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g factors and diamagnetic coefficients of electrons, holes, and excitons in InAs/InP quantum dots
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The electron, hole, and exciton g factors and diamagnetic coefficients have been calculated using envelope-
function theory for cylindrical InAs/InP quantum dots in the presence of a magnetic field parallel to the dot
symmetry axis. A clear connection is established between the electron g factor and the amplitude of those
valence-state envelope functions that possess nonzero orbital momentum associated with the envelope function.
The dependence of the exciton diamagnetic coefficients on the quantum dot height is found to correlate with the
energy dependence of the effective mass. Calculated exciton g factor and diamagnetic coefficients, constructed
from the values associated with the electron and hole constituents of the exciton, match experimental data
well, however including the Coulomb interaction between the electron and hole states improves the agreement.
Remote-band contributions to the valence-band electronic structure, included perturbatively, reduce the agreement
between theory and experiment.
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I. INTRODUCTION

The magnetic moment and Zeeman energy splittings of an
electronic spin are controlled by the g tensor, whose value
differs from the bare electron’s g factor of ∼2 due to the
spin-orbit interaction in a solid.1 Thus an understanding of the
g tensor not only provides insight into the spin-orbit interaction
in a solid, but it also can yield insight into the effective
orbital motion (and resulting angular momentum) associated
with a quantum state.1 The spin-orbit interaction affects the
magnetic moment of an electronic state by permitting a
contribution from the orbital angular momentum in addition to
the spin momentum (leading to an effective Landé g factor in
atomic systems). In solids, in addition to the atomistic (Bloch)
orbital angular momentum, the envelope wave function also
contributes to the magnetic moment via the envelope orbital
angular momentum.

The g factors of bulk semiconductors, which often differ
substantially from the electron’s bare g factor, cannot be
explained solely by the large orbital angular momenta of
Bloch states that contribute to the orbital motion of the
state within a crystal lattice unit cell. Instead the spatial
extension of the wave function across many unit cells leads
to the large g factors through interatomic circulating currents
originating from the spin-orbit potential.2 As a wave packet
in a semiconductor crystal can have a substantial extent due
to the small effective mass m∗, the envelope wave function
can sustain large extended circulating currents leading to a
large envelope orbital angular momentum. In the absence of
spin-orbit coupling these currents vanish and do not contribute
to the modification of the g factor at all. However, in most
semiconductors the spin-orbit coupling is substantial and will
lift the spin degeneracy, leading to a finite spin-dependent
envelope orbital angular momentum. Therefore the g factor
is modified from the Landé factor by means of the additional
envelope orbital angular momentum generated by circulating
currents in the envelope wave function.

These circulating currents are reminiscent of the origin
of diamagnetism: the response of electrons to an applied

magnetic field is to create circulating currents, leading to a
magnetization opposed to the applied field. The underlying
origin of the diamagnetic circulating currents is different
than those associated with the g tensor, which come from
the spatially-periodic spin-orbit potential. However, for both
phenomena the generation of orbital angular momentum by
extended circulating currents is essential to understand the
effect and explain the experimental results. It was Ehrenfest
who initially identified the role of extended circulating
currents in producing large differences in the diamagnetic
susceptibilities of various materials.3,4

In quantum dots, confinement alters the envelope orbital
momentum of the envelope wave function by preventing it
from extending over as many lattice unit cells as it would
in the bulk. In the limit of infinite confinement potentials
and vanishing dot size, the envelope orbital momentum is
quenched and the g factor is solely determined by the atomistic
(Bloch) Landé factor. This idea has been successfully applied
to paramagnetic impurities in salts.1 The effect of envelope
orbital momentum quenching was demonstrated in Ref. 5
for a spherical, unstrained InAs nanocrystal, by showing that
the electron g factor approached the bare electron value of
∼2 much more quickly than would be expected from a
parametrized bulk model based on Ref. 6. A similar quenching
effect on the orbital angular momentum should reduce the
diamagnetic coefficient in small quantum dots with large
barriers. For both quantities it is crucial to explore how
confinement affects the envelope orbital angular momentum.
An understanding of the nature of the g tensor’s dependence
on dot composition and structure can thus clarify the role
of orbital angular momentum quenching in determining this
property in a quantum dot.5 Diamagnetic coefficients provide
a picture of the orbital motion associated with a quantum
state through a different path than the g tensor; a theory that
correctly describes both has passed a stringent test of its picture
of the orbital motion of the electronic state.

