOW
MAGNETIC FIELD

Measurements were carried out on 15 × 2 μm2 and 26 ×
4.6 μm2 Hall bars based on monolayer graphene (ML) and
bilayer graphene (BL), respectively, which have been mechan-
ically exfoliated from natural graphite (see Fig. 1). Flakes were
transferred on top of highly doped silicon substrates covered
by 90 nm (resp. 500 nm in BL) of thermally grown SiO2

used for backgating. Graphene flakes are electrically contacted
using Ti/Au (BL) and Pd (ML) pads. Samples were then
patterned with a Hall geometry appropriate for QHE precision
measurements. Graphene arms, at least 300 nm long, connect
voltage metallic contacts to the main channel. This geometry
also avoids electrode-induced doping of the main channel.
Samples were finally covered with a 300-nm-thick polymethyl
methacrylate (PMMA) resist layer. Transport properties were

FIG. 1. Optical images of the (a) BL sample and of (b) the ML
sample with contact resistance values indicated below.

explored by four-terminal resistance measurements defined by
Rij,kl = (Vk − Vl)/Ii→j, where Vi is the voltage potential at ter-
minal i and Ii→j is the current flowing between terminals i and j.

A. Influence of charged impurity scattering on conductivity

In both samples, the four-terminal conductivity σ = 1/ρ =
1/Rij,kl × dkl

W
(W is the sample channel width, dkl the distance

between terminals k and l), deduced from R06,23 and R18,24

measurements in the ML and BL samples, respectively, was
analyzed at zero magnetic field as a function of the gate
voltage VG. It shows a typical minimum that occurs at VG min

[see Fig. 2(a)]. At this value, the carrier density defined as
ns = CG(VG − VG min)/e (with CG/e = 2.40 × 1011 cm−2/V
for ML and CG/e = 4.31 × 1010 cm−2/V for BL) is zero
on spatial average. n̄ = −CGVG min/e is the carrier density
induced in the graphene by surrounding charged impurities.
While annealing the samples under vacuum at a temperature
of about 400 K, the conductivity dip becomes sharper and its
position VG min shifts near zero, indicating an increase in the
carrier mobility μ and a decrease of |n̄|. At T = 1.3 K for the
ML sample (resp. T = 0.35 K for the BL sample) and at carrier
density away from the region of the minimum conductivity,
σ (VG) is quite linear for ML with no proof of sublinearity
in the considered density range (<2.5 × 1012 cm−2), and is
slightly superlinear for BL. These features indicate that the
long-range Coulomb potential induced by charged impurities
constitutes the dominant source of scattering in the considered
samples.16,17

Conductivity for the ML sample, except near the mini-
mum (−n̄ ± 5 × 1011 cm−2), is well fitted by the theoretical
model based on Boltzmann transport theory with charged
scatterers18,19 σ (CGVG/e) = σ (ns − n̄) = G(rs,d) e2

h

|ns|
ni

valid
for electrons (ns > n∗) and for holes (ns < −n∗), where ni

is the density of charged impurities at an average distance
d from the conductor (in the silicon substrate or in the
PMMA). n∗ is a residual density corresponding to the density
of electron and hole puddles into which the system breaks
at low density because of the inhomogeneous density profile
created by Coulomb impurities. rs describes the full dielectric
environment of the sample that screens Coulomb interactions.
Considering two semi-infinite media made of SiO2 and
PMMA on top of the device with dielectric constants εSiO2 =
3.9 and εPMMA = 4.5, respectively, rs = 2e2/[4πε0(εPMMA +
εSiO2 )h̄vF] = 0.47 [with vF = 1.1 × 106 ms−1 20] and G(rs =
0.47,d = 0) = 28.2 in the random phase approximation. It
appears that the dielectric constant of PMMA higher than air
or vacuum screens more efficiently the Coulombic potential
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FIG. 2. (Color online) (a) Conductivity as a function of carrier density controlled by the backgate voltage for the BL (green) and ML (blue)
samples. Solid lines are fits given by a Boltzmann transport theory including charged impurities. (b) Magnetoconductivity in the BL sample
at T = 0.35 K at carrier densities in the range ns = −2 × 1012 cm−2 ± 	ns/2 with 	ns = 3.3 × 1011 cm−2. (c) Magnetoconductivity after
averaging on carrier density and adjustments by an appropriate weak-localization theory (dotted lines) at T = 0.35 K (blue) and 1.5 K (red).

of charged impurities. Note that since G(rs,d) is only weakly
dependent16 on d, the approximated value G(rs,d = 0) is
valid while the electron-hole asymmetry in the conductivity
curve remains weak, as observed, and thus is not considered.
The mean impurity density (electron-hole average) deduced
from the adjustment is ni ≈ 1.9 × 1012 cm−2. At low density,
assuming this value of ni and a finite value of d in the range
lower than 2 nm, the Boltzmann transport theory18 correctly
explains (within a factor of 2, see Ref. 21) the experimental
values of the conductivity minimum σ0, of the plateau width
minimum conductivity n∗ and of the minimum position −n̄.
The size ξ and the density n∗ of electron-hole puddles near the
charge neutrality point (CNP) can be calculated from22 ξ =
1/(r2

s
√

ni) = 32 nm and n∗ = σ0ni/G(rs = 0.47,d = 0) h
e2 =

2.7 × 1011 cm−2 (with σ0 = 4 e2

h
), respectively. One deduces

that each puddle contains about nine elementary charges in av-
erage. The theoretical model can also explain the conductivity
curve asymmetry, which corresponds to a constant mobility
[μ = σ/(nse)] higher for holes (4050 cm2 V−1 s−1) than for
electrons (3400 cm2 V−1 s−1) by a typical <+5-Å-size shift
of the distance d of charged impurities from the graphene
layer under the electric field effect produced by the backgate
voltage, assuming unequal numbers of random positively
and negatively charged impurities.16 A similar electron-hole
asymmetry has already been observed in dirty samples.23,24

On the other hand, this asymmetry can not be explained by the
theory for attractive versus repulsive scattering of massless
Dirac fermions by Coulomb impurities,25 predicting a higher
mobility for electrons for a negative value of n̄. Neither can

a local doping due to the presence of metallic contacts on
graphene account for it since they are noninvasive in the
studied samples26 and would have induced sublinearity of the
σ (CGVG/e) curve.

In the BL sample, the conductivity can also be well fitted
by a similar transport theory27 based on Coulomb interactions
with charged impurities σ (CGVG/e) = σ (ns − n̄) ≈
16
π

e2

h

|ns|
ni

[1 + 1216
105π

√|ns|(d + q−1
TF )] valid for electrons

(ns � n∗) and holes (ns � −n∗) with qTF
−1 = 4πε0(εPMMA +

εSiO2 )h̄2/8me2 = 0.6 nm the Thomas-Fermi screening length.
This theory therefore includes the superlinearity, which results
in a mobility depending on carrier density. Not only does the
conductivity adjustment give ni ≈ 2 × 1012 cm−2 but also d ≈
1 nm. These values are comparable to values extracted from the
ML conductivity curve. Taking into account that the two sam-
ples have been made using the same technological processes
and the same substrates (except for the Si/SiO2 thickness), this
agreement strongly supports our description of conductivity
using the Boltzmann transport theory based on long-range
Coulomb scatterers. The extracted distance d is consistent
with the position of charged impurities assessed in the ML
sample and generally measured in the Si/SiO2 substrate.21

It appears that this model correctly predicts, except for the
minimum position (−n̄), the experimental values of σ0 and of
the plateau width minimum conductivity n∗. From the values
of ξ = 11 nm calculated with the specific model developed for
BL28 and the value of n∗ = σ0

