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Diamagnetism and flux creep in bilayer exciton superfluids

P. R. Eastham,' N. R. Cooper,? and D. K. K. Lee?
1School of Physics, Trinity College, Dublin 2, Ireland
’T.C. M. Group, Cavendish Laboratory, J. J. Thomson Avenue, Cambridge CB3 OHE, United Kingdom
3Blackett Laboratory, Imperial College London, London SW7 2AZ, United Kingdom
(Received 20 December 2011; revised manuscript received 20 March 2012; published 25 April 2012)

We discuss the diamagnetism induced in an isolated quantum Hall bilayer with total filling factor vy = 1
by an in-plane magnetic field. This is a signature of counterflow superfluidity in these systems. We calculate
magnetically induced currents in the presence of pinned vortices nucleated by charge disorder, and we predict a
history-dependent diamagnetism that could persist on laboratory time scales. For current samples, we find that
the maximum in-plane moment is small, but with stronger tunneling the moments would be measurable using
torque magnetometry. Such experiments would allow the persistent currents of a counterflow superfluid to be

observed in an electrically isolated bilayer.
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I. INTRODUCTION

Superfluidity! is a spectacular form of hydrodynamics
involving dissipationless flow, metastable circulation, and
quantization of circulation. It occurs in liquid helium and cold
atomic gases, where it is associated with the condensation of
many bosons into a single quantum state. Whether condensates
of quasiparticles, such as excitons, would also be superfluids
has been discussed for many years, with debate over the
physical manifestations”® of superfluid hydrodynamics for
quasiparticles, the (related) role of symmetry-breaking per-
turbations, and the significance of interactions and thermal
equilibrium.’

This question can now be addressed experimentally, with
emerging evidence for the condensation of quasiparticles
including excitons, polaritons, and magnons. A particularly
interesting system is the quantum Hall bilayer at total filling
factor vy =1 (see Fig. 1). This consists of two closely
spaced quantum wells, each containing a two-dimensional
electron gas, subjected to a strong perpendicular field B,
so that the lowest Landau level in each layer is half-filled.
The tunneling between the two layers is weak compared to
the Coulomb energy scale. When the interlayer separation d
is of the order of the magnetic length Iz = (i/eB,)'/?, the
ground state is believed to be a Bose-Einstein condensate of
interlayer excitons'®! caused by the Coulomb attraction of
electrons and holes across the layers. (Note that the holes
are unfilled electron states of the lowest Landau level of the
conduction band.) Flows of these condensed excitons corre-
spond to dissipationless counterflowing electrical currents in
the two layers.!? Initial evidence of dissipationless transport
came from interlayer tunneling,!®!” which exhibits nonzero
interlayer currents at negligible interlayer voltages.'?'8-2 This
regime persists up to a critical current, above which dissipation
increases rapidly.

The interpretation of transport measurements as evidence?!
for exciton superfluidity is complicated by parallel charge-
transport channels, the injection and removal of electrons’-?>2?
at the contacts, as well as possible dissipation in the leads.
Here, we show that magnetometry on isolated bilayers could
provide direct evidence for exciton superfluidity, without the
complications inherent in transport studies. We predict that,
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at low temperatures, the bilayer shows a history-dependent
susceptibility. Changes in the in-plane field lead to a persis-
tent diamagnetic moment that is, however, not induced by
fields present when the condensate forms. This discrepancy
corresponds to that between the moments of inertia of
normal and superfluid helium inferred in a torsional oscillator
experiment.

