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We examine the time dependence of the position-momentum and position-velocity uncertainties in monolayer
gapped graphene. The effect of the energy gap to the uncertainties is shown to appear via the Compton-like
wavelength λc. The uncertainties in the graphene are mainly contributed by two phenomena, spreading and
zitterbewegung. While the former determines the uncertainties in the long range of time, the latter gives high
oscillation to the uncertainties in the short range of time. The uncertainties in the graphene are compared with
the corresponding values for the usual free Hamiltonian Ĥfree = (p2

1 + p2
2)/2M . It is shown that the uncertainties

can be under control within the quantum mechanical laws if one can choose the gap parameter λc freely.
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I. INTRODUCTION

After success for fabricating the monolayer or few layer
graphene,1 there are a lot of activities for researching into
the various properties of graphene.2 This is mainly due to the
fact that the low-energy electrons in graphene have unusual
electronic properties.

Long ago it was predicted by Wallace3 that the electron
located near the hexagonal vertices of the Brillouin zone
exhibits a linear dispersion relation and, 40 years later,
Semenoff4 showed that the low-energy dynamics of the cor-
responding electron is governed by a massless Dirac equation
even in the nonrelativistic regime. Thus, the fabrication of
the monolayer graphene opens a possibility to test various
predictions of quantum electrodynamics (QED) by making
use of condensed matter experiment. However, this does not
mean that all phenomena QED predicted can be realized in
the graphene-based experiment because the light velocity c in
QED should be replaced by the Fermi velocity vF ∼ c/300. It
results in the large fine-structure constant α ∼ 2. This implies
that only nonperturbative characters of the planar QED can be
realized in the graphene experiment. Recently, there has been
much research directed at this connection.5

Among many phenomena arising in the planar QED, the
most interesting issue, at least for us, is the spin-1/2 Aharonov-
Bohm (AB)6 or Aharonov-Bohm-Coulomb (ABC) problem,
which was extensively discussed about two decades ago7

because the same problem appeared in the context of anyonic
and cosmic string theories.8 The most important issue in this
problem is how to treat the δ-like singular potential generated
by an interaction between particle’s spin and thin magnetic
flux tube. Recently, similar AB and related problems were
discussed theoretically9 and experimentally10 in the branch
of graphene physics. Another closely related issue in the
graphene is Coulomb impurity problem.11 The interesting fact
in this case is that, depending on the charge of impurity, there
are two regions, the subcritical and supercritical, in which the
effects of impurity differ completely. A similar phenomenon
in QED was discussed long ago in Ref. 12.

Other unobserved interesting phenomena that QED pre-
dicts are the Klein paradox and zitterbewegung. The Klein

paradox13-counterintuitive barrier penetration in the relativis-
tic setting was re-examined in Ref. 14. The authors of
Ref. 14 argued that the Klein paradox can be realized using
electrostatic barriers in single- and bilayer graphene. A few
years later it was reported that the Klein tunneling was
observed by measuring the quantum conductance oscillation
and phase-shift pattern in extremely narrow graphene.15 The
zitterbewegung (ZB),16 the trembling motion arising due to the
interference between positive and negative energy states, was
also investigated recently in graphene without17 and with18 an
external magnetic field. The effect of zitterbewegung for other
models also has been discussed recently.19

In addition to a connection between graphene and QED,
much attention has been paid to graphene as a new material
for future technology. The most important application of
graphene, at least for us, is the possibility for realization of
a quantum computer. Recently, many techniques have been
used independently or cooperatively to realize a quantum
computer. The typical techniques are optical ones: ion traps,
NMR, quantum dots, and superconductors. The current status
for this realization is summarized in detail in Ref. 20. Also,
the graphene-based quantum computer is explored in Ref. 21.

In this paper we will examine the position-momentum
and position-velocity uncertainties of low-energy electrons
in the monolayer gapped graphene when the initial wave
packet is chosen as a general Gaussian wave packet. Since
a Gaussian wave packet, in general, contains both positive-
energy and negative-energy spectra, the expectation values of
the physical quantities should be the result of spreading and
zitterbewegung. Thus, it is of interest to examine the effect
of the gap parameter in the expectation values of various
quantities and uncertainties. We will show in this paper that the
position-momentum and position-velocity uncertainties can be
under control within the quantum-mechanical laws if the gap
parameter can be chosen freely.

Although this controllability of the uncertainties is interest-
ing on purely theoretical grounds, it is also important in terms
of realizing a quantum computer. The quantum computer20

is a machine that performs quantum computational processes
by making use of quantum mechanical laws. So far, many
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quantum information processes have been developed, such as
quantum teleportation,22 factoring algorithm,s23 and search
algorithms.24 All quantum information processes consist of
three stages: preparation of initial states at the initial stage,
time evolution of quantum states via various unitary gates
at the intermediate stage, and quantum measurements at the
final stages. If uncertainties, therefore, are large at the final
stage, the quantum measurement can generate fatal errors
in the computing processes. For this reason, it is important
to reduce the uncertainties as much as possible at the final
stages.