π
16

h
e2 ni = 2.2 × 1012 cm−2 (with

σ0 = 5.5 e2

h
), one deduces that each puddle contains about eight
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elementary charges. An electron-hole asymmetry of the con-
ductivity is also observed. But, contrary to the ML sample, at
ns = 2 × 1012 cm−2 the electron mobility (2300 cm2 V−1 s−1)
is higher than the hole mobility (2000 cm2 V−1 s−1) by about
15%. It can again be explained by the shift of the mean
distance d between the charged impurities and the graphene
layer by a few Å under the electric field produced by the
voltage on the backgate, but with impurities in excess with a
sign opposite to the ML sample case.16 We note that the same
amount of charged impurities leads to a lower carrier mobility
in the BL sample than in the ML sample, confirming that
long-range Coulomb scattering is a very efficient mechanism
to spoil mobility in bilayer graphene. Beyond providing a
very efficient source of scattering, charged impurities give
rise to strong spatial fluctuations of the charge carrier density
with a correlation length ξ of 32 and 11 nm for ML and BL
samples, respectively. These fluctuations leading to electron-
hole puddles landscape near the CNP are also known to persist
at the higher carrier densities (ns ≈ 1–2 × 1012 cm−2) where
the QHE has been investigated.29,30 Also, a more macroscopic
inhomogeneity of the carrier density at a μm-size scale with
a typical amplitude of a few 1011 cm−2 has been observed. In
particular, it manifests itself in the BL sample through spatial
variation of −n̄, σ0 and of dσ/dVG slopes. These quantities
depend, for instance, on the conductor area probed in different
configurations (e.g., R18,24 and R17,34). These carrier density
fluctuations can be explained by spatial variations of ni by a
few 1011 cm−2 and of d by a few Å, which is also the typical
height of graphene-flake ripples. Therefore, the samples are
far from being homogeneous compared to GaAs-based 2DEG
commonly used for quantum resistance standards, where less
than 1010 cm−2 variation of ns can be achieved.

In both samples, the diffusion coefficient D and transport
mean-free path ltr can be determined from conductivity
measurements at low temperature and carrier densities where
the QHE was investigated. In the ML sample, at T = 1.3 K
and ns = 6.4 × 1011 cm−2 (electrons), corresponding to a
Fermi energy of EF = h̄vF

√
nsπ = 102 meV, D is calculated

using the Einstein relation D = σ (ns)
√

πh̄vF/(2e2√ns) =
2.0 × 10−2 m2 s−1 and then ltr = 2D/vF = 36 nm. In the BL
sample, at T = 0.35 K, and ns = −2 × 1012 cm−2 (holes), i.e.,
EF = h̄

√
nsπ/m = 72 meV, D = σ (ns)πh̄2/(2e2m) = 1.5 ×

10−2 m2 s−1, and ltr = 2D/vF(ns) = 34 nm, with vF(ns) =
h̄
√

nsπ/m = 8.8 × 105 ms−1. These values confirm that elec-
tronic transport is diffusive with similar amount of disorder
in both samples: kFltr = 5.2 for ML and 8.5 for BL. Compar-
atively, in cleaner GaAs/AlGaAs Hall bars used as quantum
resistance standards, with typical mobilities 280 000 cm2/V.s
and density 5.2 × 1011 cm−2, ltr = 3.4 μm is 100 times higher
and kFltr ≈ 600.

B. Quantum corrections to conductivity

In the BL sample, where the QHE has been more exten-
sively studied, quantum interference corrections to conductiv-
ity, both weak-localization correction (WL) and reproducible
mesoscopic conductance fluctuations (CF), were investigated
by performing magnetoconductivity measurements at low tem-
perature. Actually, both in monolayer and bilayer graphene, the
amplitude of these corrections is not only ruled by inelastic

scattering like in any other diffusive metal, but also by
elastic scattering mechanisms affecting the valley symmetry
(intravalley scattering and/or trigonal warping of the conical
band structure, intervalley scattering). This is a consequence
of the direct manifestation of chirality property in quan-
tum interference effects. For instance, interferences between
time-reversal-symmetric diffusive electron trajectories lead
to weak-localization31 corrections to conductivity in bilayer
graphene because of the charge carrier wave-function 2π

Berry’s phase, while weak antilocalization32 is expected in
monolayer due to π Berry’s phase.

Applying a magnetic field breaks the system time-reversal
symmetry and suppresses the weak-localization corrections.
This gives rise to a well-known magnetoresistance.
Four-terminal magnetoresistance measurements R(B)
were carried out at temperatures T = 0.35 and 1.5 K, at
low magnetic field using a standard ac low-frequency
(13 Hz) lock-in technique, and a low-noise preamplifier.
The measurement current is I = 30 nA, thus the effective
temperature of carriers assessed by Teff = eRI/kB = 0.52 K,
where R is the resistance per square, is slightly
higher than the base temperature 0.35 K. Figure 2(b)
reports a set of magnetoconductivity curves recorded at
densities around ns = −2 × 1012 cm−2 over a total range
	ns = 3.3 × 1011 cm−2. They all display a characteristic dip
at zero field, signature of the expected weak localization, the
amplitude of which barely exceeds reproducible fluctuations
(CF), which are analyzed below. To make the WL conductivity
dip stand out from fluctuations, magnetoconductivity curves
were averaged over the full density range where the diffusion
coefficient D does not vary by more than 10%. The averaged
curve [see Fig. 2(c)] is then adjusted by the appropriate
weak-localization theory31 	σ (B) = σ (B) − σ (0) = e2

πh

[F ( τ−1
B

τ−1
�WL

) − F ( τ−1
B

τ−1
�WL+2τ−1

i
) + 2F ( τ−1

B

τ−1
�WL+τ−1

i +τ−1∗
)]. Here, F (z) =

ln(z) + ψ(1/2 + z−1), ψ(x) is the digamma function,
τ−1
B = 4eDB/h̄. τ−1

� WL = D/L2
� WL is the phase-breaking

rate. τ−1
i = D/L2

i is the intervalley scattering rate lifting the
valley degeneracy of electronic states and which is caused by
short-range defects with maximum size of the order of the
lattice spacing. τ−1

∗ = D/L2
∗ = 2τ−1

z + τ−1
w is an intravalley

scattering rate. τ−1
z is the intravalley chirality-breaking rate

caused by surface ripples, dislocations, and atomically sharp
defects, i.e., short-range defects. τ−1

w is the intravalley p →
−p symmetry-breaking rate (where p = h̄kF, kF is the carrier
momentum at the Fermi level) caused by the anisotropy of the
Fermi surface in k space, i.e., the trigonal warping. In bilayer
graphene, assuming a quadratic Hamiltonian, it is expected
that τ−1

w = τ−1
tr where τtr = ltr/vF is the transport time.31

The adjustments of data at T = 0.35 and 1.5 K give
the phase coherence length L� WL(T = 0.35 K) = 0.47 μm
and L� WL(T = 1.5 K) = 0.42 μm, the intervalley scatter-
ing length Li(T = 0.35 K) = 0.51 μm and Li(T = 1.5 K) =
0.47 μm, the intravalley scattering length L∗(T = 0.35 K)
and L∗(T = 1.5 K) � 0.03 μm. The extracted values are very
similar to those measured in bilayer graphene and reported
in the literature.33 L� WL below the sample size indicates that
electronic transport is not fully quantum coherent. It appears
that L� WL ∼ Li and Li � L∗. The WL is made observable
due to significant intervalley scattering, although much less
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than intravalley processes. It also appears that L∗ ∼ ltr. The
fact that τ−1

∗ = 2τ−1
z + τ−1

w ∼ τ−1
tr means that τ−1

z is small
since it is expected that τ−1

w = τ−1
tr . Finally, the fact that Li �

L∗ ∼ ltr, together with τ−1
z 	 τ−1

tr , demonstrate that short-
range scattering is not dominant. Moreover, L� WL appears
quasiconstant between T = 0.35 and 1.5 K around a value
that is far below the typical size of the sample. Such saturation
of L� WL at low temperature, well below the particle-particle

interaction length (Lhh =
√

D[ σh2

2πe2ln[σh/(2e2)]
1

kBT
] = 1.6 μm

at T = 0.35 K),34 has already been observed in graphene
samples33 near the CNP. It could be a feature of transport
by percolation through electron-hole puddles35 persisting at
finite density (typically ns = −2 × 1012 cm−2 < n∗) in the
very inhomogeneous BL sample. These results confirm the
conclusion drawn from the analysis of the conductivity curves
σ (CGVG/e) that long-range Coulomb scattering by charged
impurities trapped in the silicon substrate or in the PMMA top
layer of the graphene-based sample is dominant.