The in-plane magnetic susceptibility of the exciton conden-
sate has previously been considered®>*2® in clean bilayers.
However, there are very good reasons to expect’’ >’ that
disorder is essential for understanding the observed transport
properties of the bilayer at low temperatures. In particular, for
quantum Hall bilayers, charge disorder nucleates vortices in
the condensate.””33 Therefore, we will study in this work the
magnetic properties of a quantum Hall bilayer with disorder-
induced vortices. We first consider the zero-temperature limit,
and we show how dissipationless supercurrents lead to long-
lived diamagnetic moments. In current samples, the resulting
moments are small [Eq. (16)], but for samples with stronger
tunneling the moments can be comparable to the Landau
diamagnetism. We also consider the effects of nonzero temper-
atures, and we estimate the dissipation due to thermal creep*
of the in-plane flux. This dissipative mechanism gives rise to a
nonvanishing resistance for the counterflow supercurrents and
causes the diamagnetic moments to decay in time. Based on
the parameters of current experiments, we expect dissipation to
be significant, which is consistent with experimental resistance
measurements. The flux motion in this regime can be studied in
transport experiments. Samples deeper in the condensed phase,
however, would show persistent counterflow supercurrents on
laboratory time scales, whose presence and eventual decay
could be observed by magnetometry.

The remainder of this paper is structured as follows. In
Sec. II, we outline the model we consider for the behavior of
long-wavelength counterflow supercurrents in the disordered
bilayer. In Sec. I1I, we apply this model to calculate the in-plane
susceptibility of the bilayer in the zero-temperature limit. In
Sec. IV, we discuss the extension to finite but low temperatures.
Finally, in Secs. V and VI, we present numerical estimates for
the moments and resistance in experiments, and we summarize
our conclusions.
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FIG. 1. Schematic diagram of a bilayer of electrons in the
quantum Hall regime due to a strong perpendicular field B, . Applying
a weak in-plane field B causes counterflowing charge currents as a
diamagnetic response. For an isolated bilayer, the current loop closes
at the edges of the sample by interlayer tunneling. In an excitonic
picture, this corresponds to the flow of neutral excitons along the
bilayer with recombination at the edges.

II. MODEL AND BACKGROUND

In this work, we consider a quantum Hall bilayer at
total filling factor vy = 1, in the presence of the disordered
electrostatic potential originating from the dopants, set back
at a distance dy. For definiteness, we adopt the “coherence
network” picture of Fertig and Murthy,** although our theory
here is more general. In this picture, the random Coulomb field
from the dopants creates puddles of normal electron liquid
surrounded by channels of excitonic superfluid. In quantum
Hall ferromagnets, physical and topological charge are related
so that the charge puddles nucleate vortices, known as merons,
in the superfluid channels.?** We estimated®' that typical
disorder strengths induce on the order of one unpaired vortex
per puddle so that the correlation length of this disorder is
& ~ d; ~ 100 nm.

The energy associated with the excitonic supercurrents in
the channels is, in terms of a superfluid phase 1,?®

Heff=f[%quﬁ—rcos(n+eo)]d2r, e))

where the first term is the kinetic energy of the counterflow
supercurrent with superfluid stiffness py, and the second term
is the energy of the interlayer tunneling currents with tunneling
strength ¢. The merons introduced by the charge disorder give
rise to the random field 6. For the coherence network, both
ps and ¢ should be renormalized by the area fraction of the
superfluid channels.

Equation (1) is written in a gauge where the vector potential
of the in-plane field B is zero perpendicular to the layers and
nonzero parallel to the layers. This field then appears in the
kinetic energy, inducing a wave vector®!>3>

q = (B x 2)ed/h, 2)

where d is the interlayer separation. The counterflow and
tunneling currents are seen to be

. eps .
Jd=-ﬁ%Vn+q)=Jp+Jm 3

et .
Ji= 2 sin(n + 6o), “

so the magnetic field induces a diamagnetic contribution j; =
epsq /I to the counterflow supercurrent j ., but does not appear
explicitly in the coherent tunneling current j,. We can make
a gauge transformation so that the vector potential is nonzero
only perpendicular to the bilayer, in which case the phase
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transformston — n+¢q-r =0:

Hefr = / [%sz —tcos(d —q-r+ 90)1|d2r_ 5)

This form for the energy functional highlights the fact that the
in-plane magnetic response of the bilayer vanishes if there are
no current loops that encircle the field—the field disappears
from Eq. (5) when t = 0. (A nonzero diamagnetic suscepti-
bility remains possible in multiply connected geometries® or
at nonzero frequency.® We comment on the extension of our
results to the Corbino disk geometry in Sec. V.)