In addition to these fundamental concerns, a single spin in
a quantum dot provides a model system for the observation
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FIG. 1. (Color online) The quantum dots are made out of pure
InAs (red) embedded in InP (gray), and have a cylindrical shape with
a radius r and height h.

and manipulation of an individual quantum system,7,8 and has
been proposed as a qubit for use in quantum computation.9 g

tensors (but not diamagnetic coefficients) figure prominently
in spin-based proposals for quantum information processing
as they provide an effective spin-manipulation method, and
hence qubit-operation mechanism. For example, proposals
for single-spin control via an electric field include electric
field modification of the g tensor to bring the spin into and
out of resonance with a global RF field,9–11 or to tilt the
spin’s precessional axis.12–16 They also provide energy-level
structures favorable for optical pumping of spin polarization
of an electron,17–19 or a hole20,21 in a quantum dot. Due to
energy-conservation constraints the g tensor also can control
the spin lifetime (T1) for a dot.22,23

Compositionally defined quantum dots24 permit much
larger barrier heights than gate-defined dots, as well as efficient
optical access with simultaneous control of charging.25 The
larger confinement energies in such dots for both electrons and
holes from these barriers may in principle permit single-spin
behavior at higher operating temperature than in lithographic
dots,8 however the intrinsic strain and dot shape asymmetry
provide a challenge to theory. Shown in Fig. 1 is a schematic
dot, with height h and radius r , which can be formed through
metal-organic vapor-phase epitaxy (MOVPE) of InAs on an
InP substrate. Details of the growth of these roughly cylindrical
InAs dots can be found in Ref. 26. Recent experimental work27

has investigated the magneto-optical properties of such dots
by probing the component of the exciton g tensor along the
[001] direction (this component is from now on referred as the
g factor). A strong dependence of the exciton g factor (gex) on
the dot height was shown, whereas the same work found the
exciton diamagnetic coefficient (αex) was mostly independent
of the height. The quantum dot radii had little influence on
either gex or αex. Theoretical calculations are needed to provide
insight into the details of the observed dependencies of gex and
αex and to provide clarity about the ability to tune the gex factor
through control of the size and shape of the quantum dot.

Here we describe an extensive series of multiband envelope-
function calculations of electron, hole, and exciton g factors
and diamagnetic coefficients based on an eight-band strain-
dependent k · p model of the bulk semiconductor constituents
for a series of quantum dots similar to the ones reported
in Ref. 27. The calculational method is detailed in Sec. II.
The calculated g factors and diamagnetic coefficients of the
electron and hole are discussed separately in Secs. III and IV.
The exciton gex factor and αex, which are constructed from the
values for the electron and hole, are compared to experimental
data in Sec. V. The appendices provide a detailed comparative

analysis of our results with other schemes to calculate the g

factor and diamagnetic coefficient.

II. METHODS

The g factors and diamagnetic coefficients of quantum dots
are calculated using eight-band strain-dependent k · p theory
on a real-space grid.28 The strain is calculated using linear
elasticity continuum theory. All calculations are performed at
T = 0 K and material parameters are taken from Ref. 29. The
magnetic field is coupled both to the envelope wave function
and the spin of the Bloch functions,5 where the latter is taken
into account by the Zeeman Hamiltonian

HZeeman = 1
2μBB ·

⎛
⎜⎝

2σ 0 0

0 4
3 J 0

0 0 2
3σ

⎞
⎟⎠ , (1)

where μB is the Bohr magneton and σ and J are the spin
matrices of spins 1

2 and 3
2 respectively. The g factors for the

conduction, valence, and spin-orbit bands are, respectively, 2,
4
3 , and 2

3 (i.e., the Landé factors). Note that we have explicitly
left out the remote band contributions. This approximation is
validated in Appendix A.

The calculated quantum dots have a cylindrical shape and
are assumed to be pure InAs (see Fig. 1), as was inferred from
cross-sectional scanning tunneling microscopy in Ref. 27.
Calculations for various heights h and radii r for the quantum
dots have been performed to study the size dependence of
the g factor and diamagnetic coefficient. The energy levels
and wave functions of these dots are calculated with magnetic
fields of 0–10 T applied in the growth [001] direction. The
sizes of the quantum dots are small enough compared to
the magnitude of the applied magnetic field to preclude any
transition to complete magnetic confinement, which has been
studied elsewhere.30 The spin-dependent energies of both the
electron (c) and hole states (v) can be parametrized as

Ec (B) = Ec,0 ± 1
2 |μB |gcB + αcB

2, (2)