Conductance fluctuations were measured by varying the
magnetic induction over a ±1 T magnetic field range with a
measurement current of 50 nA at T = 0.35 K. The standard
deviation is found to be δGB = 0.021e2/h. In graphene, CF
resulting from interference of phase-coherent chiral carrier
diffusive paths are also expected to depend on elastic scat-
tering. In the BL sample, since L� WL ∼ Li, one expects
the amplitude of CF to be properly described by the theory
of well-known universal conductance fluctuations (UCF)
for diffusive metals.36,37 Precisely, in the case of a two-
dimensional conductor, at a magnetic field larger than the typ-
ical magnetic field of WL magnetoresistance, it is given38 by

δG = 0.862 1√
2

√
W
L

min(L�,LT )
L

e2

h
where L and W are the length

and the width of the conductor measured, LT = √
h̄D/kBT

is the thermal length. Assuming the values W ≈ 4.5 μm, L ≈
9 μm, Teff = eRI/kB = 0.87 K, one finds LTeff = 0.36 μm <

L� WL = 0.47 μm, which results in δG = 0.018e2/h. The
good agreement of the experimental magnitude of CF with the
theoretical value of the UCF in diffusive metals confirms that
Li ∼ L� 
 0.5 μm, and, since ltr = 34 nm 	 Li, that long-
range scattering is dominant. On the other hand, it shows that
conductance fluctuations as a function of the magnetic field are
not sensitive to the observed carrier density inhomogeneity or
presence of electron and hole puddles.

The analysis of transport at low magnetic field shows
that the dominant mechanism of scattering in our samples
is Coulomb interaction with a large concentration of charged
impurities closely surrounding graphene flakes (in the silicon
substrate and in the PMMA top layer covering the devices).
Beyond drastically reducing the carrier mobility, they are
responsible for strong spatial fluctuations of the carrier
density that might stay bipolar even at finite density (a few
1012 cm−2).

III. HALL RESISTANCE QUANTIZATION TESTS OF THE
QUANTUM HALL EFFECT REGIME

In the QHE regime, all measurements were performed using
direct current (dc) measurements techniques. Each resistance

value reported in the following is the average of values
measured for both current directions. About notations, Rxx

is a longitudinal resistance value normalized to a square, for
example, Rxx = Rij,kl × W

dkl
if the longitudinal resistance is

measured between terminals k and l. Figure 3(a) shows Hall
and longitudinal resistance as a function of carrier density
for the BL sample. Measurements clearly reveal ν = ±4 Hall
plateaus, typical of the QHE in bilayer graphene, becoming
well defined at the highest magnetic inductions. ν = ±8
plateaus are barely visible. We note that the energy gap be-
tween the lowest LLs (n = 0,1 and n = 2) is 92 meV (1068 K
equivalent temperature) at B = 18.5 T, thus 3050 times the
thermal energy at T = 0.35 K. The longitudinal resistance Rxx

reported at B = 18.5 T exhibits a central peak corresponding
to the degenerate n = 0 and 1 LLs and minima occurring
simultaneously with Hall plateaus. We only investigated the
physics of the ν = −4 plateau for holes, which is more flat and
characterized by a drop to zero of Rxx. Dissipation level in the
2DEG and quality of contacts are essential quantization criteria
of the QHE, as demonstrated by several experimental works39

as well as the Landauer-Büttiker theory.40 The quantization is
indeed directly related to the absence of dissipation (i.e., of
backscattering), the rate of which can be determined by the
measurement of Rxx. Figure 3(b) shows the behavior of Rxx

with hole density on the ν = −4 plateau in the BL sample
for several current values increasing from 0.5 to 5 μA. The
Rxx plateau shrinks and simultaneously the Rxx minimum
increases. Figure 3(b) also shows that position and magnitude
of Rxx minima depend on the sample region measured. Position
variation can be attributed to carrier density fluctuations with
a magnitude of a few 1011 cm−2 caused by charged impurities,
as already mentioned in Sec. II. In addition, the magnitude
variation illustrates that the ignition of QHE breakdown is a
very spatially inhomogeneous phenomenon. Figure 3(c) shows
that the temperature effect on Rxx between 0.35 and 1.5 K is
smaller than the current effect between 0.5 and 1 μA. It also
shows that Rxx has reproducible fluctuations as a function of
ns with a similar pattern at the two different temperatures and
currents. We will later discuss the origin of these fluctuations,
particularly visible a bit away from the minimum because
of a better signal-to-noise ratio. Averaging fluctuations (and
noise) of Rxx around specific density values gives typical
and relevant mean values of the longitudinal resistance
R̄xx. At T = 0.35 K and I = 0.5 μA, R̄xx = R̄18,24 × W

d24
is

(2 ± 14) m� and (62 ± 9) m� at ns = −1.88 × 1012 cm−2

and ns = −2.01 × 1012 cm−2, respectively. These resistance
values are to be compared with 100 μ�, the typical value of
Rxx, which ensures a 10−9 RH accuracy in usual GaAs-based
quantum resistance standards [LEP51441]. Contact quality
was determined by performing three-terminal measurements
of resistance. R3T (e.g., Rij,il) gives the resistance value of
the contact Rc (e.g., i) combined with a Rxx (e.g., Rkj,il)
contribution. For a good contact, the drop to a negligible
value of Rxx(	1 �) in the dissipationless state leads to a
flat minimum of the resistance R3T giving an upper bound of
Rc. As observed in Fig. 3(d), for the good Ti/Au contacts of
the BL sample, Rc values deduced from R3T minima can be
as low as 10 � [see Fig. 1(a)]. Note that R3T minima occur at
slightly different ns values due to the carrier density spatial

165420-5



GUIGNARD, LEPRAT, GLATTLI, SCHOPFER, AND POIRIER PHYSICAL REVIEW B 85, 165420 (2012)

-3 -2 -1 0 1 2 3-10

-8

-6

-4

-2

0

2

4

6

8

0

1

2

3

4

5

6

B=2 T
R

H
 (

kΩ
)

n
S
 (1012 cm-2)

T=350 mK B=18.5 T

R
xx  (kΩ

)

-2.8 -2.4 -2.0 -1.6 -1.2
0

50

100

150

200

250

300

R
xx

(Ω
)

ns (1012 cm-2)

-2.2 -2.0 -1.8 -1.6 -1.4

0

1

2

3

4

5

R
xx

(Ω
)

n
S
 (1012 cm-2)

-5.0 -4.5 -4.0 -3.5

-3

1

5

-2.3 -2.1 -1.9
n S 

ln
(R

xx
)

-3 -2 -1 0
0.0

0.5

1.0

1.5

2.0

R
 (

kΩ
)

n
S
 (1012 cm-2)

R
34,32

R
48,43

R
12,14

ν

(a) (b)

(c) (d)
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d24
as a function of ns around ν = −4 at T = 0.35 K and I = 0.5 μA (blue); T = 0.35 K and I = 1 μA (deep blue);

T = 1.5 K and I = 0.5 μA (orange); T = 1.5 K and I = 1 μA (red). Vertical dashed lines underline reproducible fluctuations. Inset: ln(Rxx)
as a function of the carrier density. (d) Three-terminal resistance of contacts as a function of ns.

inhomogeneity. R3T for contact 3 does not exhibit such a
flat minimum with a value higher than 428 �. The highest
resistance value was found equal to 5.9 k� for contact 8. These
anomalous behaviors can be explained by a large fluctuation
of ns in the voltage-arm thin channel (2 μm) or even by a
partial breaking of the constriction probably caused by the
sample cooling down too fast. The complete breaking can
account for the infinite resistance observed for some other
contacts. Contacts 3 and 8 were used as current contacts, rather
than voltage, for the Hall resistance precision measurements.
It was indeed demonstrated42 that a very resistive detecting
voltage contact can lead to a deviation from quantization
notably because being unable to restore the equilibrium of
the edge-state population.40 Although we used Pd instead of
Ti/Au to make contact to graphene, similar observations are
reported in the ML sample. The five contacts used to perform
measurements have low resistance values ranging from 15 to
260 � [see Fig. 1(b)].