This paper is organized as follows. In Sec. II, we examine
the position-momentum uncertainties in gapped graphene. It
is shown that the uncertainties are the result of the spreading
and ZB effects of the given wave packet. The uncertainties
in the gapped graphene are compared with the corresponding
quantities of the 2D free Hamiltonian system. In Sec. III, we
discuss the position-velocity uncertainties in gapped graphene.
Unlike the position uncertainties, the velocity uncertainties are
shown to be solely the result of the ZB effect of the wave
packet. This implies that the t → ∞ limit of the velocity
uncertainties coincides with the Fermi velocity vF regardless
of the choice of the packet. In Sec. IV, a brief conclusion is
given.

II. POSITION-MOMENTUM UNCERTAINTY

In this section we examine the position-momentum uncer-
tainty in gapped graphene. The appropriate Hamiltonian for
the low-energy electron near the Dirac point is given by

ĤM = vF

(
MvF p1 − ip2

p1 + ip2 −MvF

)
, (1)

where vF ∼ c/300 is the Fermi velocity and M is a gap pa-
rameter generated for some dynamical and technical reasons.
Theoretically, the most popular mechanism that generates the
gap is chiral symmetry breaking.25 This mechanism is similar
to that of dynamical breaking,26 which was studied deeply in
gauge theories. The band gap can be generated by breaking
the sublattice symmetry. This case was experimentally realized
by choosing the substrate appropriately.27 In addition, the gap
is also generated in a graphene nanoribbon.28 Both cases are
taken into account in the Hamiltonian of Eq. (1). Although
monolayer graphene itself does not have a gap, the band gap is
naturally generated in bilayer graphene.29 However, we cannot
use the Hamiltonian of Eq. (1) to explore the effect of the gap
in the bilayer graphene due to the nontrivial structure of the
gap in the bilayer system. From the terminology of relativistic
field theories, this gap parameter M is a mass term of the Dirac
fermion.

The position operator x̂(t) in the Heisenberg pic-
ture can be expressed by a 2 × 2 matrix from
x̂(t) = exp(iĤMt/h̄)x̂(0) exp(−iĤMt/h̄). Explicit calculation
shows

x̂(t) = x̂(0) +
[

�̂(p) σ̂1(p) + iσ̂2(p)

σ̂1(p) − iσ̂2(p) −�̂(p)

]
, (2)

where

�̂(p) = h̄

p2 + (MvF )2

[
p2 sin2 θM + (MvF )p1√

p2 + (MvF )2

× (θM − sin θM cos θM )

]
,

σ̂1(p) = h̄

[ p2 + (MvF )2]3/2

[
θMp2

1 + sin θM cos θM (3)

× {
p2

2 + (MvF )2
}]

,

σ̂2(p) = h̄

[ p2 + (MvF )2]3/2
[p1p2(sin θM cos θM − θM )

+ (MvF )
√

p2 + (MvF )2 sin2 θM ],

and θM = (vF t/h̄)
√

p2 + (MvF )2. Each operator in Eq. (3)
consists of two types, one of which is responsible for ZB
phenomena and the other for spreading of the wave packet.

In order to examine the uncertainty relations, we should
introduce a wave packet. In this paper we introduce the usual
two-dimensional Gaussian wave packet,

|ψ(x,y : 0)〉 = d

2π
√

π

∫
d2k exp

[
−d2

2
(kx − α)2

− d2

2
(ky − β)2

]
eik·r

(
a

b

)
, (4)

where real parameters a and b satisfy a2 + b2 = 1. It is easy
to show that |ψ(x,y : 0)〉 can be decomposed as

|ψ(x,y : 0)〉 = |ψp(x,y : 0)〉 + |ψn(x,y : 0)〉, (5)

where |ψp(x,y : 0)〉 and |ψn(x,y : 0)〉 are the positive-energy
and negative-energy components of |ψ(x,y : 0)〉, respectively.
Using the Hamiltonian ĤM , it is easy to derive these compo-
nents, and the explicit expressions are given by

|ψp(x,y : 0)〉
= d

4π
√

π

∫
d2k exp

[
−d2

2
(kx − α)2 − d2

2
(ky − β)2

]
eik·r

× ak+ + b
(√

k2 + λ−2
c − λ−1

c

)
k+

√
k2 + λ−2

c

(√
k2 + λ−2

c + λ−1
c

k+

)
,

|ψn(x,y : 0)〉
= d

4π
√

π

∫
d2k exp

[
−d2

2
(kx − α)2 − d2

2
(ky − β)2

]
eik·r

× ak+ − b
(√

k2 + λ−2
c + λ−1

c

)
k+

√
k2 + λ−2

c

(√
k2 + λ−2

c − λ−1
c

−k+

)
.

