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Nonlinear electron transport in an electron-hole plasma
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Charge transport in an electron-hole plasma driven by high-field terahertz (THz) pulses is strongly influenced
by electron-hole interactions, as has been shown in a recent publication [P. Bowlan et al., Phys. Rev. Lett.
107, 256602 (2011)]. We introduce a picture of high-field THz transport which accounts for the roles of both
types of carriers including their interactions. While holes make a negligible contribution to the current, they
are heated by absorbing energy from the driving THz field and introduce a friction force for the electrons
over a period of about 500 fs. Our model uses an extended version of the loss-function concept to calculate
the time-dependent friction. The local field that drives the electrons differs from the incident THz field by
screening due to Coulomb correlations in the plasma. We illustrate how spatial correlations between charged
particles (electrons, holes, impurities) create a significant local-field correction to the THz driving field. The
dominant contribution stems from Coulomb-correlated heavy-hole wave packets, which are strongly polarizable
via inter-valence-band transitions.
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I. INTRODUCTION

Intense femtosecond terahertz (THz) pulses allow for
driving carrier transport in semiconductors at very high
carrier velocities and provide a time resolution below typical
scattering times.1 New phenomena have been discovered in
this regime, among them partial Bloch oscillations in a bulk
semiconductor and the undressing of polarons.2–4 The conven-
tional theoretical framework for describing charge transport
such as the semiclassical Boltzmann transport equation is
often insufficient to explain high-field transport phenomena
on ultrafast time scales.5 “High field” in this context means
that the (frequency-dependent) conductivity deviates from its
value at low field. The field strength for this to happen depends
on the material and on the time scale investigated. As an
example, in GaAs at room temperature the drift velocity in
a static field deviates from a linear field dependence for fields
above 3 kV/cm.6

The failure of the semiclassical Boltzmann transport
equation on ultrafast time scales is mainly due to the fact
that scattering takes a finite time to happen. For example,
if the dominant scattering process is with optical phonons,
this can not happen faster than the inverse of the highest
phonon frequency (ν−1

LO = 120 fs in GaAs) in the respective
material.2 Therefore, at very early times after turning on the
driving field, the carrier motion is essentially ballistic, i.e., not
influenced by scattering, and the velocity can be considerably
higher than the steady-state value.3 Such behavior has been
observed in experiments in which a 10-fs infrared pulse
injected electron-hole pairs into a semiconductor layer to
which a high static electric field was applied.7–9 For high
enough driving fields E(t) > 50 kV/cm, the transport can be
ballistic for times even longer than ν−1

LO because the electrons
move faster than the lattice responds, leading to a decoupling
of electrons and phonons. Using driving fields between 50 and
300 kV/cm, electron transport in GaAs was recently shown
to be perfectly ballistic over the entire duration of the driving

THz pulse of 1.5 ps.3 The absence of scattering is manifested
in the observation of partial Bloch oscillations in a bulk crystal.

The existing results on high-field THz transport (for a
review, see Ref. 1) provide very limited insight into the be-
havior of photoexcited electron-hole plasma and the particular
roles of the two types of carriers. To address this issue, we
recently studied high-field transport of an electron-hole plasma
in bulk GaAs and demonstrated the occurrence of a time-
dependent frictional force which originates from electron-hole
interactions.10

To analyze this behavior theoretically, we introduced a
theoretical model based on the concept of wave packets. Mo-
tivated by the periodicity of a crystal, the standard description
of electrons, phonons, and other quasiparticles in solid-state
theory uses infinitely extended plane waves. These plane waves
are extremely unstable against decoherence.11–13 Even very
small perturbations lead to a very fast localization. In contrast,
wave packets are much more stable against decoherence. The
wave packet size is determined by the amount of decoherence,
which is in turn determined by the temperature. Although it is
possible to describe a wave packet as a coherent superposition
of plane waves, it turns out that it is simpler to directly use wave
packets. They can be labeled by the position, momentum, and
wave-packet size, either in real or in momentum space. In this
way, one has in a first approximation the classical equations of
motion according to Ehrenfest’s theorem. The force acting on
a wave packet averages over the short-wavelength potential
fluctuations underneath such a wave packet, leading to a
strongly reduced “effective” interaction with short-wavelength
quasiparticles. On the next higher level of approximation, one
has to take into account the change of the wave-packet size
caused by the interactions with other particles. Even higher
approximations, which we do not consider in the following,
would lead to a time-dependent change of the shape of the
wave packet.