Ev (B) = Ev,0 ∓ 1
2 |μB | (g0

v + g2
vB

2
)
B + αvB

2, (3)

where E(c,v),0 is the ground-state energy, g(c,v) the g factor,
μB the Bohr magneton, and α(c,v) the diamagnetic coefficient.
Note that the hole (but not the electron) Zeeman energy is
observed to possess significant nonlinearity; the hole gv factor
has a zero-order component g0

v and a second-order component
g2

v . The upper (lower) signs in front of the Zeeman energy
correspond to spin states parallel (antiparallel) to the applied
magnetic field. Using these definitions for the energy levels,
we can define the magneto-optical properties of the exciton as

gex = −gc − g0
v, (4)

αex = |αc| + |αv|, (5)

Eem = |Ec,0| + |Ev,0|, (6)

where gex is the exciton g factor, αex the exciton diamagnetic
coefficient, and Eem the emission energy of the QD. These
definitions are consistent with the experimental definitions of
Ref. 27.
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FIG. 2. (Color online) Height dependence of the electron gc factor of (a) unstrained and (c) strained InAs/InP quantum dots, respectively.
(b) The correlation between the gc factor and the sum of all components having Lenv

z = ±1 for unstrained QDs. (d) the height dependence of
the sum of all components having envelope angular momenta Lenv

z = ±1 (dots) and Lenv
z = 0 (squares). The different colors indicate different

radii of QDs. Horizontal lines are the gc factors of quantum wires having different radii.

III. g FACTORS

The calculated electron gc factors and hole gv factors are
shown in Figs. 2 and 3. The different colors indicate different
radii r of the QDs. The continuous horizontal lines are the g

factors calculated for quantum wires (i.e., quantum dots having
infinite height).

A. Electron state

For the electron state, we have computed two cases: without
strain, Fig. 2(a); and with strain, Fig. 2(c). In both cases the gc

factor has a similar trend both in terms of height and radius; as
confinement increases by decreasing either height or radius,
the g factor tends toward the free electron g factor value
of +2 due to orbital angular momentum quenching. For the
opposite trend of increasing height and radius, and decreasing
confinement, the gc factor approaches the bulk limit of −14.6
for the unstrained case. This is similar to previous calculations5

using the same model. For the strained case the correct bulk
limit is the g tensor associated with the strained bulk material.
As explained in Sec. I, the envelope orbital momentum causes
the deviation of the electron g factor from the Landé factor.
It is therefore necessary to analyze the origin of the envelope
orbital angular momentum in more detail. We first focus on
the results for unstrained quantum dots.

Within the framework of eight-band k · p theory, any
quantum state consists of four different band components:
conduction band (CB), heavy-hole (HH), light-hole (LH),
and split-off (SO). Each of these components has a Bloch
and envelope wave function with corresponding (total) orbital
angular momenta J Bloch and Lenv. Due to strong spin-orbit
coupling these momenta couple with each other giving rise to
a combined total momentum F

|F,Fz〉 = ∣∣J Bloch,J Bloch
z

〉 ⊗ ∣∣Lenv,Lenv
z

〉
. (7)

The calculated electron ground state has an almost completely
F = 1

2 character, which can be formed from the four different
band components by taking the proper combinations of J Bloch

and Lenv. However, not all Lenv are allowed; the parity of the
effective mass equations requires that only either even or odd
Lenv can be mixed into the state.31 All allowable combinations
have been listed in Table I, together with the probability density
of the different components along the [001] direction.

Table I shows the CB component has a Lenv = 0 and
therefore does not contribute to the envelope orbital angular
momentum and thus to the deviation of the gc factor from
+2. However, the valence band portions of the wave function
have components with |Lenv,Lenv

z 〉 = |1,±1〉, which do lead
to a finite envelope orbital angular momentum directed along
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FIG. 3. (Color online) The height dependence of the zero-order hole g0
v factor of (a) unstrained and (c) strained InAs/InP quantum dots.

(b) The dependence of the zero-order hole g0
v factor on the LH component for unstrained and strained InAs/InP quantum dots. (d) The height

dependence of the second-order hole g2
v factor of strained InAs/InP quantum dots. The different colors indicate different radii of QDs. The

horizontal lines are the g0,2
v factors of quantum wires having different radii.

the [001] direction. In Fig. 2(b) we have plotted the gc factor
against the sum of all components of the wave function having
Lenv

z = ±1. For fixed radius, there is a nearly linear relation
between the gc factor and the amount of the wave function
that has an envelope orbital momentum Lenv

z = ±1. Less
amplitude in the band components having Lenv

z = ±1 leads
to a gc factor tending to +2. In other words, the value of
the electron gc factor for a particular quantum dot having
a certain height and radius is solely determined by how
the confinement has affected the composition of the wave
function.