We then performed accurate measurements of RH in terms
of RK using a resistance bridge equipped with a SQUID-based
cryogenic current comparator. In practice, the Hall resistance
is compared to a well-known 100 � wire resistor calibrated
in terms of a GaAs-based quantum resistance standard
(LEP514). In the BL sample, Fig. 4(a) reports the relative
deviation of RH = R38,24 from its nominal value 	RH/RH =
RH/(RK/4) − 1 as a function of ns. All uncertainties are
given within one standard deviation (1σ ). Let us note that

the resistance measured not only includes a pure transverse
resistance, but also a longitudinal resistance contribution
because the line between voltage terminals is not perpendicular
to the one between current terminals. Measurements clearly
show a flat resistance plateau within 3 parts in 106 over a
2 × 1011 cm−2 carrier density range when measured with a
current below 1 μA. At the lowest measurement current I =
0.5 μA, deviations from quantization at highest carrier density
agree with the expected shape of the Hall plateau (decrease of
resistance on plateau edges). The shape evolution at higher
currents is attributed to an Rxx contribution, which adds to
the transverse resistance and increases with the current. This
coupling between RH and Rxx, which always exists to some
extent in GaAs-based quantum resistance standard,43 will be
later discussed in more details. The flatness appears worse at
I = 2 μA, as expected with regards to the large increase of
Rxx, fluctuating with carrier density as previously discussed.
Figure 4(b) confirms that deviations from quantization start to
drastically increase from I = 2 μA at ns = −2.1 × 1012 cm−2

and from I = 3 μA at ns = −2.01 × 1012 cm−2. As demon-
strated in Fig. 4(c), the increase of deviation due to current is
accompanied by a large increase of Rxx at both densities. The
weighted mean value of 	RH/RH values measured at currents
below these critical currents leads to small deviations of
(0.57 ± 3.1) × 10−7 and (3.0 ± 3.2) × 10−7 at ns = −2.01 ×
1012 cm−2 and ns = −2.1 × 1012 cm−2, respectively. Since
Rxx is the relevant parameter of quantization, 	RH/RH as
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a function of Rxx is then reported in Fig. 5 from data of
Figs. 4(b) and 4(c) for the two carrier densities. Although
dissipation is inhomogeneous in the sample, as the very
different values of Rxx measured using voltage terminal pairs
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FIG. 5. (Color online) 	RH/RH as a function of Rxx = R18,24 ×
W

d24
at ns = −2.01 × 1012 cm−2 (filled blue square), 	RH/RH as a

function of Rxx = R28,34 × W

d34
at ns = −2.01 × 1012 cm−2 (unfilled

green square), 	RH/RH as a function of Rxx = R18,24 × W
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at

ns = −2.1 × 1012 cm−2 (filled red circle). Errors bars correspond to
measurement uncertainties given within one standard deviation, 1σ .

(2,4) and (3,4) at ns = −2.01 × 1012 cm−2 express again,
all deviations scale quite linearly with Rxx, indicating a
common coupling mechanism between Hall and longitudinal
resistances. This linear relationship, which is usually observed
in GaAs-based quantum resistance standards, is generally
explained in terms of an effective misalignment of Hall probes,
either due to a lack of carrier density homogeneity44,45 in the
sample or to current flow chiral nature in finite-width voltage
terminals.46 In a good quantum Hall resistance standard, one
usually finds 	RH/RH = αRxx/RH with α 
 0.1−1. In our
case, voltage terminals are really misaligned, which should
lead to a unity coupling factor. But, from slopes we deduce
α values in the range 10−2 to 10−4, depending where Rxx

is measured. This means that, due to inhomogeneity, Rxx

values are not quantitative measurements of the dissipation
level between Hall probes 2 and 4 when the current flows
between terminals 3 and 8. Nevertheless, the values as a
whole give a qualitative representation of the dissipation
current behavior in the sample. It is therefore justified to
extrapolate 	RH/RH in the dissipationless limit (Rxx= 0) at
which the perfect quantization is expected. In this limit, at ns =
−2.01 × 1012 cm−2, we find 	RH/RH(Rxx = 0) = (−6.62 ±
3.0) × 10−7 and 	RH/RH(Rxx = 0) = (−2.43 ± 3.7) × 10−7

using Rxx measurement with voltage terminal pairs (2,4) and
(3,4), respectively. Agreement of these two values within
the measurement uncertainty corroborates our extrapolation
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protocol. At ns = −2.1 × 1012 cm−2, 	RH/RH(Rxx = 0) =
(−0.94 ± 3.78) × 10−7, thus the Hall resistance stays quan-
tized within the measurement uncertainty. But, the carrier
density value −2.01 × 1012 cm−2 seems to ensure a minimal
sensitivity of the Hall resistance to dissipation.

A similar study was carried out on the ML sample.
Figure 6(a) shows ν = ±2 and ±6 Hall plateaus at B = 11.7 T
and T = 1.3 K that are typical of the QHE in monolayer
graphene. Figure 6(b) shows two couples of 	RH/RH =
RH/(RK/2)-1 and Rxx values measured with two measure-
ment currents 0.5 and 1 μA at ns = 6.4 × 1011 cm−2 on
the ν = 2 plateau. Although the deviation strongly increases
from I = 1 μA, the extrapolation to zero dissipation gives
	RH/RH(Rxx = 0) = (0.73 ± 2.8) × 10−7. The degree of ac-
curacy achieved in the ML and BL samples is therefore similar,
essentially limited by the low measurement currents imposed
by an anticipated QHE breakdown. It is independent of the
ratio of the energy gap to thermal energy since 92 meV

0.35 K×kB

in the BL sample is 2.8 higher than 123 meV
1.3 K×kB

in the ML sample.
The quantization accuracy is probably determined by the
presence of the same high concentration of charged impurities
in both samples, leading to the carrier density inhomogeneity
and low carrier mobility. The impact of charged impurities on
the QHE breakdown will be discussed in the following through
detailed analysis of the current dependence of Rxx in the BL
sample.

IV. DISSIPATION MECHANISM IN THE QHE REGIME
IN BILAYER GRAPHENE

A. Current dependence of the longitudinal resistance

Dissipation in GaAs/AlGaAs 2DEG was found to increase
with temperature or current through several mechanisms. At
low temperature and low current, carriers can backscatter
from one edge to the opposite edge through localized states
by variable range hopping (VRH) with soft Coulomb gap,
characterized by a temperature behavior of the conduc-
tivity (σ0 VRH/T ) exp[−(T0(ξloc)/T )1/2] where kBT0(ξloc) =
e2/(4πε0εrξloc) and ξloc is the localization length,47–49 a
lower bound of which is the magnetic length lB = √

h̄/eB.
Current effect manifests itself as an effective temperature
kBTeff = eVHξloc/W . At a higher temperature, conductivity

is activated following the behavior σ0 exp[−(TAct/T )], where
σ0 is close to e2/h and weakly dependent on the electron-
phonon coupling in case of a short-range potential,50 but
expected to be universal and equal to 2e2/h in case of a
long-range potential.51 TAct is typically related to the cyclotron
gap. Experimentally, VRH mechanism was also observed
in monolayer graphene.52–54 In samples based on exfoli-
ated graphene transferred on Si/SiO2 substrate, screening
of the Coulomb interaction by the close metallic backgate
even restores the usual two-dimensional VRH mechanism
with a temperature dependence exp[−(T1(ξloc)/T )1/3] where
T1(ξloc) ∼ 1/[g(EF)ξ 2

loc] and g(EF) is the density of states.53

Conductivity activation by temperature was also observed in
graphene systems.55,56