(6)

In Eq. (6), k± = kx ± iky and λc = h̄/(MvF ). The parameter
λc is a familiar quantity. In fact, this is a Compton wavelength
if the Fermi velocity vF is replaced with the velocity of light
c. In this paper, we refer to λc as the Compton wavelength.
Thus, the intensity for the positive-energy and negative-energy
components are

P+ ≡ 〈ψp(x,y : 0)|ψp(x,y : 0)〉 = 1
2 + �P,

(7)
P− ≡ 〈ψn(x,y : 0)|ψn(x,y : 0)〉 = 1

2 − �P = 1 − P+,
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where

�P = d2

2π

∫
d2k exp[−d2(kx − α)2 − d(ky − β)2]

× λ−1
c (a2 − b2) + 2abkx√

k2 + λ−2
c

. (8)

If, therefore, α = 0 with a = b = 1/
√

2, we get P+ = P− =
1/2. In this case, the expectation values of various operators
are summarized in Appendix A. For arbitrary α and β,
however, P± should be computed numerically. Since |ψ(x,y :
0)〉 has both positive-energy and negative-energy components,
the expectation value of various physical quantities should
exhibit the trembling behavior due to the interference of these
components as discussed in Ref. 16–19.

Using Eqs. (2) and (4) it is straightforward to show

〈x〉(t) ≡ 〈ψ(x,y : 0)|x̂(t)|ψ(x,y : 0)〉
= d2

π

∫
d2k exp[−d2(kx − α)2 − d2(ky − β)2]

× (XS + XZB), (9)

where

XS = (vF t)

k2 + λ−2
c

[
(a2 − b2)λ−1

c kx + 2abk2
x

]
,

XZB = a2 − b2

k2 + λ−2
c

[
ky sin2 θ − λ−1

c kx√
k2 + λ−2

c

sin θ cos θ

]
(10)

+ 2ab(
k2 + λ−2

c

)3/2 sin θ cos θ
(
k2
y + λ−2

c

)
,

and θ = (vF t)
√

k2 + λ−2
c . As noted before, XS and XZB are

responsible for the spreading and trembling motion in the
time evolution of the packet, respectively. It is worthwhile
noting that the k integration in Eq. (9) can be performed
explicitly by making use of the binomial expansion. Finally,
then, 〈x〉(t) is represented in terms of the Hermite polynomials.
Instead of integral representation, however, 〈x〉(t) has triple
summations. The explicit expressions in terms of the Hermite
polynomials for various expectation values derived in this
paper are summarized in Appendix B.

A similar calculation procedure derives 〈y〉(t) as

〈y〉(t) ≡ 〈ψ(x,y : 0)|ŷ(t)|ψ(x,y : 0)〉
= d2

π

∫
d2k exp[−d2(kx − α)2 − d2(ky − β)2]

× (YS + YZB), (11)

where

YS = (vF t)

k2 + λ−2
c

[(a2 − b2)λ−1
c ky + 2abkxky],

YZB = sin2 θ

k2 + λ−2
c

[−(a2 − b2)kx + 2abλ−1
c ] (12)

− sin θ cos θ

(k2 + λ−2
c )3/2

[(a2 − b2)λ−1
c ky + 2abkxky].

Of course, YS and YZB represent the spreading and ZB motion
of the wave packet in the y direction.

In order to confirm the validity of our calculation, we
consider the case of zero gap (λ−1

c → 0), which was considered
in Ref. 17. For simplicity, we choose α = 0, a = 1, and
b = 0. Then, YS = 0 and YZB = − sin2 θkx/k2, which makes
〈y〉(t) = 0 due to kx integration. In this case, we also get
XS = 0 and XZB = sin2 θky/k2. Using

∫ 2π

0 dθ sin θea sin θ =
2πI1(a), where Iν(z) is a modified Bessel function, one can
show directly,

〈x〉(t) = 1

2β

(
1 − e−β2d2) − de−β2d2

∫ ∞

0
dqe−q2

× cos

(
2vF t

d
q

)
I1(2βdq), (13)

which exactly coincides with the second reference of Ref. 17.
Before we explore the uncertainty properties, it is interest-

ing to examine the limiting behaviors of 〈x〉(t) and 〈y〉(t). In
the t → 0 limit some combinations of the spreading and the
trembling motion become dominant and the limiting behaviors
reduce to

lim
t→0

〈x〉(t) = 2ab(vF t) + O[(vF t)2],

lim
t→0

〈y〉(t) = (vF t)2[−(a2 − b2)α + 2abλ−1
c ] + O[(vF t)3].