To investigate this further, we have plotted in Fig. 2(d)
the sum of all components having either Lenv

z = ±1 (dots)
and Lenv

z = 0 (squares) as function of height. The observed
dependencies can be straightforwardly understood by exam-
ining the underlying Hamiltonian.28 The coupling between
the CB component and the valence-band components having
Lenv

z = ±1 is proportional to kx and ky , whereas the coupling
with the components having Lenv

z = 0 is proportional to kz.
The allowed k vectors for our cylindrical quantum dots having
height h and radius r are roughly proportional to kz ∼ 1/h and
kx,ky ∼ 1/r , and thus for larger height the fraction of Lenv

z = 0
decreases. Although not directly linked to the height, the
fraction of Lenv

z = ±1 increases simultaneously. This is merely
due to the relative increase of the 1/r coupling (Lenv

z = ±1)

compared to the directly affected 1/h coupling (Lenv
z = 0). In a

similar fashion the radial dependence can be understood. This
analysis shows that quantum confinement is only affecting the
composition of the wave function via the allowed k vectors
in the quantum dot. Thus the effect of quantum confinement
can be understood as probing a bulk material at a specific
k vector determined by the size of the quantum dot. This is
analogous to earlier work on quantum wells, which found the
nonparabolicity of the electronic effective mass by varying the
quantum well thickness.

As can be inferred by comparing the unstrained and strained
gc factors in Figs. 2(a) and 2(c), strain is changing the gc

factor only quantitatively and not qualitatively. The strain
Hamiltonian has the same functional form as the kinetic part
of the Hamiltonian,32 meaning that its effect will only be
able to modify the size of the couplings and energy gaps
between the different bands. From this point of view strain can
be regarded as a perturbation onto the system, not affecting
the mechanisms determining the gc factor. In particular,
compressive strain inside the QD will cause the effective
band gap to become larger compared to unstrained QDs. This
gives rise to an overall smaller fraction of the valence band
mixed into the electron state, and so for similar sizes, the
strained gc factors have values closer to +2 than the unstrained
ones.
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TABLE I. (Color online) Combinations of J Bloch and Lenv leading to |F,Fz〉 = | 1
2 ,± 1

2 〉, for each of the different components i of �i
c(r), of

a QD having height of 6 nm and radius of 11 nm. The color scale is different for each plot.

Cut of |�i
c(r)|2 at B = 0 T Cut of |�i

c(r)|2 at B = 2 T

i |J Bloch,J Bloch
z ,Lenv,Lenv

z 〉 |F = 1
2 ,Fz = ± 1

2 〉 |J Bloch,J Bloch
z 〉 |F = 1

2 ,Fz = + 1
2 〉 |F = 1

2 ,Fz = − 1
2 〉

CB | 1
2 ,± 1

2 ,0,0〉
| 1

2 ,− 1
2 〉

| 1
2 ,+ 1

2 〉

HH | 3
2 ,± 3

2 ,1,∓1〉
| 3

2 ,+ 3
2 〉

| 3
2 ,− 3

2 〉

LH
| 3

2 ,∓ 1
2 ,1,±1〉

| 3
2 ,± 1

2 ,1,0〉

| 3
2 ,+ 1

2 〉

| 3
2 ,− 1

2 〉

SO
| 1

2 ,∓ 1
2 ,1,±1〉

| 1
2 ,± 1

2 ,1,0〉

| 1
2 ,− 1

2 〉

| 1
2 ,+ 1

2 〉

B. Hole state

The hole state presents additional complications versus the
electron state. We show calculations without strain, Fig. 3(a),
and with strain, Fig. 3(c). As for the electron state, the envelope
orbital angular momenta of the four different band components

of the wave function are essential to understand the behavior
of the gv factor. As the hole ground state has a strong Fz = ± 3

2
character, different envelope orbital momenta Lenv are mixed
into the state. The proper combinations of J Bloch and Lenv

are listed in Table II, together with probability density of the

TABLE II. (Color online) Combinations of J Bloch and Lenv leading to |F,Fz〉 = | 3
2 ,± 3

2 〉, for each of the different components i of �i
v(r), of

a QD having height of 6 nm and radius of 11 nm. The color scale is different for each plot.