At zero temperature, the state of the bilayer is determined
by minimizing Eq. (1), which gives

— AV +sin(+60) =0, Ay, =(ps/D)?. (6)

When 6y = O this is the pendulum equation, containing the
Josephson length X ;: the characteristic length scale over which
excitonic supercurrents decay by interlayer tunneling. This
scale is estimated to be on the order of a few microns in
experiments. We will discuss below the decay of excitonic
supercurrents by tunneling in the disordered case, which
involves a different length scale.

It is useful to recall, for comparison with our treatment of
the disordered case, the response?*2>-3-38 of the clean model
(6o = 0) to an in-plane field. For small fields, the ground state
will minimize the tunneling energy, and so6 ~ q - r or n ~ 0.
This is the commensurate state, in which the field induces
a long-wavelength counterflow supercurrent j ~ j,, as in
Eq. (3). Thus there is an in-plane magnetic moment of M) =
JadLiL, =dL,LyxoB/wo, with the susceptibility

X0 = Moja/B = woe® pyd /1. 7

We see that the diamagnetic moment M = xoB increases
linearly with the in-plane field B in the commensurate state.

In an isolated bilayer, the counterflow currents must vanish
at the ends of the sample. This occurs in the commensurate
phase because, as dictated by Eq. (6), the diamagnetic currents
in the bulk of the sample are eliminated by tunneling over a
region of size A ; near the sample boundaries (Fig. 1). However,
since the phase 7 is a periodic variable, the maximum current
which can recombine in this way is given by eps|Vn|/h ~
eps /R ;. If the diamagnetic current present in the bulk exceeds
this value, then a net winding of the phase 5, in the form of
Josephson vortices, enters from the boundaries. This occurs at
the field

By ~ h/edh;. ®)

Above By, the system is in the incommensurate phase in
which the kinetic energy of the counterflow supercurrents
dominates so that 6 ~ 0 or n & —q - r. The net winding in
n along the sample implies that the counterflow supercurrents
have weak oscillations around zero along the sample, and the
diamagnetic moment is small. The field By marks the field
above which the diamagnetic susceptibility rapidly decreases
from x, as Josephson vortices fill the system and compensate
the diamagnetic contribution in Eq. (3).

While in the clean limit the phase twists nucleated at
the boundary propagate into the bulk, in the disordered case
any such phase twists can be pinned by the disorder. They
can thus be kept out of the bulk of the sample, which can
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continue to contribute the full diamagnetic susceptibility xo.
To describe this effect quantitatively, we shall use the collective
pinning theory we have previously applied”?® to the transport
experiments in zero field (g = 0).

The starting point for understanding the transport exper-
iments is to note that Eq. (1) is a random-field XY model.
The energy H.g consists of the competition between the
tunneling energy, which is minimized by a spatially varying
superfluid phase 1 over the disorder correlation length &, and
the superfluid stiffness, which is minimized by a uniform
superfluid phase. For the bilayer, the disorder correlation
length is much shorter than the clean tunneling length: £ < A ;.
In this regime, the superfluid stiffness dominates at short
scales, up to the Imry-Ma or pinning length,

Lq~ A3/& = p,/t&, )

where the two energies balance. We estimate?® that Ly ~
10-100 um and p; = 20-100 mK in experiments. Beyond
this scale, the phase rotates to take advantage of the tunneling
energy. Therefore, we can interpret the ground state as
consisting of randomly polarized domains of size Lyq. The
total tunneling current in each domain is zero in the ground
state because the random field 6y gives a current density j;
[Eq. (4)] of random sign within each domain of constant 7.
However, if we drive the system by injecting currents,
phase twists enter from the contacts, leading to configurations
with nonzero tunneling currents. Injected counterflow current
decays into the bulk via tunneling, i.e., recombination of
excitons. This tunneling current is supplied by rotating the
phase of the domains near the contacts, leaving domains in the
bulk in their ground state. The maximum coherent tunneling
current that can be supported by each domain is given by