(14)

It is interesting to note that the t → 0 limiting behaviors of
〈x〉(t) and 〈y〉(t) differ completely because their orders of vF t

differ from each other. Furthermore, the dominant terms of
〈x〉(t) come from the off-diagonal components of x̂(t) while
those of 〈y〉(t) are the result of all the components of ŷ(t). In
the t → ∞ limit, the dominant terms in 〈x〉(t) and 〈y〉(t) result
from the spreading terms and their expressions are as follows:

lim
t→∞〈x〉(t) = d2(vF t)

π

[
(a2 − b2)λ−1

c J1,0 + 2abJ2,0
]
,

(15)

lim
t→∞〈y〉(t) = d2(vF t)

π

[
(a2 − b2)λ−1

c J0,1 + 2abJ1,1
]
,

where

Jm,n ≡
∫

d2k exp[−d2(kx − α)2 − d2(ky − β)2]
km
x kn

y

k2 + λ−2
c

.

(16)
In order to examine the position uncertainty �x(t) we

should derive x̂2(t), which reduces to

x̂2(t) = [
x̂2(0) + �̂2(p) + σ̂ 2

1 (p) + σ̂ 2
2 (p)

]
1

+{x̂(0),x̂(t) − x̂(0)}, (17)

where {A,B} ≡ AB + BA. Since it is straightforward to show
〈ψ(x,y : 0)|{x̂(0),Ẑ(p)}|ψ(x,y : 0)〉 = 0 with Ẑ = �̂, σ̂1, or
σ̂2, one can show directly

〈x2〉(t) = d2

2
+ d2

π

∫
d2k exp[−d2(kx − α)2 − d2(ky − β)2]

× (X̃S + X̃ZB), (18)

where

X̃S = (vF t)2 k2
x

k2 + λ−2
c

X̃ZB = sin2 θ
k2
y + λ−2

c(
k2 + λ−2

c

)2 . (19)
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A similar calculation shows

〈y2〉(t) = d2

2
+ d2

π

∫
d2k exp[−d2(kx − α)2 − d2(ky − β)2]

× (ỸS + ỸZB), (20)

where ỸS and ỸZB are obtained from X̃S and X̃ZB by
interchanging kx with ky .

For the case of zero gap (λ−1
c → o) with α = 0, a = 1, and

b = 0, one can show straightforwardly,

〈x2〉(t)
= d2

2
+ (vF t)2

2β2d2
(1 − e−β2d2

) + d2e−β2d2
∫ ∞

0

dq

q2
e−q2

×
[
1 − cos

(
2vF t

d
q

)] [
qI0(2βdq) − 1

2βd
I1(2βdq)

]
,

〈y2〉(t) = d2

2
+ (vF t)2

[
e−β2d2/2

(
sin

β2d2

2
+ cos

β2d2

2

)

− 1

2β2d2
(1 − e−β2d2

)

]

+ d

2β
e−β2d2

∫ ∞

0

dq

q2
e−q2

[
1 − cos

(
2vF t

d
q

)]

× I1(2βdq). (21)

Equations (13) and (21) can be used to compute the uncertain-
ties �x and �y for the case of zero gap.

In the t → 0 limit 〈x2〉(t) and 〈y2〉(t) exhibit similar
behavior as

lim
t→0

〈x2〉(t) = lim
t→0

〈y2〉(t) = d2

2
+ (vF t)2 + O[(vF t)3], (22)

and the t → ∞ limits of 〈x2〉(t) and 〈y2〉(t) reduce to

lim
t→∞〈x2〉(t) = d2

2
+ d2

π
(vF t)2J2,0

(23)

lim
t→∞〈y2〉(t) = d2

2
+ d2

π
(vF t)2J0,2.

Since it is easy to show �px = �py = h̄/
√

2d, we plot
the time dependence of the dimensionless quantity �x�px/h̄

in Fig. 1. In the figure we choose a = 0.9, d = 8 (nm),

(a) (b)

(c)

(d)

FIG. 1. (Color online) The time dependence of �x�px/h̄ for λ−1
c = 6 (1/nm) (a), λ−1

c = 2 (1/nm) (b), and λ−1
c = 0.14 (1/nm) (c). The

black solid line for each figure is a corresponding value (�x�px/h̄)free for the usual two-dimensional free Hamiltonian Ĥfree. As panels (a),
(b), and (c) show, the uncertainty �x�px in graphene is larger (or smaller) than (�x�px)free in the entire range of time when λ−1

c > μ2 (or
λ−1

c < μ1). When μ1 < λ−1
c < μ2, �x�px is larger and smaller than (�x�px)free at t → 0 and t → ∞ limits, respectively. (d) The critical

value μ2 increases with decreasing α and eventually goes to ∞ at α = 0.
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α = 0.04 (1/nm), and β = 1.2 (1/nm). We also choose the
inverse of the Compton wave length as 6 (1/nm) [Fig. 1(a)],
2 (1/nm) [Fig. 1(b)], and 0.14 (1/nm) [Fig. 1(c)]. The black
solid line in Figs. 1(a), 1(b), and 1(c) is (�x�px/h̄)free =√