In this paper, we present the wave-packet treatment of
high-field carrier transport in full detail. The theoretical results
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are complemented by additional experimental data to address
the following questions: (i) Does the transition from ballistic
to driftlike transport of electrons in an electron-hole plasma
depend on the THz frequency? (ii) Does the high-field electron
transport on ultrafast time scales depend on the delay τ

between the photoexcitation of electron-hole pairs and the
THz pulse driving the electrons? (iii) Is the electron transport
influenced by the initial excess energy of the photoexcited
electron-hole pairs? The paper is organized as follows. The
theoretical model and its results are presented in Sec. II,
followed by a summary of the additional data in Sec. III. A
discussion is presented in Sec. IV, followed by conclusions in
Sec. V.

II. THEORY

For decades, high-field carrier transport in semiconductors
has been the subject of extensive theoretical literature.6,14–24 In
this context, the semiclassical Boltzmann transport equation is
probably the most widespread concept.6,25 In most cases, the
scattering terms of the Boltzmann equation are calculated by
perturbation theory, inherently assuming that the duration of
scattering events is short compared to the time interval between
them. This assumption breaks down on ultrafast time scales
(i.e., t < 300 fs) and, thus, the Boltzmann transport equation
fails and predicts wrong scenarios of high-field transport.2,3,5

Two reasons are responsible for this: (i) The semiclassical
Boltzmann transport equation can not account for quantum-
kinetic memory effects in the electron-phonon interaction.
Theoretical results14,15 for E < 80 kV/cm have shown that
energy nonconserving transitions lead to interferences between
the electron–electric-field and the electron-phonon interaction
allowing ballistic transport on ultrafast time scales. (ii) In
the semiclassical Boltzmann transport equation, the state
of a charge carrier is described by its momentum �p = h̄�k
and by its spatial position �r , both being interpreted in
a “classical” picture.6 Quantum mechanics, however, does
not allow for a precise, simultaneous measurement of both
quantities (�x2�p2

x � h̄2/4), leading in a natural way to the
concept of wave packets. Recently, we developed a dynamic
polaron model that correctly incorporates both issues.2,3,5 In
the following, we describe an extension of this model for
photoexcited electron-hole plasmas in semiconductors.

A. Transient friction force derived from the
loss-function concept

The energy loss of charged particles in a solid can be
described by the imaginary part of the inverse dielectric
function ε(q,ω). If a (classical) particle of charge e and velocity
�v enters a crystal, the dielectric displacement is

�D(�r,t) = −∇ e

|�r − �vt | . (1)

Quantum mechanically, this equation is an approximation
valid if the wave-packet size of the particle is smaller than
the interatomic distance in the solid, which is the case, e.g.,
for electrons with keV kinetic energies. Otherwise, the δ-like
charge density on the right-hand side of Eq. (1) has to be
convoluted with the actual charge density of the wave packet.
In the following, we consider spherically symmetric Gaussian

wave packets with a spatial extent (root mean square) of
√

�x2.
With such a charge distribution, the previous equation reads as

�D(�r,t) = −∇
[∫

exp
( − |�r−�r ′ |2

�x2

)
(π�x2)3/2

e

| �r ′ − �vt | d3 �r ′
]

. (2)

The semiclassical friction force acting on the charged particle
when propagating through a medium with the dielectric
function26 ε(q,ω) is given by the electric field created by
the medium acting at the spatial position of the particle
�E(�r = �vt,t):

�̂E(�q,ω) =
�̂D(�q,ω)

ε0

[
1

ε(q,ω)
− 1

ε(q,∞)

]
. (3)

�̂E(�q,ω) and �̂D(�q,ω) are the four-dimensional Fourier trans-
forms of �E(�r,t) and �D(�r,t), respectively. The second term in
Eq. (3) subtracts the field from the carrier itself. In the quantum
mechanical version of Eq. (3) [cf. Eq. (57) of Ref. 27], one
has to consider the energy and momentum conservation of
the quanta of the elementary excitations contained in ε(q,ω).
Additionally, one also has to consider the thermal fluctuations
of the elementary excitations. For the energy relaxation rate
and the total scattering rate, this has been done in Refs. 28–30.

The frequency- and wave-vector-dependent dielectric func-
tion ε(ω,q) consists28–31 of the high-frequency background
due to bound electrons (ε∞), the lattice contribution [χL(ω)],
and contributions from the free electrons and holes. Since both
heavy- and light-hole bands are involved, also inter-valence-
band contributions to ε(ω,q) have to be included.