Cut of |�i
v(r)|2 at B = 0 T Cut of |�i

v(r)|2 at B = 2 T

i |J Bloch,J Bloch
z ,Lenv,Lenv

z 〉 |F = 3
2 ,Fz = ± 3

2 〉 |J Bloch,J Bloch
z 〉 |F = 3

2 ,Fz = + 3
2 〉 |F = 3

2 ,Fz = − 3
2 〉

CB | 1
2 ,± 1

2 ,1,±1〉
| 1

2 ,− 1
2 〉

| 1
2 ,+ 1

2 〉

HH
| 3

2 ,± 3
2 ,0,0〉

| 3
2 ,± 3

2 ,2,0〉

| 3
2 ,+ 3

2 〉

| 3
2 ,− 3

2 〉

LH
| 3

2 ,∓ 1
2 ,2,±2〉

| 3
2 ,± 1

2 ,2,±1〉

| 3
2 ,+ 1

2 〉

| 3
2 ,− 1

2 〉

SO
| 1

2 ,∓ 1
2 ,2,±2〉

| 1
2 ,± 1

2 ,2,±1〉

| 1
2 ,− 1

2 〉

| 1
2 ,+ 1

2 〉

165323-5
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different components along the [001] direction. As can be seen
from the probability densities, higher orbital angular momenta
are mixed into the hole state, since the energy gaps between
the valence bands are rather small. There are a number of
reasons why an analysis of the envelope orbital momenta is
more complicated than for the electron state.

No clear limit at infinite confinement. The HH component
has both Lenv = 0 and Lenv = 2 components, each of which has
Lenv

z = 0 and thus does not contribute to g0
v factor. However,

the Lenv = 0 and Lenv = 2 parts of the wave function will have
a different Landé factor. Depending on the relative weight
of these orbital angular momenta, the gv factor at infinite
confinement (in the completely quenched limit) will vary.
Thus we do not observe the clear limit at small heights as
was obtained for the electron state.

Strain is no longer only perturbative. The electron gc

factor is determined by the admixture of valence bands into
the electron state, a mechanism upon which strain only acts
perturbatively. For holes the strain plays a more dominant
role, and changes energy gaps and couplings to a much greater
extent. Indeed by comparing the unstrained and strained g0

v

factors [Figs. 3(a) and 3(c)], it can be seen that even the
qualitative trends are not the same.

Smaller ground-excited state energy splitting. At heights
larger than ∼15 nm an excited state crosses the ground state,
leading to mixing between the two. This means that also
envelope orbital angular momenta contributions get mixed,
complicating the analysis.

Due to these complications a single driving mechanism
for the g0

v factor cannot be extracted. However, some general
trends can still be observed. There is a very different trend
of the g0

v factor as a function of height for different radii. At
large heights there seems to be an overall converging trend.
This converging trend is more dominant in unstrained quantum
dots [Fig. 3(c)]. The divergence, more pronounced for large
radii quantum dots, is enhanced by strain [Fig. 3(b)].

Besides the usual zero-order g0
v factor, we have observed

that there is a considerable second-order g2
v factor affecting

the Zeeman energy of the hole states [Fig. 3(d)]. Note that
this quantity has per definition a dimension [see Eq. (3)] and
is thus dependent on the magnitude of the applied magnetic

field. For example a QD with a height of 10 nm and radius of
13 nm has a g2

v ∼ 6 × 10−3/T2 leading to a deviation of the
zero-order g0

v factor from ∼4 to ∼4.6 at a magnetic field of
10 T. Such deviations are certainly large enough to be noticed
in experiments. To the best of our knowledge, however, such
nonlinearities have only been seen in very tall dots33 and in
quantum well-like QDs.34 In quantum wells, nonlinearities of
the hole Zeeman energy have been observed experimentally
and were reproduced theoretically.35–37 In these studies the
nonlinearity was attributed to the admixture between HH and
LH subbands. In that case mass reversal is induced by quantum
confinement, leading to an anticrossing of the HH and LH
subbands as function of magnetic field. This anticrossing
only occurs for one of the two spin-split subbands, leading
to a nonlinear Zeeman energy. However, in our calculations
both spin-split ground states exhibit a nonlinear dependence
as function of magnetic field. Therefore the mechanism as
explained for quantum wells cannot explain the origin of
the g2

v factor in quantum dots. We attribute the nonlinearity
to mixing between the HH-like ground and LH-like excited
states, and have verified that the magnitude of g2

v decreases
with increasing strain (larger energy splitting) and decreasing
γ2 and γ3 parameters (smaller coupling), both resulting in a
smaller degree of mixing. Furthermore, we observe that the
nonlinearity has a strong size dependence: increasing either
height or radius decreases the energy splitting between the
ground and excited states, leading to a larger g2

v factor. It
remains unclear why this effect is strongly present in the
calculation and has not been observed experimentally.