Iy = epy /h. (10)

If all the domains near the contact are rotated to supply this
maximum tunneling, then we see a uniform tunneling current
Jj: until all the injected counterflow current has decayed by
tunneling. Then both the tunneling and counterflow currents
are zero in the bulk. This can be described by the continuity
equation for the current:

L2V - jg =+, (11)

where L2 is the size of the domain and I4 is the tunneling
current across the layers in the domain. The sign of Iy is
determined by what is necessary to reduce the counterflow
current. In a one-dimensional geometry, this gives a counter-
flow current profile that decays linearly into the bulk from the
edge. For instance, for an injected current of — j; at x = 0, the
current profile in the x direction is

—ji + Lax/L3,
0, X > X,

0 < x < xgp,

Jei(x) = { 12)

where the point xo = j; L3/14 marks the boundary of the region
from the sample edge where coherent tunneling occurs to
reduce the counterflow current. This current profile is a critical
state similar to the Bean critical state in superconductors.*® In
this state, there is a region near the contact over which the

density gradient in the soliton train (introduced by the injected
current) balances the pinning force arising from the tunneling.
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III. SUSCEPTIBILITY WITH DISORDER:
ZERO-TEMPERATURE LIMIT

We now consider the response of the disordered system
to an in-plane field at zero temperature. We will see that
the disordered system has a different diamagnetic response
from the clean system. It does not have a commensurate-
incommensurate transition controlled by an intrinsic length
scale ; [see Eq. (8)]. Instead, we find a saturation phe-
nomenon for the diamagnetic moment at a field B, [see
Eq. (15)] controlled by the properties [Egs. (9) and (10)] of
the phase-polarized domains, i.e., the disorder pinning of the
applied flux. This is followed by a depinning of the polarized
domains and a strong suppression of the diamagnetic response
at a higher field B., > By [Eq. (17)] controlled by the disorder
correlation length £. Such behavior is similar to that of the
mixed state of a superconductor, but very different from that
previously predicted for exciton condensates.

We require the response of the superfluid phase n to an
in-plane field B, corresponding to a nonzero ¢ in Eq. (1).
To obtain this, we note that Eq. (6) for the phase n does not
depend on the in-plane field. Alternatively, we can see that the
superfluid phase is coupled to the field in Eq. (1) as an integral
over q - Vn, which can be written as a boundary term for 7.
Thus the current distribution in a field can be related to that in
zero field with shifted boundary conditions. This observation
allows us to apply the critical-state model?’*® in zero field,
as reviewed above, to calculate the current profile in nonzero
field.

For definiteness, we consider a rectangular sample with
dimensions L, and L, with the in-plane field in the y direction.
Thus, counterflow currents j(x) flow in the x direction,
and tunneling currents j,(x) in the z direction (see Fig. 1).
For an isolated bilayer, j(x) =0 at x =0 and L,. We
can decompose j.¢ into paramagnetic and diamagnetic parts
as in Eq. (3). The paramagnetic part, j, = ep;Vn/h, obeys
the boundary condition j, - X|s=0 = Jj, - Xlx=1, = —Ja- Since
the phase n obeys the same equation, Eq. (6), in the bulk
irrespective of an in-plane field, j, has the same profile as in
a system in zero field (when j = j,) with a current of — j,
flowing across the boundaries. The full counterflow current j .,
for the isolated bilayer in a field is recovered simply by adding
a uniform + j; to this zero-field profile of j,(x).