In THz-driven electron-hole plasmas, there are two mecha-
nisms of light-matter interaction: (i) the acceleration of carri-
ers, and (ii) the absorption via inter-valence-band transitions.
In our experiments, holes make only a minor contribution
to the current, so that in the following we take vh = 0. The
electron ensemble is characterized by an average wave vector
k �= 0 and a width

√
�k2, resulting in a separation of the

electron and hole ensembles in k space. In a parabolic band, k is
proportional to the current and �k2 determines its dynamics. In
the ballistic limit, k �

√
�k2. In the electron-hole plasma, the

scattering between electrons and holes results in an exchange
of momentum and energy between the two subensembles. A
particularly efficient scattering mechanism is the electron-
induced excitation of heavy holes to the light-hole band.30

Carrier thermalization, i.e., the formation of quasiequilibrium
distributions in the spatially separated electron and hole
ensembles with a common carrier temperature Teh, occurs
on a sub-100 fs time scale32 and involves electron-electron,
electron-hole, as well as intra- and inter-valence-band scat-
tering of holes. It is, thus, justified to describe �k2 on the
slower time scale of the THz experiment by the common carrier
temperature Teh. In this regime, interaction of electrons with
holes results in a gradual increase of �k2, i.e., an increase of
Teh, causing a transition to driftlike transport.

The time dependence of the electron velocity is due to the
force from the local electric field acting on the electron and to
the friction force, described by the momentum relaxation time
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τm. This leads to

dve

dt
= − ve

τm(ve,p,Teh,TL)
− e Eloc(t,p,Teh)

m
. (4)

To determine the dependence of τm on ve, p, Teh, and TL,33

we extended the concept of Eq. (57) of Ref. 27 to the more
general loss-function concept.28,29 Furthermore, we included
the finite size of the electron wave packet [the thermal de
Broglie wavelength3,34 (�x2)−1 = 4 �k2 = 4 m kB Teh/h̄]

τ−1
m = e2

k2ε0

∫ ∞

−∞

∫
exp

( −h̄2q2

4m kB Teh

) �q · �k
q2 |ε(ω,q)|2

×
{

Im[χL(ω)]

exp
( − h̄ω

kBTL

) − 1
+ Im[χh(ω,q,Teh)]

exp
( − h̄ω

kBTeh

) − 1

}

×δ

(
h̄2[(�k + �q)2 − �k2]

2 m
+ h̄ω

)
d3 �q dω. (5)

This equation contains the hole susceptibility χh but not the
electron susceptibility, since electron-electron scattering can
not change the total momentum of the electron ensemble35

and, thus, can not lead to friction.
The energy deposited in the sample via THz absorption

heats the carrier system and yields a time-dependent carrier
temperature Teh(t):

3

2
kB[Teh(t) − TL] = −e n

n + p

∫ t

−∞
ve(t ′)Edr(t

′) dt ′ − m v2
e (t)

2
.

(6)

Teh(t) is given by the total deposited energy minus the
kinetic energy of the electrons undergoing transport. We have
neglected here electron cooling since this occurs on longer
times not relevant to our experiments. The energy left in the
carrier system after the end of the THz pulse is very small for
the n- and p-type samples, pointing to small THz absorption
and minor changes of Teh, while carrier temperatures higher
than 4000 K are found for the photoexcited samples.

In Fig. 1, the resulting friction for electrons in GaAs is
plotted as a function of electron wave vector and compared
to the friction for the initial Teh = 300 K. With only electrons
present at Teh = 300 K (solid black line), friction at small
k vectors is due to the absorption of LO phonons. The
strong enhancement of the momentum relaxation rate around
k = 2.5 × 106 cm−1 is caused by the onset of LO phonon
emission, which now dominates momentum relaxation. With
increasing k, the momentum changes by LO phonon emission
and absorption tend to compensate each other, resulting in
a decrease of the relaxation rate from its maximum value.
The addition of holes opens up new channels of electron-
hole scattering which enhance the momentum relaxation
rate throughout the k range shown. Here, electron-induced
transitions of heavy holes to the light-hole valence band make
a strong contribution.30 For a high carrier temperature Teh =
5000 K, both carrier-carrier and carrier-phonon scattering
are enhanced, giving rise to substantially higher rates of
momentum relaxation. The concomitant strong enhancement
of friction results in the transition from ballistic to driftlike
transport as shown in Figs. 1 and 2 of Ref. 10.