(1/2)2 + (λcvF t/2d2)2, which is a corresponding value
for the usual nonrelativistic free Hamiltonian Ĥfree = (p2

1 +
p2

2)/2M . The unit of the time axis is femtoseconds.
As Fig. 1 represents, the uncertainty �x�px has several

distinct properties. First, it is the result of both spreading and
the ZB motion of the wave packet. The spreading motion dom-
inates in the large scale of time. With an increase in the inverse
Compton wavelength, the overall increasing rate of �x�px

resulting from spreading of the packet decreases drastically.
This can be understood analogously from relativistic field
theories, that is, specifically, the relativistic theory approach to
the nonrelativistic Galilean theories, whereby, on increasing
M , the uncertainty is minimized. In the small scale of time,
�x�px oscillates rapidly due to the ZB effect. The amplitude
of the oscillation increases with decreasing λ−1

c . This is mainly
due to the fact the the ZB effect is dominated when the
energy gap �E between positive and negative energy spectra
decreases. However, the frequency increases rapidly with

increasing λ−1
c because of the famous formula ω = �E/h̄.

When λ−1
c is larger than a critical value μ2, �x�px becomes

larger than (�x�px)free as Fig. 1(a) indicates. When, however,
λ−1

c is smaller than a different critical value, μ1, it is smaller
than (�x�px)free, as Fig. 1(c) shows. In the intermediate range
of λ−1

c , �x�px is larger and smaller than (�x�px)free in the
t → 0 and t → ∞ limits, respectively, as Fig. 1(b) shows.
Using Eqs. (14) and (15) and several other limiting values, one
can derive the critical values μ1 explicitly, and μ2 implicitly,
as

μ1 = 1√
2d2(1 − 4a2b2)

, γ
(
λ−1

c

)∣∣∣∣
λ−1

c =μ2

= 1, (24)

where

γ
(
λ−1

c

) = 2λ−2
c d4

π

[
J2,0 − d2

π
{(a2 − b2)λ−1

c J1,0 + 2abJ2,0}2

]
.

(25)

The λ−1
c dependence of γ (λ−1

c ) is plotted in Fig. 1(d), where
a = 0.9, d = 8 (nm), α = 1.2/n (1/nm), and β = 1.2 (1/nm)
for various n. As this figure indicates, the critical value μ2

(a) (b)

(c)

(d)

FIG. 2. (Color online) The time dependence of �y�py/h̄ for λ−1
c = 8 (1/nm) (a), λ−1

c = 2 (1/nm) (b), and λ−1
c = 0.04 (1/nm) (c). The

black solid line for each figure is a corresponding value (�y�py/h̄)free. As panels (a), (b), and (c) show, the uncertainty �y�py in graphene
exhibits a similar behavior to �x�px . However, the critical values μ1 and μ2 are changed into ν1 and ν2. (d) The critical value ν2 increases
with decreasing β and eventually goes to ∞ at β = 0.
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increases with increasing n, and, eventually, μ2 = ∞ when
α = 0.

The dimensionless uncertainty �y�py/h̄ is plotted in
Fig. 2, where a = 0.9, d = 8 (nm), α = 1.2 (1/nm), and
β = 0.04 (1/nm). We also choose λ−1

c as 8 (1/nm) [Fig. 2(a)],
2 (1/nm) [Fig. 2(b)], and 0.08 (1/nm) [Fig. 2(c)]. We plot
(�y�py/h̄)free together for comparison. As Fig. 2 shows,
�y�py exhibits a similar behavior with �x�px . However,
the critical values μ1 and μ2 are changed into ν1 and ν2, which
reduce to

ν1 = 1√
2d

, δ
(
λ−1

c

)∣∣∣∣
λ−1

c =μ2

= 1, (26)

where

δ
(
λ−1

c

)= 2λ−2
c d4

π

[
J0,2 − d2

π

{
(a2 − b2)λ−1

c J0,1 + 2abJ1,1
}2

]
.

(27)

The λ−1
c dependence of δ(λ−1

c ) is plotted in Fig. 2(d), where
a = 0.9, d = 8 (nm), α = 1.2 (1/nm), and β = 1.2/n (1/nm)
for various n. As this figure indicates, the critical value ν2

increases with increasing n and eventually goes to ∞ when
β = 0.