On the other hand, there are few reports53,57 dealing with
detailed investigation of the QHE breakdown by increasing
the current in exfoliated graphene. For semiconductor 2DEGs,
several electric-field-assisted mechanisms have been consid-
ered to explain the large increase of longitudinal conduc-
tivity leading to the QHE breakdown:58 quasielastic inter-
Landau-level scattering59,60 (QUILLS) possibly combined
with intra-Landau-level scattering,61,62 increase of delocalized
electron states in Landau levels,63 ordinary64 electron heating,
bootstrap-type65,66 electron heating (particularly efficient in
large-size samples), and electron percolation between sample
edges by merging of compressible islands.67 In a sample
made of exfoliated graphene on Si/SiO2 substrate, Singh and
co-workers57 deduced from the measurement of breakdown
current dependence on integer filling factor that the QHE
regime is broken by inter-Landau-level scattering in presence
of large local electric field.

Figure 4(d) reports on Rxx dependence on current measured
at two filling factors ν (or ns values) near ν = −4 in the
BL sample under a magnetic induction of 18.5 T and for
both temperatures 0.35 and 1.5 K. It displays exponential
increases of Rxx over three orders of magnitude above a critical
current. More precisely, one can define a breakdown current
Ic by the value above which conductivity exceeds 2.10−8 S. Ic

linearly decreases for decreasing ν values departing from the
filling factor ν = −4 in the range from approximately 1.5 to
0.5 μA [see Fig. 8(a)]. The breakdown current at T = 0.35 K
is slightly higher than at T = 1.5 K. This behavior is also
observed in GaAs samples.68
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Figure 7 clearly displays the existence of four current
regimes for the conductivity calculated by σxx = Rxx/(R2

xx +
R2

H). We will later discuss the first regime I for very
high currents. For currents down to 1.5 μA (second current
regime II), conductivity σxx decreases by decreasing the
current following a unique phenomenological fitting func-
tion σ0,ν exp[−	Ea(ν)/eRHI ] at both temperatures. σ0,ν is
found quite universal around 0.25e2/h within 30% for all
ν values. Figure 8(a) shows that 	Ea(ν) scales linearly
with ν, similarly to 	Eth(ν) = (

√
2h̄ωc/2)[1 + (ν + 4)/2],

which is the energy difference between the Fermi level
and the center of the n = −2 Landau level if a constant
density of states is assumed. The small discrepancy between
	Eth(ν) and 	Ea(ν) results in a deviation of the ν value

for which 	Ea = 0 from −6, center of the n = −2 LL.
The resulting filling factor νedge can be interpreted as the
mobility edge that separates localized and extended states
near the center of the n = 2 LL. At lower current in the
third current regime III, σxx at T = 0.35 K decreases more
quickly with I decreasing and departs from σxx at T = 1.5 K,
which roughly continues to follow the law characterizing
regime II. Reducing the current below 0.7 μA leads to the
fourth regime IV where conductivity apparently saturates at
values σT,ν different for the two temperatures. At T = 0.35 K,
the conductivity threshold can not be determined because
of the increasing weight of some hysteretic charging effect
altering measurements of σxx for currents below 0.5 μA.
Consequently, the reasonable assumption that σT,ν follows the
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typical temperature dependence of VRH mechanism can not
be confirmed.

We remark that the monotonous behavior of conductivity
following the current dependence σ0,ν exp[−	Ea(ν)/eRH I ]
dominates at T = 1.5 K in regimes II and III over more
than three conductivity decades down to I = 0.7 μA (and
at T = 0.35 K in regime II), and can not be explained by
an activation effect caused by a simple heating of electrons
by current since it does not manifest itself at the low-
est temperature T = 0.35 K in the low current regime III
down to the same value I = 0.7 μA. More quantitatively,
a conductivity increase due to heating by current should be
described by σ0,ν exp[−	Eth(ν)/kBTel] with Tel the effective
electron temperature resulting from the heating. The cor-
rect adjustment of data at T = 1.5 K approximately above
I = 0.7 μA by σ0,ν exp[−	Eth(ν)/eRHI ] would result in
kBTel = eVH = eRHI , leading to an effective temperature Tel

of 52 K for I = 0.7 μA. This is not in agreement with the
electronic temperature, which is obviously close to 1.5 K
since conductivity starts to be current independent below
I = 0.7 μA, with a constant value expected to be determined
by the bath temperature. Finally, absence of strong asymmetry
of Rxx values (there are similar within 30%) with respect to
current direction indicates that there is no strong local electron
heating in current contact.69 This rules out any strong role of
current contacts 8 (5.9 k�) and 3 (<5.9 k�) on the observed
breakdown mechanism.

The exponential dependence of conductivity on 	Eth(ν)
in current regime II rather directs toward a dissipation
mechanism based on quasi-elastic inter-Landau level
scattering (QUILLS) assisted by the electric field. In current
regime III, the decrease of conductivity at T = 0.35 K
suggests that the QUILLS mechanism is combined with a
blockade mechanism manifesting itself approximately below
T = 1.5 K and a threshold current (∼1 μA), like a heating
mechanism by current. It appears that all conductivity curves
under regimes II, III, and IV, at both T = 1.5 and 0.35 K, can
be adjusted [see Figs. 7 and 4(d)] by a unique fitting function
σxx = σT,ν + σ0,ν exp[−	Ea(ν)/eRHI ] exp{ −Ec/[kB(T +
γ σxxV

2
H)]}. σ0,ν 
 0.25e2/h for all ν values, Ec = 95 μeV,

γ = 0.48 K/pW, and 	Ea near 	Eth as already explained.
The contribution σT,ν is chosen to adjust conductivity in the
low current regime IV only at T = 1.5 K.

B. Phenomenological model based on quasi-elastic
inter-Landau-level scattering

In order to explain with the QUILLS mechanism the
main current dependence of conductivity observed in regime
II, let us first consider a homogeneous electric field and
harmonic-oscillator wave functions for the carriers. The
tilting of LLs by the electric field brings closer localized
states at Fermi energy and extended states in the nearest
Landau levels, increases the wavefunction overlap, and thus
leads to an increased transition probability P between LLs.
Through scattering processes by phonons and/or charged
impurities, P is proportional to the wave-function over-
lap given by exp[−Q2l2

B], where Q is the typical di-
rect momentum between Landau levels Q = ωcB/E [see
Fig. 8(b)]. This should lead to P ∝ exp[−(	Eth(ν)/eElB )2] =

exp[−(	Eth(ν)/eVH)2(W/lB)2],62 thus a transition probabil-
ity different from the one observed. But, in the presence of dis-
order, at a length scale larger than lB , one expects a dependence
exp[−x/ξloc(ν)] of the localized state wave-function tail where
ξloc(ν) is the localization length varying like (ν − νc)−(2.3±0.1)

with νc the filling factor of the Landau-level center.70 This
case should be particularly valid in bilayer graphene where
the energy gap between LLs is very large. From the distance
x = 	Eth(ν)/eE between an initial localized state at the Fermi
energy and a final extended state in the Landau level at the same
energy, one therefore expects P ∝ exp[−	Eth(ν)/(eEξloc)].
This model can well describe the main exponential current
dependence observed in current regime II provided that
large local electric fields with a magnitude around VH/ξloc

are considered. Assuming ξloc ∼ lB = 6 nm at ν = −4 and
B = 18.5 T actually leads to a high value of the electric field
VH/ξloc ∼ 106 V/m for I = 1 μA. Besides, the correct adjust-
ment of data by this model needs 	Eth to be replaced by 	Ea,
which can be interpreted as the energy difference between the
Fermi energy and the mobility edge of the nearest LL.