FIG. 1. (Color online) Calculated momentum relaxation rates τ−1
m

in GaAs of an electron in the 
 valley as a function of its wave vector
k for hole densities p and carrier temperatures Teh as indicated.

B. Lorentz-Lorenz correction to the local driving field in an
electron-hole plasma

A surprising experimental finding of our work is that spa-
tial correlations between charged particles (electrons, holes,
impurities) can create a significant local-field correction to
the THz driving field. Starting at room temperature, a hole
density as low as p ≈ 5 × 1016 cm−3 leads to a local-field
correction that halves the THz driving field. Gradual heating of
the carrier gas during interaction with the THz field diminishes
the Coulomb correlation of heavy holes, leading to a vanishing
local-field correction at late times. In the following, we
present a semiclassical model that illustrates the physics of
the local-field correction in detail.

So far, the concept of the Lorentz-Lorenz field has mainly
found its application in the physics of electrically insulating
materials, e.g., in the local-field correction of the refractive
index of dense media.37–39 For conducting media such as
metals or plasmas, local-field corrections according to the
Lorentz-Lorenz field concept are typically less important,40

although many-body theories for the dielectric constant (cf.
Sec. 5.5.3 of Ref. 25) invoke such effects whenever spatial
correlation of charges plays a significant role. In the semi-
classical model presented here, we explicitly show that the
Lorentz-Lorenz field correction is even present in a plasma
if (i) it consists of localized charged particles, i.e., quantum
mechanical wave packets and (ii) there is a spatial correlation
between charges of both the same and opposite signs.

For simplicity, we calculate the Coulomb energy between
two electrically charged wave packets (charges Q1 and Q2,
spatial extension:

√
�x2, background dielectric constant εb)

at positions �r1 and �r2 with the effective potential

V (�r1,�r2,�x2) = Q1Q2

εbε0

√
4�x2 + |�r1 − �r2|2

. (7)
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FIG. 2. (Color online) (a) Charges on a square lattice (Ref. 36)
with lattice constant a0. (b) Charges at random positions. (c)
Radial distributions of spatially correlated charges (frequency of
occurrence vs particle distance). Gray lines: charges on a simple
cubic lattice, the three-dimensional analog of the case in (a). Dotted
line: uncorrelated particles [random positions of charges in space,
analog to (b)]. The solid and dashed lines show radial correlations
of Coulomb-correlated charges in a plasma at a temperature of
kBT = ERyd (dashed line: charges of the same sign; solid line:
charges of opposite sign). (d) Corresponding many-body Coulomb
potentials at the origin of the ellipsoid as a function of the macroscopic
polarization P in the ellipsoid, for a random distribution (dotted
line), for a cubic lattice (gray line), and for a plasma (solid
line), for P parallel to the ellipsoid axis. The dashed-dotted line
shows the depolarization field (P perpendicular to the ellipsoid
axis), which does not depend on the spatial correlation of the
charges.

Such a potential describes correctly the Coulomb interaction at
large distances |�r1 − �r2| �

√
�x2, but avoids its divergence at

|�r1 − �r2| = 0. In a semiclassical picture (Ehrenfest’s theorem),
the divergence is removed by averaging the Coulomb force
over the finite size of the involved wave packets. With the
spatial extension equal to the Bohr radius,

√
�x2 = aBohr, one

gets the correct ground-state energy of an exciton or a neutral
impurity. Next, we place on a simple cubic lattice36 (lattice
constant: a0 = p−1/3 with hole density p) an equal number of
positive and negative charges within an ellipsoid of revolution
(spheroid).41 Now, we calculate the potential at the origin of the
ellipsoid (at this location no charge was placed) as a function of
the spatial separation ��r between the two arrays consisting of
the positive and the negative charges. The results (together with
the radial distributions) are shown as gray lines in Fig. 2. For an
oblate ellipsoid and

√
�x2 	 a0, one gets the expected results:

For a spatial separation parallel to the revolution axis, the
calculation yields the potential [dashed-dotted line in Fig. 2(d)]
of the sum of the Lorentz-Lorenz field plus the depolarization
field, i.e., �Eloc = 1

3
�P/(εbε0) − �P/(εbε0) = − 2

3
�P/(εbε0) with

the macroscopic polarization �P = ep��r . In contrast, for a
spatial separation of the charged arrays perpendicular to the
revolution axis of the oblate ellipsoid, one gets only the
potential of the Lorentz-Lorenz field, i.e., �Eloc = 1

3
�P/(εbε0).