III. POSITION-VELOCITY UNCERTAINTY

In this section we discuss the position-velocity
uncertainties,30 which differ completely from
position-momentum uncertainties because of p 	=
Mv. The velocity operator v̂x(t) is defined as
exp(iĤMt/h̄)v̂x(0) exp(−iĤMt/h̄), where v̂x(0) = ∂ĤM/∂p1.
This operator is easily constructed from x̂(t) by
making use of the Ehrenfest31 theorem dx̂(t)/dt =
(i/h̄) exp(iĤMt/h̄) [ĤM,x̂(0)] exp(−iĤMt/h̄) = v̂x(t). The
final expression of v̂x(t) then is

v̂x(t) =
[

Û (p) û1(p) + iû2(p)

û1(p) − iû2(p) −Û (p)

]
, (28)

where

Û (p) = vF

[
2p2√

p2 + (MvF )2
sin θM cos θM

+ 2(MvF )p1

p2 + (MvF )2
sin2 θM

]
,

û1(p) = vF

[
cos2 θM + p2

1 − p2
2 − (MvF )2

p2 + (MvF )2
sin2 θM

]
,

(a) (b)

(c)

FIG. 3. (Color online) The time dependence of �x�vx/dvF for λ−1
c = 0.09 (1/nm) (a), λ−1

c = 0.14 (1/nm) (b), and λ−1
c = 0.5 (1/nm) (c).

The black dotted line for each figure is a corresponding value for (�x�vx/dvF )free. As panels (a), (b), and (c) show, the uncertainty �x�vx in
graphene is larger (or smaller) than (�x�vx)free depending on the gap parameter λ−1

c . One can show explicitly that limt→0 �x�vx < (�x�vx)free

if λ−1
c < μ1 and limt→∞ �x�vx > (�x�vx)free if λ−1

c > μ2∗, where μ2∗ is defined as γ (λ−1
c = μ2∗) = 1/(2(μ2∗d)2.
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TABLE I. Critical values for �x�px and �x�vx when d = 8
(nm), α = 1.2/n (1/nm), and β = 1.2 (1/nm).

a n = 10 n = 20 n = 30 n = 40 n = 50 n = ∞
μ1 (1/nm) 0.9 0.143 0.143 0.143 0.143 0.143 0.143

0.7 4.42 4.42 4.42 4.42 4.42 4.42
μ2 (1/nm) 0.9 1.03 2.24 3.47 4.69 5.90 ∞

0.7 0.90 1.79 2.68 3.58 4.47 ∞
μ2∗ (1/nm) 0.9 0.257 0.303 0.318 0.324 0.327 0.332

0.7 0.256 0.302 0.317 0.323 0.326 0.332

û2(p) = vF

[
− 2p1p2

p2 + (MvF )2
sin2 θM

+ 2(MvF )√
p2 + (MvF )2

sin θM cos θM

]
. (29)

Unlike the position operators x̂(t) and ŷ(t) the velocity
operator v̂x(t) does not have the spreading term. This is due
to the fact that the spreading term in the position operators
is linear in time. Another remarkable property of v̂x(t) is that
v̂2

x(t) is simply v2
F times identity operator 1. Combining these

two properties one can easily conjecture limt→∞ �vx = vF

regardless of the choice of the wave packet because the ZB
term in v̂x(t) has infinitely high frequency in this limit and,
therefore, is canceled out in the time average.

The expectation value 〈vx〉(t) and 〈v2
x〉(t) with a wave

packet (4) can be straightforwardly computed by making
use of Eq. (28). As expected the resulting �vx(t) has only
trembling motion and approaches to vF at t → ∞ limit. The
dimensionless position-velocity uncertainty �x�vx/dvF is
plotted in Fig. 3 for λ−1

c = 0.09 (1/nm) [Fig. 3(a)], λ−1
c = 0.14

(1/nm) [Fig. 3(b)], and λ−1
c = 0.5 (1/nm) [Fig. 3(c)] when

a = 0.9, d = 8 (nm), α = 0.04 (1/nm), and β = 1.2 (1/nm).
The x axis is the time axis with the unit in femtoseconds. The
black dotted line is a corresponding value (�x�vx)free/dvF ,

where (�x�vx)free =
√

λ2
cv

2
F /4 + λ4

cv
4
F t2/4d4 is a position-

velocity uncertainty for Ĥfree. The overall increasing behavior
of �x�vx is solely due to �x because �vx does not have its
own spreading term. As Fig. 3 shows, �x�vx can be smaller
or larger than (�x�vx)free depending on the gap parameter λc.
In order to compare �x�vx with (�x�vx)free more accurately
we compute its limiting values at t → 0 and t → ∞. It then
is easy to show limt→0 �x�vx < (�x�vx)free if λ−1

c < μ1,
where μ1 is defined at Eq. (24), and limt→∞ �x�vx >

(�x�vx)free if λ−1
c > μ2∗, where μ2∗ is defined as γ (λ−1

c =
μ2∗) = 1/(2(μ2∗d)2. The critical values μ1, μ2, and μ2∗ are

TABLE II. Critical values for �y�py and �y�vy when d = 8
(nm), α = 1.2 (1/nm), and β = 1.2/n (1/nm).

a n = 10 n = 20 n = 30 n = 40 n = 50 n = ∞
ν1 (1/nm) 0.9 0.088 0.088 0.088 0.088 0.088 0.088