In the critical-state model as discussed above, the counter-
flow currents obey Eq. (11) and so j,(x) decays linearly in
space from — j; at the edge to zero. In other words, the profile
of the paramagnetic current j,(x) near the x = 0 edge is given
by Eq. (12) with j; = j;. The distance x¢ which gives the width
of the region where coherent tunneling occurs is determined
by the distance where the total counterflow current vanishes:
Jp(x0) + ja = 0. This criterion gives a distance of

xo = jaL3/1a = qL] (13)

from the edge of the sample. The total current profile is shown
in Fig. 2 (top). The figure also shows the tunneling current
density |j,| = 14/ chl, which is at its maximal value up to the
edge of the tunneling region at ¢ L3 from (either) edge of the
sample. Beyond xo, there is no paramagnetic contribution to
the counterflow current.
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FIG. 2. Profiles of the counterflow (solid lines and circles, left
axis) and tunneling (dashed, right axis) currents induced by applying
an in-plane field B to a rectangular bilayer (Fig. 1), at zero
temperature. The lines show results from the critical-state model,
and the circles show numerical results from the microscopic Eq. (6).
The top (bottom) panel shows the profile below (above) the critical
field B. [Eq. (14)]. The tunneling currents have opposite signs in the
two halves of the sample (not shown). The simulation (circles) is a
200-site lattice model in one dimension with ta?/p, = 0.4, where a
is the lattice spacing and ga = 6 (top) and 12 (bottom). The disorder
is uncorrelated from site to site (§ ~ a).

This current profile is similar to the one depicted in Fig. 1.
A diamagnetic counterflow is generated by the in-plane field
in the bulk of the bilayer. However, an isolated bilayer
must have zero counterflow current at the edges. In our
critical-state model, this is achieved by coherent tunneling via
phase-polarized domains. The width of this tunneling region
is determined by the size of the domain L4 and the coherent
tunneling current that each could support 1;. We see that a
stronger field gives a higher diamagnetic current and so more
domains must be involved. In other words, the size of the
tunneling region increases with the in-plane field, as can be
seen from Eq. (13): x9 o« g o< B. This should be contrasted
with the decay length A, for the commensurate state of the
clean model, which is an intrinsic scale that does not vary with
the field.

As the parallel field B is increased, the diamagnetic current
in the bulk increases linearly with B. This requires a wider
tunneling region so that all the current can decay to zero at the
edge. So, the tunneling region increasingly penetrates the bulk.
This penetration is complete when the width of the region, g Lg,
reaches L, /2. This saturation occurs when the field reaches a
critical field of

B. = (h/2e)(L./dL}) = (h/2e)(L&°t*/dp?).  (14)

Beyond this critical field, all the phase domains in the sample
take part in coherent tunneling with a constant magnitude for
the tunneling current density j;, as depicted in Fig. 2 (bottom).
The counterflow current, therefore, rises linearly from zero
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from either edge, reaching a maximum at the center of the
sample. This saturated current profile stays the same for fields
higher than B.. Note that, whereas the critical field By in the
clean limit is a microscopic parameter independent of sample
geometry, B, is proportional to the length of the sample in a
disordered system.

We have tested the critical-state model by comparing it
with numerical minimization of the energy [Eq. (1)] for a
one-dimensional lattice model. To do this, we add a dissipative
dynamical term —7) to the right-hand side of Eq. (6) and numer-
ically find the resulting steady state. We begin by finding the
steady state with the boundary condition dn/dx = 0|,=oL,,
corresponding to an isolated bilayer in the absence of an
in-plane field. We then slowly increase the boundary condition
so that dn/dx|y=0,L, = —¢q, corresponding to applying the in-
plane field. The counterflow supercurrent is then obtained from
the resulting phase profile by adding the diamagnetic term, as
described above. The resulting current profiles, averaged over
disorder realizations, are shown as the circles in Fig. 2, and
are seen to agree closely with the critical-state model.

We will now discuss the magnetic moment generated by
the diamagnetic response of the bilayer. Integrating the current
profile gives the moment M:

/,L()M” _ X()B(l — %), B < Bc, (15)
L.L,d | xoB./2. B > B..