We argue that the high concentration of charged impurities
(2.1012 cm−2) in the substrate can lead to such large electric
fields. In the absence of magnetic field, it was demonstrated
in Sec. II that charged impurities create carrier density
fluctuations with a magnitude of 1012 cm−2 and a typical
correlation length ξ = 11 nm in the considered BL sample
notably manifesting themselves as electron and hole puddles
near the CNP. These fluctuations are combined with more
macroscopic carrier density variations extending over larger
spatial scales. Their impact at high magnetic field in the
QHE regime has been addressed. Scanning of graphene on
Si/SiO2 substrate by tunneling spectroscopy71 or single-
electron-transistor technique20 has indeed shown that the
potential landscape drawn by charged impurities is partially
screened by the Coulomb interaction and leads to the existence
of compressible islands surrounded by incompressible strips
such as in AlGaAs/GaAs 2DEG.72 Jung and co-authors71 even
show that electron or hole puddles at zero magnetic field turn
into compressible islands surrounded by incompressible strips
in the QHE regime. It turns out that the localization length ξloc,
or rather its lower bound lB , as well as the characteristic length
of incompressible strips across which Hall potential drops,
could be similar to the electron and hole puddle correlation
length ξ . Thus, the existence of large local electric field in the
BL sample with a typical magnitude VH/ξ ∼ 106 V/m should
result from the strong carrier density fluctuations caused by
large concentration of charged impurities. Similar explanation
was proposed by Sing and co-workers.57 Another way to
understand the impact of the carrier density fluctuations is
to consider that they turn into spatial variations of the filling
factor in the QHE regime. Otherwise, the current flows along
a path minimizing the dissipation that is expected to occur at
ν = −4. Given the correlation length of the filling-factor (or
similarly of carrier density) fluctuations and the small width of
the sample, it is therefore likely that the current flows along a
narrow percolating incompressible path having a typical width
ξ = 11 nm. The potential drop concentration across this path
leads to the existence of large local electric fields. Beyond
the enhancement of the electric field, the role of charged
impurities in the QHE breakdown has been investigated in
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conventional semiconductor heterostructure. While charged
impurities are kept away from the 2DEG by the 10 nm to
40 nm-thick spacer, acoustic electron-phonon interaction
controls the QHE breakdown because elastic scattering by
ionized impurities increases the inter-Landau-level transition
rate at higher electric field. But, numerical work61 shows that
the closer charged impurities are from the 2DEG, the lower the
electric field at which they are efficient. We therefore propose
that a high concentration of charged impurities located at only
about 1 nm from graphene in the BL sample could itself be
responsible for inter-Landau-level transitions, which are in ad-
dition enhanced by the strong electric fields introduced by the
carrier density inhomogeneity these impurities induce. This re-
sults in QHE breakdown currents (typically 0.2 A/m) that are
low as compared to expectations in graphene from large LL en-
ergy gap and prevents from observing backscattering by VRH
at currents above I ≈ 0.7 μA. On the other hand, in samples
made from exfoliated monolayer graphene of higher mobility
where short-range scatterers dominate transport at low mag-
netic field,73 dissipation in the QHE regime was observed53

to occur through VRH when increasing current up to
≈ 30 μA.

The term exp{−Ec/[kB(T + γ σxxV
2

H)]} allows the descrip-
tion of the temperature effect and the weak heating effect by
current, clearly visible in current regime III (below 1 μA).
It phenomenologically models a blockade mechanism that
can be activated by thermal energy above a critical energy
Ec = 95 μeV. The effective temperature of carriers given
by T ∗ = T + γ σxxV

2
H leads to the best adjustment of data,

notably reproducing very well the sharpness of the crossover
between large and low current regimes at T = 0.35 K. Even
at T = 1.5 K, this exponential term allows a better adjustment
of conductivity. The proportionality of temperature increase
with the dissipated electric power means that carriers are
very badly coupled with phonons of graphene or substrate.
This results in a large temperature dependence on power
manifested in the value of the parameter γ ∼ 0.48 K/pW.
At I = 1 μA, T ∗ amounts to about 0.5, 2, and 5.5 K for ν

values −4.2, −4.5, and −4.8, respectively. The electronic
temperature increases all the more so as the ν value departs
from ν = −4 because of the higher mean conductivity leading
to more dissipation. The origin of this blockade mechanism
manifesting itself at low temperature and typically clearly
visibly below T = 1.5 K in our experiment is not understood.
However, it is worth mentioning that characteristic energies of
phonon absorption h̄cs/lB , where cs is the sound velocity,
are 22 meV (25.6 K) and 6.6 meV (7.7 K) for phonons of
graphene bilayer (cs = 2 × 104 ms−1) and of SiO2 (cs =
6 × 103 ms−1), respectively, thus well above 95 μeV. On the
other hand, the energy value 1.8 meV (2.1 K) for phonons
of PMMA covering the sample (cs = 1.6 × 103 ms−1) could
be compatible with our observations. An explanation based
on Coulomb blockade effect in compressible islands is more
improbable since the low value of Ec would mean oversized
islands.

Finally, the observed disappearance of the exponential
regime in current regime I [see Fig. 4(d)] can naturally be
explained by the QUILLS mechanism because of the overlap
integral saturation occurring when Landau levels are very
tilted. At higher currents, conductivity slowly increases with a

polynomial dependence σxx ∝ Iβ with β varying from 1/3 to
2/3 for ν values from −4.8 to −4.2.

The linear dependence of 	Ea(ν) on ν demonstrated in the
range between ν = −4.8 and −4.2 means that density of states
is to be quasiconstant. It is possible to verify this hypothesis
on a larger range of filling factors ν from the Rxx dependence
on ν measured at several currents. Figure 9(a) reports ln(Rxx)
as a function of ν measured with current values 3, 4, and
5 μA for which the term exp{−Ec/[kB(T + γ σxxV

2
H)]} ∼ 1

has no impact. Figure 9(b) shows that all four curves display-
ing 	Eb = − ln[Rxx/(σ0,νR

2
H)]eRHI (with σ0,ν = 0.25e2/h)

approximatively merge into a unique curve, except far from
ν = −4. This nicely shows that conductivity well follows the
current dependence σ0,ν exp[−	Eb(ν)/eRH I ] and reinforces
the meaning of 	Eb(ν) as the energy difference between
the Fermi energy and the mobility edge of the nearest
Landau levels. 	Eb(ν) draws the dependence of this energy
difference on ν. This energy reaches a maximum value of
45 meV at exactly ν = −4, which is half the energy gap as
expected. Figure 9(b) first shows that 	Ea values deduced
at ν = −4.2,−4.5,−4.8 from the adjustment of the current
dependence of conductivity perfectly match the 	Eb(ν) curve
deduced from the filling-factor dependence of Rxx at different
currents. Second, it shows that 	Eb(ν) linearity holds on both
side of ν = −4 over more than one unit variation. A constant
density of states, as deduced, could be a consequence of the
large-Landau-level overlap inherent to low carrier mobility.
Far from ν = −4, curves do not superimpose in a unique
curve, which means that QUILLS is no more the mechanism
responsible for conductivity. The sublinearity of ln(Rxx) as
observed in Fig. 9(a) can rather be explained by a saturation of
the wave-function overlap at filling factors near mobility edges.
Therefore, even if we expect an increase of density of states,
the energy determined near mobility edges in Fig. 9(b) is not
relevant. Extrapolating the linear behavior of 	Eb(ν) at zero
energy should give a reasonable estimate of the mobility edge
filling factor of the n = −2 Landau level νedge(n=−2) = −5.55.
This value means that the mobility edge energy should depart
from the (n = −2) Landau-level energy by 10.35 ± 2.3 meV
(120 K). This value can be compared with the half-width
of Landau level predicted by the Born approximation to be
equal to h̄/2τe. It matches the lower bound that is calculated
equal to 8.5 meV in considering τe ∼ τtr = 34 nm in bilayer
graphene because of the 2π Berry’s phase and ignoring that
τtr could be larger than τe because of the long-range character
of the dominant scattering potential. On the other hand, the
extrapolation of the linear behavior of 	Eb(ν) at zero energy
between ν = −4 and 0 leads to νedge(n=0,1) 
 −3, which
corresponds to a mobility edge shifted from the Landau-level
center by a larger energy of 34.5 meV (400 K). This value can
not be explained by the model of the broadening by disorder
valid for n = −2 but could be related to the degeneracy of the
n = 0 and n = 1 LLs.