IV. DIAMAGNETIC COEFFICIENTS

We will now discuss the diamagnetic coefficient for the
electron and hole state (see Fig. 4). Within the framework of the
k · p approximation, in first-order perturbation the diamagnetic
coefficient of a carrier in a semiconductor is proportional to38

α ∼ 〈r2〉
m∗ (8)

where 〈r2〉 is the average lateral extension of the wave
function perpendicular to the applied magnetic field (and can
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therefore be directly associated with the radius), and m∗ the
effective mass of the carrier. As a result there is a strong
radial dependence of the diamagnetic coefficient, both for
the electron and hole state: a large radius quantum dot has
a large diamagnetic coefficient. The strong height dependence
is unexpected; for the electron state the diamagnetic coefficient
becomes smaller at smaller heights, whereas for the hole
state it shifts both to larger and smaller values depending
on the height. We will start by discussing the electron
state.

The height dependence should arise either from details in
the average lateral extension 〈r2〉 or the effective mass m∗,
as can be inferred from Eq. (8). It has been verified that 〈r2〉
is only weakly dependent on the height (�10% for the most
affected 15 nm radius quantum dots), and hence cannot be
responsible for the strong deviations in αc of almost a factor
of 2. We therefore attribute the strong height dependence to
the energy dependence of the effective mass. As mentioned in
previous sections, quantum confinement is effectively probing
the bulk dispersion at specific k vectors. At the small quantum
dot heights considered here, the dispersion is sampled at large
k vectors, where the conduction band is no longer parabolic
and corrections to the effective mass have to be made [i.e.,
m∗ = m∗(h)]. For InAs these corrections lead to a heavier
mass at large k vectors, causing the diamagnetic coefficient
to become smaller at smaller heights, as can be observed in
Fig. 4. We want to note that we have verified that strain is not
an important mechanism in determining αc, as was the case
for the electron gc factor. The sole effect of strain is to modify
the magnitude of the diamagnetic coefficient (mainly via m∗);
the qualitative trends stay the same.

The hole state diamagnetic coefficient has an even more pe-
culiar height dependence: at intermediate heights it decreases,
whereas at large heights it increases. The nature of the hole
state induces a number of ways by which the diamagnetic
coefficient can be modified. First of all the lateral extension
can be influenced by size-dependent HH-LH mixing. We have
verified that 〈r2〉 varies by �15% for the 15-nm radius quantum
dots (and varies less for smaller radii). Contrary to the electron
state, this variation is of the same order as the deviations in
αv . However, the effective mass will also vary with height. It
is a priori not possible to disentangle these effects and study
their respective influence. Note that we also calculated the
diamagnetic coefficients including the κ parameter. Similar to
the gv factors, to first order the κ parameter does not modify
the diamagnetic coefficients (see Appendix A for a discussion
about the remote band parameters).

V. COMPARISON WITH EXPERIMENT

Using the separate electron and hole g factors and diamag-
netic coefficients, one can compute the exciton gex factor and
exciton diamagnetic coefficient αex, as defined by Eqs. (4)–(6).
Since in the experiment the Zeeman energy was found to be
linear with magnetic field, we have only taken the g0

v factor into
account, which is exactly valid for small magnetic fields. Since
experimentally only the emission energy Eem is accessible, we
have plotted the gex factor and αex as function of Eem in Fig. 5.
Again the different colors represent different radii QDs. Note
that the different dots along a line of fixed radius represent

QDs with roughly a ML height difference. The black squares
are the experimental data points from Ref. 27. We will first
discuss the gex factor.

It was experimentally established27 that the general trend
of the gex factor with emission energy originates from the
dependence on the height of the QDs. This is confirmed by the
theoretical calculation, in which irrespective of the exact radius
of the QDs the height dependence matches with the exper-
imentally observed trend. Furthermore, from cross-sectional
scanning tunneling microscopy analysis it was inferred that
the maximum radius of the QDs was ∼15 nm, meaning
that the 13-nm radius theoretical calculations that overlap
the experimental data are a good match. Experimentally the
spread around the trend was related to variations in the lateral
size: QDs below the trend had on average a smaller αex than
QDs above the trend. The opposite trend is observed in the
calculations. However, the assumptions made about the shape
and composition of the quantum dot may be too simplistic to
reproduce this detailed trend; for example, a size-dependent
composition profile might alleviate the discrepancy. Note that
it is mainly the hole g0

v factor that determines the gex factor;
the electron gc factor is nearly independent of the radius
when plotted as a function of Eem. We want to stress that,
since the gex factor is a combination of the gc factor and
g0

v factor, it is difficult to extract relevant information from
it to identify the physics determining the g factors of the
individual carriers. It is far more useful to have experimental
access to the gc factor and g0

v factor separately, preferably in
a system where the size of the quantum dot can be highly
controlled.