We see that the moment no longer rises linearly with B with
the full diamagnetic susceptibility o of the clean system. This
is because, as seen in Fig. 2, the fraction of the sample with
the full diamagnetic current j; is continuously reduced as B
(and hence ¢q) increases. In fact, the total moment saturates at
the critical field B, to the value of

epsLy

L. 16
4nL? y (16)

[l,max =

The analysis above applies if the field and supercurrents are
sufficiently small that their presence does not modify the
pinning length L,, i.e., the supercurrents do not depin the
vortices. This is the case if ¢ < 1/&, the inverse disorder
correlation length, so that the additional phase winding at wave
vector g in Eq. (5) does not affect the tunneling energy. For
larger fields, however, the tunnel currents will oscillate within
each correlation area, rapidly suppressing the net tunneling at
larger scales. The current j,, which is j; at the boundary, will
then be approximately uniform, and j and j; will be small
at long wavelengths. Thus we expect the susceptibility to fall
quickly for fields beyond

h

B odE 0.5T. a7
This can be regarded as a depinning field where the phase is
no longer pinned by the random field but is determined by the
diamagnetic wave vector g. A corresponding suppression®® of
the current in interlayer tunneling experiments is expected,
and observed, at such fields. Since B./B., = L,(E/ZL?1 <1
for experimental samples with L, ~ 1 mm, the saturation at
B, occurs before this suppression at B.,. Note that in the lattice
model discussed above, the disorder is uncorrelated between
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sites, so that the numerical simulations do not capture the
depinning effect at B,.

IV. FLUX CREEP AND DISSIPATION
AT LOW TEMPERATURES

Let us now consider thermal fluctuations over the energy
barriers which pin the winding of the superfluid phase. This
allows the supercurrents to relax to the equilibrium state with
Jof = 0and j; = 0. The diamagnetic moments induced by an
in-plane field will decay as phase slips enter the system. This
gives rise to resistivity in transport measurements.*’ We will
estimate the size of these effects, applying the conventional
flux-creep model of superconductors.** We neglect the possi-
bility of vortex-glass states,*' which may further suppress the
dissipation at low temperatures.

For sufficiently low temperatures T, the dynamics of the
merons controlling the diamagnetic moment will involve
thermal fluctuations of the phase domains of size Ly discussed
above. As in the Anderson-Kim theory,** uncorrelated vortex
motion should be irrelevant at low temperatures and small
bias, because the vortex separation & < L4, so the energy
barriers are larger. A thermal fluctuation in which the phase
of a domain changes by approximately 2w corresponds to a
phase slip moving a distance Ly. This will occur at a frequency
woe YD/FT \where wy is an attempt frequency and U(j) is an
energy barrier. Such phase slip dynamics implies an interlayer
voltage according to the Josephson relation V = 76 /e. For a
typical domain size of Ly, this gives a layer-antisymmetric
in-plane electric field

ha)() I
E = Etop — Evottom ~ —¢ UOWT, (18)

eLd

At zero current, the typical energy barrier U(j) will be the
energy of a domain, which is the stiffness p; irrespective of
size®® in two dimensions. The barrier will vanish at the current
scale associated with the domain, j. = I3/Lq ~ eps/(hiLg).
The linear interpolation, U(j) = ps(1 — j/j.), corresponds to
the Anderson-Kim model. Inserting this form in Eq. (18), we
obtain for the Ohmic regime a sheet resistance for counterflow
currents of

Ry ~ (WPwy/*kT)e ™ /KT (kT < py).  (19)
The in-plane magnetic moment, and the long-wavelength
counterflow supercurrent, relaxes in time ¢ as*?

M)/ My 70 = 1 — (kT /ps) In(wot), (20)

where M| r—o is the T = 0 moment from Eq. (15).

It is possible to extend this argument into the dissipative
regime at high bias or temperature, where the barriers become
irrelevant. The simplest assumption would be that the domain
rotates every attempt time 1/wy when the current density is j,.
This gives a resistivity in the flux-flow regime of

h2w0

9
€2 py

* o~
s

21
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so that we can rewrite the flux-creep form as
Ry ~ Rie #/kT (22)

However, details of the dissipation are likely to change
between these two regimes and other parameters may enter
R}, so that the prefactor in Eq. (22) will not be exactly
the resistivity in the dissipative regime. Provided that R} is
not fitted too far from the flux-creep regime, this is unim-
portant in practice because the exponential factor in general
dominates in Eq. (22). Over a wider range of temperatures
and currents, effects such as the activation of quasiparticles
may appear, leading to additional exponential factors in the
dissipation.