C. Longitudinal resistance reproducible fluctuations

Figure 3(c) shows that in the BL sample, at both T = 0.35
and 1.5 K, the pattern of reproducible fluctuations of Rxx

in the low current regime at I = 0.5 μA is similar to that
measured at I = 1 μA, where conductivity mainly results
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FIG. 9. (Color online) (a) ln Rxx (R18,24) as a function of ν for four current values at T = 0.35 K. (b) 	Eb = − ln[Rxx/(σ0,νR
2
H)]eRHI as a

function of ν; 	Ea values are reported as black dot points.

from the QUILLS mechanism. Measurements at currents
above the breakdown current (� 2 μA) have shown a strong
decrease of the relative amplitude of these fluctuations. From
these observations, we deduce that the QUILLS mechanism
adds a conductivity contribution that does not itself fluctuate
with carrier density. Only the term σT,ν manifesting itself in
the low current regime IV has fluctuations. The resistance
shift due to the QUILLS mechanism by increasing current
from 0.5 up to 1 μA is particularly visible in the inset of
Fig. 3(c), which reports ln(Rxx) as a function of ns between
−1.9 × 1012 cm−2 and −2.3 × 1012 cm−2 away from the Rxx

minimum at ns = −1.8 × 1012 cm−2. It also shows a quite
linear relationship between ln(Rxx) and ns for both currents.
At I = 1 μA, such a behavior is expected since this is
a feature of the QUILLS mechanism, as also observed at
higher current in Figs. 9(a) and 9(b). On the other hand, at
I = 0.5 μA in current regime IV, QUILLS can not account
for the linear behavior since it is no more the dominant
dissipation mechanism, as observed in current dependence of
conductivity in Fig. 7. But, it turns out that VRH with soft
Coulomb gap predicts ln(Rxx) ∝ −[T0(ξloc)/T ]1/2 ∝ −ξ

−1/2
loc .

Assuming ξloc ∝ (ν − νc)−2.3, VRH also leads to a near-linear
behavior of logarithmic conductivity with ν, since ln(Rxx)
should be proportional to (ν − νc)2.3/2. At ν = −4.8 (ns =
−2.2 × 10−12 cm−2), VRH would lead to T0 = 5 K and ξloc =
800 nm. VRH can also explain that fluctuation amplitude
decreases as ν increases (in absolute value), and that it de-
creases slightly with increasing temperature and more strongly
with increasing current. This mechanism indeed predicts
longitudinal resistance fluctuations resulting from Gaussian
fluctuations of the localization length ξloc with an amplitude
δ ln(Rxx) ∝ T (−1/2)ξ

(−3/2)
loc δξloc that decreases as temperature

and ξloc increase. Decreasing of the amplitude with current
can be explained by the heating effect by current becoming
very significant far from ν = −4 for currents near 1 μA,
as observed in regime III for T = 0.35 K when ν decreases
from −4.2 to −4.8 (Fig. 7): T ∗(1 μA) = 0.5 K at ν = −4.2
increases up to T ∗(1 μA) = 5.5 K at ν = −4.8. Thus, the
reproducible fluctuations of Rxx observed are compatible with
the existence of VRH in the regime IV at low current and
low temperature. Coulomb blockade in compressible islands
surrounded by incompressible strips could also be considered
as a source of conductivity fluctuations. In this hypothesis,
peaks of conductance would correspond to the addition of one
electron into islands74 and π	nsr

2 = 1 with 	ns the carrier

density width of peaks. Considering the experimental value of
	ns leads to typical radius of islands r between 43 to 70 nm,
thus in agreement with values found by others groups,20,71,75

but also not so far from the puddle correlation length at low
field (11 nm). Although it is difficult to conclude about the
mechanism at the origin of fluctuations, they can explain
fluctuations of the Hall resistance RH observable in Fig. 4(a)
due to the unavoidable residual coupling between RH and Rxx.

V. CONCLUSION

To conclude, we have performed quantization tests of the
QHE in μm-wide Hall bars based on bilayer and monolayer
exfoliated graphene deposited on Si/SiO2 substrate where
electronic transport properties at low magnetic field are mainly
governed by the Coulomb interaction of carriers with a high
concentration of charged impurities. On the Hall plateaus
corresponding to Landau-level filling factor near ν = 2 in the
ML sample and ν = −4 in the BL sample, the Hall resistance
RH, respectively, agrees with RK/2 and RK/4 within a relative
uncertainty of a few parts in 107, in the limit of zero dissipation
or at low current below a few μA. These experiments are
therefore the most accurate QHE quantization measurements
to date in monolayer and bilayer exfoliated graphene. They
contribute to generalize the universality property of RK to
the bilayer graphene material for which the QHE was not
investigated metrologically so far. At low magnetic field,
charged impurities probably located in the silicon substrate
at about 1 nm below the surface and with density near
2 × 1012 cm−2 reduce mobility, more strongly in the BL
sample (μ < 2300 cm2 V−1 s−1) than in the ML sample (μ <

4050 cm2 V−1 s−1). These very efficient long-range scatterers
also induce large spatial fluctuations of carrier density that
stay bipolar up to finite density values (2 × 1012 cm−2 in BL).
Such density inhomogeneity can notably be responsible for the
saturation of L� observed in the BL sample at low temperature
and at finite density. In the QHE regime, dissipation leading to
the QHE breakdown mainly occurs through quasielastic inter-
Landau-level scattering (QUILLS) in presence of high local
electric fields. We claim that a high concentration of charged
impurities very close to graphene efficiently assits elastic
inter-Landau-level transitions. In addition, charged impurities
induce a strong filling-factor spatial inhomogeneity, which is
favorable to the existence of large local electric fields. At low
temperature and low current, it is observed in the BL sample
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that dissipation also follows an activation law with a typical
energy of 95 μeV, the origin of which is not understood. As a
result, breakdown is very anticipated at currents as low as 1 μA
by enhancement of the inter-Landau-level transitions which
prevent us from measuring the Hall resistance quantization
with better accuracy at higher currents. This is even more tragic
in the small graphene samples produced by exfoliation tech-
nique. The role of charged impurities present in the ML sample
is expected to be qualitatively the same in the anticipated
breakdown, but possibly with quantitative differences resulting
from particularities of the Coulomb potential screening. We
then conclude that the development of a graphene-based quan-
tum resistance standard able to challenge GaAs would require

large samples with higher mobility and more homogeneous
carrier density. To achieve this, the role of substrate on which
graphene is deposited or grown has to be carefully addressed,
whatever the graphene fabrication technique considered. This
is a consequence of the high sensitivity of graphene electronic
transport properties to its environment.
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and P. Frijlink, IEEE Trans. Instrum. Meas. 42, 264 (1993).
42B. Jeckelmann, B. Jeanneret, and D. Inglis, Phys. Rev. B 55, 13124

(1997).
43M. E. Cage, B. F. Field, R. F. Dziuba, S. M. Girvin, A. C. Gossard,

and D. C. Tsui, Phys. Rev. B 30, 2286 (1984).
44W. van der Wel, Ph.D. thesis, University of Delft, 1988.
45W. van der Wel, C. J. P. M. Harmans, and J. E. Mooij, J. Phys. C:

Solid State Phys. 21, L171 (1988).