The diamagnetic coefficient αex is plotted against Eem in
Fig. 5(c). Experimentally it was established that the emission
energy is dominated by the height dependence. Assuming
that αex is then governed by the radius [see Eq. (8)], there
should only be a weak dependence between αex and Eem.
This has been observed experimentally, and confirmed the
interpretation of the height-dominated Eem. The theoretical
calculations support this analysis; there is only a rather weak
dependence between αex and Eem. The calculations, however,
show that the electron and hole diamagnetic coefficients
separately are strongly dependent on the height (Fig. 4). It
is the coincidental height dependence of the emission energy
and the (partially) opposing height dependence of the electron
and hole diamagnetic coefficients, which conceal the true size
dependence. Experimental access to the separate electron and
hole energy levels would be the only way to verify this.
The match in terms of absolute size of the quantum dot is
less satisfactory than for the g factor; the calculations with a
radius of ∼8 nm fit the diamagnetic coefficient measurements
best.

To improve on the match for αex, we included the
Coulomb interaction between the electron and hole states
via a self-consistent iterative Hartree approximation.28 After
two iterations more than 99% of the total modification to the
emission energy is taken into account. In Figs. 5(b) and 5(d)
the influence of the Coulomb interaction to, respectively, gex

and αex are displayed. Except for corrections to the emission
energy (�7%), there are only small modifications to gex. This
was not too surprising, as the Coulomb interaction might
modify the spatial extension of the wave function, but not
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FIG. 5. (Color online) The emission energy dependence of the (a) exciton gex factor and (c) diamagnetic coefficient αex of InAs/InP
quantum dots, respectively. The emission energy dependence of (b) gex and (d) αex with Coulomb interaction taken into account, respectively.
The different colors indicate different radii of QDs.

as much the composition of the states. Supporting that picture,
the diamagnetic coefficient is much more strongly modified: it
becomes smaller, such that there is a better agreement between
the experimentally found radius (∼13 nm) and the theoretical
match (∼11 nm). The Coulomb interaction pulls the electron
and hole wave functions together, such that the exciton state
has a smaller lateral extension (and therefore αex) compared
to the noninteracting states for a similar radius quantum
dot.

VI. CONCLUSION

We have calculated the g factors and diamagnetic co-
efficients of electron and hole states in InAs/InP quantum
dots. The electron gc factor is determined by how quantum
confinement affects the amount of envelope orbital angular
momentum mixed in through the admixture of valence-band
contributions. In the limit of infinite barriers and a dot of
vanishing size the electron gc factor will approach the Landé
factor of +2. Strain acts merely as a perturbative mechanism
on the gc factor. A similar analysis is less straightforward
for the hole gv factor. We attribute the observed nonlinear
hole Zeeman energy to ground-excited state mixing. The
electron and hole diamagnetic coefficients are determined
both by the lateral extension of the wave function and
the effective mass. The height dependence of the electron

diamagnetic coefficient is due to a strongly height- (or energy-)
dependent effective mass. Using the single-particle states,
the calculated exciton g factor and diamagnetic coefficient
agree well with the experimental data. Including the Coulomb
interaction between the electron and hole states improves
the agreement, especially by decreasing the diamagnetic
coefficient due to reductions in the lateral extent of the wave
function.

APPENDIX A: REMOTE BAND CONTRIBUTIONS

A k · p calculation takes only a finite number of bands
into account, and the influence of remote bands can be
incorporated via phenomenological parameters. These remote
band parameters then do not change as the confinement
experienced by an electron or hole in the dot changes. As
explained in Sec. I, orbital angular momentum quenching
strongly influences the g factor and diamagnetic coefficient.
The influence of remote bands, considered perturbatively in
a k · p calculation, is not quenched with increasing confine-
ment. The quantum dots considered in this work are in the
strongly confined limit, so it is reasonable to assume that
the contribution of the remote bands has been completely
quenched. In the calculations presented above we have left
out the remote-band parameters for the g factors and used the
Landé factors in the Hamiltonian. This is certainly a very good
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approximation for the conduction band g factor, since in InAs
remote bands contribute only about 4% to the bulk electron
gc factor.39 For holes the situation is more complicated, since
the remote-band contribution is non-negligible and one should
consider including the phenomenological κ parameter40 in a
bulk calculation.