So far, our semiclassical many-body model just confirmed
the well-known physics contained in the concept of the
Lorentz-Lorenz field.37–39

Interesting new physics arises when considering deviations
from such a perfect insulating crystal. First, we consider the
influence of the wave-packet size on the local field. Our
calculations show that when we increase the wave-packet
size

√
�x2 toward the next-neighbor distance a0 of the cubic

lattice the Lorentz-Lorenz field gradually diminishes and even
vanishes beyond this point. In contrast, the amplitude of the
depolarization field does not depend on

√
�x2, i.e., it even

exists for particle wave functions extended over the entire
ellipsoid (plane-wave approach).

To investigate the influence of the spatial correlation of
charges on the local field, we added various disorders on the
spatial positions of the charges. To this end, we introduced
random (normally distributed) fluctuations � �R of various
amplitudes

√
�R2 on both the relative displacement between

the positive and negative charges of each pair within the cubic
array and on the absolute positions of individual pairs within
the array. Similar to the influence of the wave-packet size
(see above), once either the fluctuations within a neutral pair
or those of the absolute positions of individual pairs reach
an amplitude in the order of the next-neighbor distance, i.e.,√

�R2 ≈ a0, the Lorentz-Lorenz field gradually diminishes.
In contrast, the depolarization field is unaffected by the
disorder. In Fig. 2, we show these trends together with the
spatial correlations of the positive and negative charges. To
summarize, our semiclassical model calculations show that
the Lorentz-Lorenz field occurs only if the wave packets are
small compared to the interparticle distance, if a repulsive
correlation between charges of identical sign exists and if
an attractive correlation between charges of opposite sign
exists.

Positively charged heavy holes in the valence band of a
semiconductor fulfill such conditions. At room temperature,
the wave-packet size is about

√
�x2 ≈ 1 nm, much smaller

than the average mutual separation between them, p−1/3 ≈
30 nm for p ≈ 5 × 1016 cm−3. On the one hand, due to the
mutual Coulomb repulsion, they avoid each other, leading to
a pronounced antibunching of heavy holes [dashed line in
Fig. 2(c)]. On the other hand, a heavy hole is a polarizable
particle on its own, i.e., an external electric field can cause a
coherent superposition of a heavy- and light-hole wave packet,
the mutual spatial separation of which shows a pronounced
attractive spatial correlation, similar to that between the
electron and the ion core within an atom. Thus, our surprising
experimental finding10 that, at T = 300 K, a hole density as
low as p ≈ 5 × 1016 cm−3 leads to a local-field correction
that halves the THz driving field is the consequence of
the Lorentz-Lorentz field in a Coulomb-correlated plasma.
Heating of the carrier gas during interaction with the high-field
THz pulse gradually diminishes the Coulomb correlation of
heavy holes, leading to a vanishing local-field correction at
late times.
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III. EXPERIMENT

Both the applied electric field and the current need to
be measured with a time resolution of 100 fs in order
to check the predictions of theory by experiment. In our
measurements, we use the electric field of a strong THz pulse
and determine its time dependence by electro-optic sampling.
The time-dependent current leads to the emission of transient
electric fields, which can also be measured by electro-optic
sampling. If the current is limited to a layer thin compared to
the THz wavelength, the relation between the current j (t) and
the emitted field Eem(t) is particularly simple:45–47

j (t) = −2Eem(t)/(Z0d). (8)

To measure the emitted field, we use that the transmitted
field Etr(t) is equal to the sum of emitted and incident fields
Etr(t) = Ein(t) + Eem(t). Thus, we obtain the emitted field
as the difference between the transmitted and incident fields.
To extract the current from the photoexcited carriers, we
measure the transmitted field transients with and without pho-
toexcitation, Ewith

tr (t) and Ewithout
tr (t). The difference between

these transients is the field emitted from the photoexcited
carriers. The corresponding current is then obtained using
Eq. (8). In this thin-layer geometry, the field acting on the
carriers, the driving field, is equal to the transmitted field45–47

Edr(t) = Etr(t).
Our sample is grown by molecular beam epitaxy. It

consists of a 500-nm-thick GaAs layer, which clearly fulfills
the requirement for the thin-layer geometry since λTHz =
150 μm, and two 300-nm Al0.4Ga0.6As cladding layers. All
experiments shown here were done with the sample at room
temperature. Our experimental setup is shown in Fig. 3. The