165420-13

http://dx.doi.org/10.1103/PhysRevLett.45.494
http://dx.doi.org/10.1103/PhysRevLett.45.494
http://dx.doi.org/10.1088/0034-4885/64/12/201
http://dx.doi.org/10.1088/0034-4885/64/12/201
http://dx.doi.org/10.1038/nature04233
http://dx.doi.org/10.1038/nature04233
http://dx.doi.org/10.1038/nature04235
http://dx.doi.org/10.1038/nature04235
http://dx.doi.org/10.1126/science.1137201
http://dx.doi.org/10.1126/science.1137201
http://dx.doi.org/10.1140/epjst/e2009-01051-5
http://dx.doi.org/10.1140/epjst/e2009-01051-5
http://dx.doi.org/10.1103/RevModPhys.81.109
http://dx.doi.org/10.1103/PhysRevLett.95.146801
http://dx.doi.org/10.1103/PhysRevLett.95.146801
http://dx.doi.org/10.1103/PhysRevB.73.245403
http://dx.doi.org/10.1103/PhysRevLett.96.086805
http://dx.doi.org/10.1038/nnano.2010.40
http://dx.doi.org/10.1063/1.3043426
http://dx.doi.org/10.1063/1.3043426
http://dx.doi.org/10.1038/nnano.2009.474
http://dx.doi.org/10.1088/1367-2630/13/9/093026
http://dx.doi.org/10.1103/PhysRevLett.98.186806
http://dx.doi.org/10.1103/PhysRevLett.98.186806
http://dx.doi.org/10.1103/PhysRevB.77.115436
http://dx.doi.org/10.1103/PhysRevB.77.195412
http://dx.doi.org/10.1038/nphys1344
http://dx.doi.org/10.1063/1.1662507
http://dx.doi.org/10.1063/1.1662507
http://dx.doi.org/10.1103/PhysRevB.76.233411
http://dx.doi.org/10.1103/PhysRevLett.99.246803
http://dx.doi.org/10.1103/PhysRevLett.99.246803
http://dx.doi.org/10.1103/PhysRevLett.102.206603
http://dx.doi.org/10.1063/1.2779107
http://dx.doi.org/10.1103/PhysRevB.78.121402
http://dx.doi.org/10.1103/PhysRevB.77.115436
http://dx.doi.org/10.1103/PhysRevLett.101.166803
http://dx.doi.org/10.1103/PhysRevB.81.161407
http://dx.doi.org/10.1103/PhysRevB.81.161407
http://dx.doi.org/10.1103/PhysRevLett.98.176806
http://dx.doi.org/10.1103/PhysRevLett.98.176806
http://dx.doi.org/10.1103/PhysRevLett.97.146805
http://dx.doi.org/10.1103/PhysRevLett.98.176805
http://dx.doi.org/10.1103/PhysRevLett.99.176801
http://dx.doi.org/10.1103/PhysRevLett.99.176801
http://dx.doi.org/10.1103/PhysRevB.78.033404
http://dx.doi.org/10.1103/PhysRevB.77.193403
http://dx.doi.org/10.1103/PhysRevB.77.193403
http://dx.doi.org/10.1103/PhysRevB.35.1039
http://dx.doi.org/10.1103/PhysRevB.35.1039
http://dx.doi.org/10.1088/0026-1394/40/5/302
http://dx.doi.org/10.1103/PhysRevB.38.9375
http://dx.doi.org/10.1109/19.278562
http://dx.doi.org/10.1103/PhysRevB.55.13124
http://dx.doi.org/10.1103/PhysRevB.55.13124
http://dx.doi.org/10.1103/PhysRevB.30.2286
http://dx.doi.org/10.1088/0022-3719/21/7/003
http://dx.doi.org/10.1088/0022-3719/21/7/003


GUIGNARD, LEPRAT, GLATTLI, SCHOPFER, AND POIRIER PHYSICAL REVIEW B 85, 165420 (2012)

46 Domingez, Ph.D. thesis, CNAM, Paris, 1987.
47B. I. Shklovskii and A. L. Efros, Electronic Properties of Doped

Semiconductors (Springer, Berlin, 1984).
48D. G. Polyakov and B. I. Shklovskii, Phys. Rev. Lett. 70, 3796

(1993).
49M. Furlan, Phys. Rev. B 57, 14818 (1998).
50D. G. Polyakov and B. I. Shklovskii, Phys. Rev. Lett. 73, 1150

(1994).
51D. G. Polyakov and B. I. Shklovskii, Phys. Rev. Lett. 74, 150 (1995).
52A. J. M. Giesbers, U. Zeitler, L. A. Ponomarenko, R. Yang, K. S.

Novoselov, A. K. Geim, and J. C. Maan, Phys. Rev. B 80, 241411(R)
(2009).

53K. Bennaceur, P. Jacques, F. Portier, P. Roche, and D. Glattli, e-print
arXiv:1009.1795.

54T. J. B. M. Janssen, A. Tzalenchuk, R. Yakimova, S. Kubatkin,
S. Lara-Avila, S. Kopylov, and V. I. Fal’ko, Phys. Rev. B 83, 233402
(2011).

55A. J. M. Giesbers, U. Zeitler, M. I. Katsnelson, L. A. Ponomarenko,
T. M. Mohiuddin, and J. C. Maan, Phys. Rev. Lett. 99, 206803
(2007).

56A. J. M. Giesbers, L. A. Ponomarenko, K. S. Novoselov, A. K.
Geim, M. I. Katsnelson, J. C. Maan, and U. Zeitler, Phys. Rev. B
80, 201403(R) (2009).

57V. Singh and M. M. Deshmukh, Phys. Rev. B 80, 081404(R) (2009).
58M. E. Cage, R. F. Dziuba, B. F. Field, E. R. Williams, S. M. Girvin,

A. C. Gossard, D. C. Tsui, and R. J. Wagner, Phys. Rev. Lett. 51,
1374 (1983).

59O. Heinonen, P. L. Taylor, and S. M. Girvin, Phys. Rev. B 30, 3016
(1984).

60L. Eaves and F. W. Sheard, Semicond. Sci. Technol. 1, 346 (1986).

61C. Chaubet, A. Raymond, and D. Dur, Phys. Rev. B 52, 11178
(1995).

62C. Chaubet and F. Geniet, Phys. Rev. B 58, 13015 (1998).
63S. A. Trugman, Phys. Rev. B 27, 7539 (1983).
64G. Ebert, K. von Klitzing, K. Ploog, and G. Weimann, J. Phys. C:

Solid State Phys. 16, 5441 (1983).
65S. Komiyama, T. Takamasu, S. Hiyamizu, and S. Sasa, Solid State

Commun. 54, 479 (1985).
66S. Komiyama, Y. Kawaguchi, T. Osada, and Y. Shiraki, Phys. Rev.

Lett. 77, 558 (1996).
67V. Tsemekhman, K. Tsemekhman, C. Wexler, J. H. Han, and D. J.

Thouless, Phys. Rev. B 55, R10201 (1997).
68B. Jeckelmann, A. Rufenacht, B. Jeanneret, F. Overney, A. von

Campenhausen, and G. Hein, IEEE Trans. Instrum. Meas. 50, 218
(2001).

69Y. M. Meziani, C. Chaubet, S. Bonifacie, A. Raymond, W. Poirier,
and F. Piquemal, J. Appl. Phys. 96, 404 (2004).

70D. Yoshioka, The Quantum Hall Effect (Springer, Berlin, 1998).
71S. Jung, G. M. Rutter, N. N. Klimov, D. B. Newell, I. Calizo, A. R.

Hight-Walker, N. B. Zhitenev, and J. A. Stroscio, Nat. Phys. 7, 245
(2011).

72S. Ilani, J. Martin, E. Teltelbaum, J. H. Smet, D. Mahalu,
V. Umansky, and A. Yacoby, Nature (London) 427, 328 (2004).

73M. Monteverde, C. Ojeda-Aristizabal, R. Weil, K. Bennaceur,
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