To view the effect of κ , the calculations are performed both
with and without it [Figs. 6(a) and 6(b)]. The dependence
of the g0

v factor with height is not very different for both
cases, however including the κ parameter means that a large
offset is introduced (the unquenched effect of these remote
bands). This offset is very large compared to experimental
results (see Sec. V), and we therefore conclude that including
the κ parameter is not only poorly grounded theoretically, but
also produces worse quantitative results than excluding it. For
these dots the dot size is small enough to have quenched the
influence of the remote bands sufficiently to exclude the remote
bands from the calculations. Note that this also means that an
extrapolation of the gv factors of Figs. 3(a) and 3(c) to large
radius and height does not and should not give the bulk limit
for gv , since that would only occur if the remote bands and the
κ parameter were included in the calculation.

APPENDIX B: AVERAGING METHODS

To avoid the complexity of fully quantum mechanical calcu-
lations, one might consider using simpler averaging schemes to
calculate the g factor. The rationale behind such schemes is that
an electron or hole experiences a spatially varying environment
with spatially dependent bulklike properties. A property ξ of
this state can be calculated by weighing the bulklike property
ξbulk(r) with the probability density

〈ξ 〉 =
∫

V

|�(r)|2ξbulk(r)dr,

where �(r) is the wave function of the state. Such averaging
schemes have no validity from a quantum-mechanical point
of view; perturbing the environment locally will alter the
whole quantum mechanical state and not merely the value
of 〈ξ 〉. Furthermore, there is not a unique choice for ξbulk(r).
Some choices might give accurate results in particular cases,

but there is not a single choice that would be generally
valid. The minimal approach to calculate the properties of
the electronic state properly for these QDs is eight-band k · p
theory. However, to stress the differences between the methods,
we have calculated the electron g factor using two different
averaging schemes.

For the unstrained electron g factors case, we have used an
adapted Roth formula6

gX
Roth = 2 − 2EX

p �X

3Egap(Egap + �X)
, (B1)

where EX
p is the Kane energy and �X is the spin-orbit coupling

of material X, and Egap the energy gap between the ground
electron and hole state. The use of Egap takes some effects of
confinement into account. Penetration into the barrier material
is taken into account by weighting with the probability density
|�(r)|2

〈gRoth〉 =
∫

V

|�(r)|2gX
Roth(r)dr,

= wQDgInAs
Roth + wBgInP

Roth,

where wQD,B and g
In(As,P)
Roth are the fraction of the probability

density and the Roth g factor inside the InAs QD and in the
InP barrier material, respectively. Note that this information is
taken from the k · p wave functions at zero magnetic field.
The gc factors obtained via this method are indicated by
the squares and dotted lines in Fig. 7(a). The trend from
this averaging method is similar to the one from the k · p
calculation. However, it underestimates the value of the gc

factor, since orbital angular momentum quenching is not taken
into account. This is even more clearly observed from the
discrepancy with the quantum wire limits; the lack of orbital
angular momentum quenching causes the quantum wire limits
to be much closer to the bulk InAs electron g factor of
∼−14.4.

To show the necessity of including confinement, the strained
gc factor case has also been calculated using a different
averaging scheme. To fully incorporate the effects of the strain
ε(r), one needs to include band mixing. The valence bands are
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mixed due to strain, leading to a mixing of the split-off and
light-hole states that is linear in the strain41

|A〉 =
∣∣∣∣3

2
,±3

2

〉
,

|B〉 =
∣∣∣∣3

2
,±1

2

〉
+ α0 (ε)√

2

∣∣∣∣1

2
,±1

2

〉
,

|C〉 =
∣∣∣∣1

2
,±1

2

〉
− α0 (ε)√

2

∣∣∣∣3

2
,±1

2

〉
.

The parameter α0 (ε) determines the mixture. The gc factor for
a strained bulk crystal is then, to first order in strain,41

gX
strained(ε) = 2 − 2EX

p

3

{
3

2[ECB(ε) − EA(ε)]

− 1

2[ECB(ε) − EB(ε)]
− 1

ECB(ε) − EC(ε)

−α0(ε)

(
1

ECB(ε) − EB(ε)
− 1

ECB(ε) −EC(ε)

)}

(B2)

where ECB, EA, EB, and EC are respectively the conduction
band (CB), the heavy-hole-like band (A), the light-hole-like
band (B), and the split-off-like band (C) edge energies. These
energies and the mixing parameter α0 (ε) depend on strain.
The gc factor can then be determined by weighting the locally
varying gX

strained [ε(r)] by the probability density

〈gstrained〉 =
∫

V

|�(r)|2gstrained [ε(r)] dr.

The resulting calculated gc factor is indicated in Fig. 7(b) by
the squares and dotted lines. The trend is opposite to the k · p
calculation, mainly due to the absence of confinement in this
averaging scheme. This shows that confinement is essential in
determining the g factor.
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