0.7 0.088 0.088 0.088 0.088 0.088 0.088
ν2 (1/nm) 0.9 2.23 3.36 4.48 5.60 6.73 ∞

0.7 1.22 2.05 2.88 3.73 4.59 ∞
ν2∗ (1/nm) 0.9 0.309 0.326 0.329 0.330 0.331 0.332

0.7 0.319 0.328 0.330 0.331 0.331 0.332

FIG. 4. Schematic diagram for measuring uncertainties.

given in Table I, where d = 8 (nm), α = 1.2/n (1/nm),
β = 1.2 (1/nm), and a = 0.9 or 0.7. The reason for choosing
a is that, while the diagonal components of the various
operators contribute dominantly to the uncertainty relations
at a = 0.9 ∼ 1, the off-diagonal components become more
important at a = 0.7 ∼ 1/

√
2. As expected from Fig. 1(d),

μ2 increases with increasing n and eventually goes to ∞ at
α = 0. Another critical value μ2∗ also exhibits an increasing
behavior with increasing n, but its increasing rate is very
small compared to μ2 and converges to 0.332 at the n → ∞
limit.

Following a similar calculation procedure, one can plot the
time dependence of the dimensionless quantity �y�vy/(dvF ).
Although the time dependence of the uncertainties is not
plotted in this paper, �y�vy exhibits a similar behavior
with �x�vx . However, the critical values μ1 and μ2∗ are
changed into ν1 and ν2∗, whose explicit values are given in
Table II.

IV. CONCLUDING REMARKS

In this paper we have examined the position-momentum
and position-velocity uncertainties for monolayer gapped
graphene. We have shown that the uncertainties result from
the spreading effect of the wave packet in the long range of
time and the ZB in the short range of time. By choosing the gap
parameter λc appropriately, one can control the uncertainties
within quantum mechanical law.

The uncertainties can be tested experimentally because all
figures in this paper show a significant difference between
the free and graphene cases. The uncertainties in graphene
might be measured via the following one-slit experiment (see
Fig. 4). In this paper, we will discuss on �x only because
other quantities can be measured similarly. The slit width d

should be in angstroms to ensure the occurrence of diffraction
in the slit. The distance L should be in nanometers because
the effect of the zitterbewegung is important within the initial
few femtoseconds. The electrons emitted by the emitter would
arrive at the detecter through the slit. One then can make
a probability distribution with respect to x, which would
be a smooth Gaussian form. Measuring the width of the
Gaussian distribution, one can deduce �x at t ∼ L/vF , where
vF is a Fermi velocity. Repeating the same experiment with
changing L, one can measure the time dependence of �x. If
the prediction presented in this paper is correct, �x would
exhibit an oscillating behavior in the short range of time due
to the effect of the zitterbewegung but, globally, an increasing
behavior in the long range of time due to the spreading effect
of the wave packet.
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It would be interesting to extend the approach used in this
paper to bilayer graphene. Another interesting issue would be
to examine the uncertainty relations when an external magnetic
field is applied. We hypothesize that the external magnetic field
would drastically reduce the uncertainties in the graphene.
If so, the graphene-based quantum computer could be more
useful for huge calculations. We would like to explore this
issue in the near future.
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APPENDIX A

In this appendix we summarize the various expectation
values at α = 0 and a = b = 1/

√
2, where Eqs. (7) and (8)

imply that the initial wave packet has equal intensity of
positive-energy and negative-energy states. In this simple case
the expectation values 〈x〉(t) and 〈y〉(t) reduce to

〈x〉(t) = d2

π

∫
d2ke−d2k2

x−d2(ky−β)2

×
[

(vF t)
k2
x

k2 + λ−2
c

+ sin θ cos θ
k2
y + λ−2

c(
k2 + λ−2

c

)3/2

]
,

〈y〉(t) = d2λ−1
c

π

∫
d2ke−d2k2

x−d2(ky−β)2 sin2 θ

k2 + λ−2
c

, (A1)

where θ = (vF t)
√

k2 + λ−2
c . In the case of zero gap we get

〈y〉(t) = 0. Since 〈x2〉(t) and 〈y2〉(t) are independent of choice
of a and b, they are equal to Eqs. (18) and (20) with α = 0.
The expectation values for the velocity operators becomes

〈vx〉(t) = vF − 2vF d2

π

∫
d2ke−d2k2

x−d2(ky−β)2
sin2 θ

k2
y + λ−2

c

k2 + λ−2
c

,

〈vy〉(t) = vF d2λ−1
c

π

∫
d2ke−d2k2

x−d2(ky−β)2 sin 2θ√
k2 + λ−2

c

. (A2)

In the case of zero gap we also get 〈vy〉(t) = 0. Of course,
the expectation values for the square of velocity operators are
simply 〈v2

x〉 = 〈v2
y〉 = v2

F .