FIG. 3. (Color online) Experimental setup. A Ti:sapphire
oscillator-amplifier system generates 30-fs pulses around 800-nm
wavelength. THz pulses are generated by optical rectification in GaSe.
A Si filter removes the unconverted 800-nm light. The THz pulses are
focused onto the GaAs sample and then imaged onto a ZnTe crystal
for electro-optic sampling, using a small portion of the unamplified
800-nm pulses as probe. Part of the amplifier pulses is sent to a
sapphire plate for a white-light continuum, which is spectrally filtered
to vary the wavelength for photoexcitation between 650 and 885 nm.
With a chopper synchronized to half the amplifier repetition rate,
we measure at every time step the THz pulse through the sample
both with and without photoexcitation. The photoexcitation pulse is
collinear with the THz pulse, unfocused at the sample, and enters
through a small hole in the first parabolic mirror. The entire path of
the THz pulse is in vacuum.

THz driving pulses are generated by optical rectification of
amplified 800-nm pulses in GaSe.46 The THz beam is focused
onto our sample to accelerate the generated carriers. For
electro-optic sampling, we use a thin ZnTe crystal, and the
oscillator pulses as the probe pulses. The entire THz beam
path is within a vacuum chamber. For photoexcitation, we
generate a white-light continuum. By spectral filtering, we can
vary the wavelength used for excitation. Additionally, some
measurements were done with 400-nm excitation, obtained by
second-harmonic generation. Autocorrelation measurements
confirmed that the photoexcitation pulses were always shorter
than 150 fs, i.e., much shorter than the THz transients. There
are two delays in the experiments: the delay between the pump
pulse and the THz pulse (hereafter this is called delay) and the
electro-optic sampling delay measuring the time dependence
of the THz electric field (hereafter this is called time).

In all experiments discussed in the following, we analyzed
the measured fields with the method already presented in
Ref. 10. We compare the THz transient emitted by the sample
with two limiting cases: perfect drift motion and perfect
ballistic motion. For perfect drift motion, we have

jdrift(t) ∝ Edr(t) (9)

for perfect ballistic transport

jballistic(t) ∝
∫ t

−∞
Edr(t

′)dt ′. (10)

For a monochromatic field, this yields a π/2 phase shift
compared to the drift motion. To get a quantitative measure for
intermediate cases, we introduce the ballisticity b(t), defined
by

b(t) = arg[j̃ (t)] − arg[j̃drift(t)]

arg[j̃ballistic(t)] − arg[j̃drift(t)]
, (11)

using the definitions in Eqs. (8)–(10). The complex valued j̃ (t)
are obtained from the real valued j (t) by a Fourier transform,
zeroing the negative-frequency components, multiplying all
components with frequencies >0 by 2, and a back transform.
The ballisticity defined in Eq. (11) is equal to one for perfect
ballistic transport and equal to zero for perfect drift transport.

Before presenting additional results, we want to shortly
summarize the results already shown in Ref. 10. (i) If the
only type of carriers present are electrons (n-type sample, no
photoexcitation), the transport is ballistic over the whole length
of the THz pulse. (ii) If there are only holes present (p-type
sample, no photoexcitation), the current for the same carrier
density is at least 7.5 times lower and within the noise limit of
the experiment. (iii) If both electrons and holes are present, the
transport is dominated by the electrons and there is a transition
from ballistic transport at the beginning of the THz pulse
to drift transport at later times. The higher the hole density,
the faster the transition toward drift transport (comparison
of photoexcited n-type, p-type, and undoped samples). Thus,
although holes do not contribute appreciably to the current,
they influence the electron transport.

We now present results that show the dependence of
transport on (i) the THz frequency, (ii) the delay between
the excitation pulse and the THz pulse, including the case
when carriers are generated during the THz pulse, and (iii) the
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FIG. 4. (Color online) Measured emitted fields (solid lines) using
driving fields with center frequencies of (a) 3 and (b) 2 THz. For
comparison, we also plot the ballistic responses calculated from
Eq. (10), and the fields predicted by our model. The lower parts of
both figures show the time dependence of the ballisticity [Eq. (11)].

excitation wavelength. Using a photoexcitation wavelength of
885 nm, an excitation density of n = p ≈ 2 × 1016 cm−3, and
a THz field strength of 25 kV/cm, we compared the emitted
fields for different THz center frequencies of 3 and 2 THz.
These results are shown in Fig. 4. When using a 2-THz driving
field, as we do for all further measurements in this paper, we
see the transition from ballistic to drift transport, which occurs
over ≈300 fs as described in Ref. 10. For 3 THz, however, the
transport is nearly perfectly ballistic over the entire duration of
the driving THz field. This result is reproduced by our model.