Reliable calculations of wq are very difficult, and irrelevant
in practice in the flux-creep form, Eq. (22). Nonetheless,
an estimate may be obtained by considering the dynamical

equation for the phase,'??’
h? . 1. 1 _,.
2 cnp——n——Vonl,
€ Ps Oz Pxx

L.
Vzn — A_Z sin(n + 6y) =
J
(23)

where p.. (p;) is the resistivity of in-plane (tunneling)
quasiparticle currents, and c¢ is the interlayer capacitance
per unit area. This gives several candidates for the fre-
quency scale at length scale L4. Since the resistivities are
activated, we expect the first (inertial) term in Eq. (23) to
control the dynamics at sufficiently low temperatures: wy =
(e/hLa)(ps/e)'?.

V. DISCUSSION

We have examined the diamagnetic response of an isolated
bilayer due to counterflow superfluidity. We obtained an in-
plane diamagnetic moment which saturates at a critical value
B.. Our theory also predicts a field scale B, for the suppression
of the in-plane diamagnetic response. There would be no in-
plane susceptibility in a field-cooled bilayer, even below B,,,
allowing a separation of the superfluid signal. We will now
discuss briefly the magnitude and time scales of these effects
using realistic parameters for current experiments.

From Egs. (20) and (22), we see that the diamagnetic
moment is long-lived, and the dissipation small, when kT <
ps. In previous work,?® we estimated that p; ~ 20 mK in
current experiments. This small value arises from the finite
interlayer separation and the reduced area of the sample
containing superfluid in the coherence network picture.
Using this estimate as well as a similar area reduction for the
capacitance, we find for the attempt frequency wy ~ 300 MHz.
Since the superfluid stiffness p; is around the lowest tempera-
tures achieved, we expect from Eq. (20) that the moments relax
rapidly. Similarly, counterflow dissipation due to flux motion
would be significant with R} ~ 1-10 Q.

Activated forms similar to Eq. (22) have previously been
obtained for the residual counterflow resistivity based on
hopping of in-plane vortices (merons) within the coherence
network.’® In contrast, here we have obtained this form from
the motion of phase-polarized domains, which corresponds
to a large-scale collective motion of the merons. However, we
expect the energy barriers for vortex motion in two dimensions
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to be the superfluid stiffness up to logarithmic factors, so
long as the possibility of a vortex glass is excluded. Thus
this form is not dependent on the precise model of vortex
motion. We note that experiments on hole bilayers* see this
activated behavior in the counterflow resistance with a value
of 20 @ at 30 mK with an activated form that agrees with
Eq. (19) if we use p; ~ 100 mK. Electron bilayers** fit an
approximately activated form with similar resistance values.
A complete theory of dissipation and transport is beyond the
scope of this work. Other mechanisms of dissipation will also
play a role, such as the thermal excitation of vortices* as
well as fermionic quasiparticles with an energy gap of the
order of py. It suffices to point out that the contribution from
flux motion is not negligible in current samples. However, the
activated form of Eq. (22) suggests that a modest increase in
ps, achievable by reducing the interlayer separation, would
allow the study of the nearly dissipationless behavior of the
flux-creep regime.

We now turn to the feasibility of measuring the diamagnetic
response of a bilayer at low temperatures. To do this, we com-
pare the maximum moment M max [Eq. (16)] with the scale of
the perpendicular moment, M| = L. L ,ew./2, for an electron
gas in the integer quantum Hall regime with cyclotron energy
hw. ~ 50 K in this system. Using our previous estimates
ps 20 mK and Ly~ 100 um, we obtain M) . /M| =
(pAg/Zth)(Lxd/chl) ~ L, /(2000 m) when d = 28 nm. This
smallness of the effect, in comparison to the conventional
magnetic moment, makes this very challenging to measure
using torque magnetometry. This can also be inferred by noting
that in our theory the critical currents in tunneling experiments
are the maximum diamagnetic currents, and the former are
experimentally in the nano-ampere range.