APPENDIX B

In this appendix we summarize the explicit expressions
for 〈x〉(t), 〈y〉(t), 〈x2〉(t), 〈y2〉(t), 〈vx〉(t), and 〈vy〉(t) by
making use of the binomial expansion and performing the
k integration. The integral formula we use is∫ ∞

−∞
xne−(x−β)2

dx = (2i)−n
√

πHn(iβ), (B1)

where Hn(z) is the usual Hermite polynomial.

The expectation values 〈x〉(t) and 〈y〉(t), expressed in
Eqs. (9) and (11), reduce to

〈x〉(t) = 2abvF t +
∞∑

n=0

(
2λ−1

c vF t
)2n+2

(2n + 3)!

n∑
�=0

(
n

�

)
(−1)n−�(

2λ−1
c d

)2�+2

×
�∑

m=0

(
�

m

)
[−i(a2 − b2)dX1 + 2ab(vF t)X2],

〈y〉(t) =
∞∑

n=0

(
2λ−1

c vF t
)2n+2

(2n + 3)!

n∑
�=0

(
n

�

)
(−1)n−�(

2λ−1
c d

)2�+2

×
�∑

m=0

(
�

m

)
[i(a2 − b2)dY1 + abλcY2], (B2)

where

X1 = (2n + 3)H2m(iαd)H2�−2m+1(iβd)

+ 2
(
λ−1

c vF t
)
H2m+1(iαd)H2�−2m(iβd),

X2 = H2m(iαd)H2�−2m+2(iβd)

− (
2λ−1

c d
)2

H2m(iαd)H2�−2m(iβd),

Y1 = (2n + 3)H2m+1(iαd)H2�−2m(iβd) (B3)

+ 2
(
λ−1

c vF t
)
H2m(iαd)H2�−2m+1(iβd),

Y2 = (2n + 3)
(
2λ−1

c d
)2

H2m(iαd)H2�−2m(iβd)

− 2
(
λ−1

c vF t
)
H2m+1(iαd)H2�−2m+1(iβd).

Although the arguments of the Hermite polynomials are purely
imaginary, one can show easily that 〈x〉(t) and 〈y〉(t) are real
by considering the fact that Hn(z) is an even (or odd) function
when n is even (or odd).

Similarly, one can express 〈x2〉(t) and 〈y2〉(t) from Eqs. (18)
and (20) as follows:

〈x2〉(t) = d2

2
+ (vF t)2 + 2d2

∞∑
n=0

(
2λ−1

c vF t
)2n+4

(2n + 4)!

×
n∑

�=0

(
n

�

)
(−1)n−�(

2λ−1
c d

)2�+4

�∑
m=0

(
�

m

)
X3,

〈y2〉(t) = d2

2
+ (vF t)2

+ 2d2
∞∑

n=0

(
2λ−1

c vF t
)2n+4

(2n + 4)!

n∑
�=0

(
n

�

)
(−1)n−�(

2λ−1
c d

)2�+4

×
�∑

m=0

(
�

m

)
Y3, (B4)

where X3 = X2 and

Y3 = H2m+2(iαd)H2�−2m(iβd) − (
2λ−1

c d
)2

H2m(iαd)

×H2�−2m(iβd). (B5)

Although we have not derived the integral representations of
〈vx〉(t) and 〈vy〉(t) explicitly in the main text, their derivations
are straightforward. The expressions of 〈vx〉(t) and 〈vy〉(t) in
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terms of the Hermite polynomials then are

〈vx〉(t) = 2abvF − 2vF

∞∑
n=0

(
2λ−1

c vF t
)2n+1

(2n + 2)!

×
n∑

�=0

(
n

�

)
(−1)n−�(

2λ−1
c d

)2�+2

�∑
m=0

(
�

m

)

×[
i(a2 − b2)

(
2λ−1

c d
)
U1 + 2ab

(
λ−1

c vF t
)
U2

]
,

〈vy〉(t) = vF

∞∑
n=0

(
2λ−1

c vF t
)2n+1

(2n + 2)!

n∑
�=0

(
n

�

)

× (−1)n−�(
2λ−1

c d
)2�+1

�∑
m=0

(
�

m

)
[i(a2 − b2)V1 + 2abV2],

(B6)

where

U1 = (n + 1)H2m(iαd)H2�−2m+1(iβd)

+ (
λ−1

c vF t
)
H2m+1(iαd)H2�−2m(iβd),

U2 = (
2λ−1

c d
)2

H2m(iαd)H2�−2m(iβd)

−H2m(iαd)H2�−2m+2(iβd), (B7)

V1 = (2n + 2)H2m+1(iαd)H2�−2m(iβd)

− 2
(
λ−1

c vF t
)
H2m(iαd)H2�−2m+1(iβd),

V2 = (2n + 2)
(
2λ−1

c d
)
H2m(iαd)H2�−2m(iβd)

− vF t

d
H2m+1(iαd)H2�−2m+1(iβd).
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