To study transport during the time overlap of photoexci-
tation pulse and THz pulse, we used attenuated pulses from
the Ti:sapphire amplifier at 800 nm for photoexcitation to
achieve the best possible time resolution and the lowest noise.
The experimental results are compared with the results from
our model in Fig. 5. At longer delays, when the THz pulse
and photoexcitation pulse no longer overlap, the results of the
measurement in Fig. 5 are the same as those discussed above
and in Ref. 10. As shown in Fig. 5(b), the ballisticity begins
with a value of one, indicating perfect ballistic transport, but
decreases slowly with time as the transport becomes more
driftlike. At shorter delays, when the photoexcitation pulse
arrives within the driving THz pulse, oscillations are seen in

FIG. 5. (Color online) Transport for small delays between pho-
toexcitation and THz pulses. The measured emitted field amplitude
(a) and the ballisticity (b) are plotted versus delay and time. For
these measurements, the photoexcitation wavelength was 800 nm,
the density 4 × 1016 cm−3, and the THz field amplitude 50 kV/cm.
(c), (d) Corresponding results from our model.

both the emitted field amplitude and in the ballisticity. Figure 6
shows a cut along the center of the photoexcitation pulse,
i.e., for t = −τ . The electron motion is more ballistic when
the photoelectrons are injected at the driving-field extrema
compared to the case when they are injected near the zeros of
the driving field.

To see how the electron current varies when the carriers
are generated at different k values in the band structure,
we photoexcited carriers with various wavelengths (see
Table I). The same driving THz pulse (2 THz, 50 kV/cm) and
the same excitation densities (n = p ≈ 2 × 1016 cm−3) were
used in all experiments. Figure 7 shows the emitted fields
for delays of 1.5, 15, and 35 ps after excitation. For long
delays, the emitted field transients are nearly independent of
excitation wavelength, but at short delays we find a decrease
of the field amplitude with shorter wavelengths. In Fig. 8, the
maximum amplitude of the recorded THz transient is shown
as a function of delay. At a photoexcitation wavelength of
885 nm, the amplitude is constant; at shorter wavelengths,

FIG. 6. (Color online) The measured (solid line) and calculated
(dashed line) ballisticities along the center of the photoexcitation
pulse together with the driving field (dashed-dotted line).
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TABLE I. Photon energy, corresponding excess energy relative to
the minimum of the conduction band, and conduction-band valleys
[the L valley is 0.3 eV above the 
 valley (Refs. 42 and 43)] that can
be reached, for the different excitation wavelengths used.

Wavelength Photon energy Excess energy Valley
(nm) (eV) (eV)

885 1.40 ≈0 


800 1.55 0.11 


750 1.65 0.20 


680 1.82 0.36 
, L

650 1.91 0.43 
, L

it increases with delay. Exponential fits yield a rise time of
5 ps for 800 and 680 nm and a rise time of 14 ps for 650 nm.
The rise time of 5 ps agrees very well with the time-resolved
photoluminescence data of Ref. 44 (open circles).

IV. DISCUSSION

The THz field strength applied in our experiments is low
enough to limit electron transport to the 
 valley of GaAs
with a parabolic conduction band structure. THz-induced
tunneling47 is unimportant because of the high carrier temper-
atures and because of the comparably low driving fields used.
All of the experimental results shown above are consistent
with our picture of high-field THz transport in an electron-hole
plasma from Sec. II.

As we have seen in Fig. 4, the transport is very sensitive
to the frequency of the driving THz pulse. This is explained
by the frequency dependence of the plasma heating by the
THz radiation. In a THz field with a frequency of 3 THz,
the electrons do not reach such high velocities as in a field
with a frequency of 2 THz. Additionally, its velocity changes
direction more frequently. According to Eq. (6), both of these
effects result in a much smaller heating rate. As a consequence,
the electrons in a 3-THz field never feel a significant friction
force and, thus, move ballistically within the duration of the
THz pulse.