However, we can exploit our understanding of the disor-
dered isolated bilayer to consider how this diamagnetic re-
sponse can be increased. In particular, we note that M| ynax per
unit volume increases with L, and with the number of polar-
ized domains in the sample. Note that the interlayer tunneling
can be increased by many orders of magnitude compared with
the current samples by reducing the tunnel barrier. Increasing
the tunneling strength reduces the domain size Ly. Also, the
narrower barriers possible with stronger tunneling allow a
larger p,. Our approach holds up to the point where the domain
size L4 reaches the disorder length scale, & ~ 100 nm, and the
maximum field B, just reaches the depinning field B,,. At this
point, we obtain a significant magnetic moment My max/ M1 2,
L./(1 mm). Thus the diamagnetism of the exciton super-
fluid should be evident in samples with strong interlayer
tunneling.

Although in the weak-tunneling samples the moments are
small, the pinning and dynamics of the in-plane flux can
still be probed in transport experiments. One consequence of
the pinning picture is that the critical current in a tunneling
experiment should not be affected by in-plane fields smaller
than B, in contrast to the clean limit where the critical
current is suppressed at fields’’ By < B.,. This is because
in the pinning picture it is the gradients of the in-plane
flux density which drive the flux through the disorder, and
while the injected currents in the tunneling geometry impose
such gradients, a uniform in-plane field does not. It would
also be possible to study the dynamics of the in-plane flux
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in tunneling experiments. An interlayer voltage at one end
of the sample introduces in-plane flux at a given rate, and
measuring the interlayer voltages and currents reveals the
subsequent motion*? of this flux. The logarithmic relaxation
of the flux-creep regime can lead to hysteresis, which is seen
in tunneling experiments. '’

An interesting extension of our work would be to consider
samples in the Corbino disk geometry. In such a geometry,
a radial magnetic field could induce circulating counterflow
supercurrents, similar to the induction of linear counterflow
supercurrents by an in-plane field in the open geometry of
Fig. 1. In the open geometry, tunneling is necessary to close
the current loop, which we have seen gives rise to a maximum
magnetic moment at the field B,.. In a Corbino disk, tunneling
is not needed to close a circulating current loop, so there may
be no saturation effect at B, and the full magnetic response may
persist up to B.,. However, there will still be radial variations
in the densities of applied flux and diamagnetic current, and
maintaining the diamagnetic current loop requires that these
variations are pinned. Thus it seems likely that, even in this
geometry, there is a maximum magnetic moment determined
by the sample dimensions and a pinning length. The relevant
pinning length, however, may be determined by parameters
other than the tunneling strength.

VI. CONCLUSIONS

In summary, we have considered the diamagnetic response
of a bilayer exciton superfluid to an in-plane magnetic field
in the presence of in-plane vortices nucleated by charge
disorder. We argue that at low temperatures, changes in
the in-plane magnetic field induce circulating diamagnetic
currents and hence persistent diamagnetic moments. The
maximum moments which can be induced are determined by
the pinning of the in-plane flux by the disorder, which involves
a characteristic length scale related to the tunneling. At finite
temperatures, thermal motion of the in-plane flux will lead
to transport resistivities and cause the diamagnetic moments
to decay. In current samples, we find that the maximum
moments are small, but samples with stronger tunneling could
allow persistent exciton supercurrents to be probed by torque
magnetometry. Such experiments would be analogous to the
torsional oscillator experiments that are the definitive measure
of superfluid fraction in helium.

Finally, we note that very strong tunneling, or very large
stiffness, may even be able to prevent the disorder nucleating
vortices,’! recovering the clean limit in which the magnetic
response is also expected to be measurable.?* In this case, the
phase diagram of the bilayer would then closely parallel that of
a type-II superconductor, with both a mixed state (as described
here) and a clean state, experimentally distinguishable by the
presence of hysteresis.
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