One expects that the electron motion is always ballistic
initially. This is the case for the measurements shown in Fig. 4
and in Figs. 1 and 2 of Ref. 10. However, this seems not
to be always the case when the electrons are created within
the driving THz pulse, as illustrated in Fig. 5. When the
photoelectrons are created within the THz pulse, oscillations
with a frequency of 4 THz are seen in both the emitted
field’s amplitude and ballisticity. The maxima in amplitude
and ballisticity occur when the photoelectrons are injected at
the extrema of the driving field, and the minima at the zero
crossings of the driving field. The reason for this effect is that
the electrons are created with an average velocity of zero. At
the field extrema, ballistically moving electrons have velocity
zero [Eq. (10)]. Therefore, electrons created at these times
move in phase with the current expected for ballistic transport,
leading to the observed maxima for the emitted field amplitude
and the ballisticity. On the other hand, if the electrons are
created when the driving field is zero and ballistic electrons
have their maximum velocity, the newly created electrons have
a velocity π/2 out of phase with ballistic transport.

To further illustrate this effect, we modified our theoretical
model to account for the carrier injection at various phases of
the THz pulse. Instead of modeling a time-dependent carrier
density, we used a constant carrier density, but truncated the
THz driving field with a smoothed step function in time
centered at the moment of carrier injection:48

Edr(t,τ ) = Eprobe(t)

2

[
erf

(
t + τ

�tpump

)
+ 1

]
. (12)

In the calculation we used the measured driving THz pulse at
each delay. For the excitation pulse intensity, a 70-fs Gaussian
pulse (which was its measured pulse duration) was used. To
calculate the emitted THz field from the current, we used
Eq. (8). The results are shown in Figs. 5(c) and 5(d). Our theory
reproduces the measured oscillations along t = −τ very well.

(a)

(b)

(c)

FIG. 7. (Color online) Measured emitted field of photoexcited
carriers using several excitation wavelengths (as indicated) for delays
τ between the excitation pulse and the THz pulse of (a) 1.5 ps,
(b) 15 ps, and (c) 35 ps. The inset shows the electronic band
structure of GaAs. For excitation wavelengths shorter than 700 nm,
the electrons have enough energy to scatter into the L valley, from
which they return to the 
 valley with a time constant (Ref. 44) of
5 ps.
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FIG. 8. (Color online) Symbols: amplitude of the emitted THz
transient as a function of the delay τ for excitation wavelengths
as indicated. Solid lines: exponential fits with τrise as indicated.
Open circles: return of electrons to the 
 valley as measured in
time-resolved photoluminescence [data are taken from the line in
Fig. 2(b) of Ref. 44 and scaled to agree with our results at 2 ps].

With different excitation wavelengths we generate electrons
at different points in the band structure. This nonthermal
distribution thermalizes very quickly.49 The distribution can
then be described by a Boltzmann distribution function with
an electron temperature higher than the lattice tempera-
ture. Subsequent cooling of the carriers is expected to be
faster than 1 ps at room temperature, the temperature of
our experiments.49 Therefore, our transport measurements,
independent of excitation wavelength, all start with a thermal
carrier distribution at room temperature with an overall average
velocity νe = 0. We, however, find (Fig. 7) that the emitted
fields for delays of 1.5 and 15 ps are different for different
excitation wavelengths.

This dependence on excitation wavelength is caused by
two effects. The first effect is a partial transfer of electrons
to the side valleys immediately after photoexcitation of the
electron-hole plasma. In GaAs, the minima of the L and X

valleys42,43 are 300 and 480 meV higher than that of the 


valley. With excitation wavelengths shorter than ≈700 nm,
the electrons have enough excess energy to scatter to the L

valley. Since thermalization within the 
 valley49 happens on
a similar time scale as the transfer to the L and X valleys,
we do not expect sharp thresholds for scattering into these
side valleys. Thus, some scattering to the L valley can occur
even at wavelengths of 800 nm. Since the electron mass in the
side valleys is much higher, the electrons in the side valleys
make only a negligible contribution to the current; they are
essentially lost for transport.

Although scattering to the side valleys is known to happen
very quickly (≈50 fs), it takes much longer for the electrons to
return to the 
 valley.44,50,51 In our measurements, the temporal
resolution is limited by the half-cycle of the THz pulse
(2507 fs), so we could not resolve the ultrafast transfer of
electrons from the 
 valley to the side valleys. Their slow
return to the 
 valley results in the slow increase of the emitted
current shown in Fig. 8. This plot also contains exponential
fits to the experimental data (solid lines). The gradual rise time
τrise = 5 ps of the 800- and 680-nm data perfectly matches
the return time of electrons to the 
 valley as measured in
time-resolved photoluminescence44 (open circles).

FIG. 9. (Color online) Initial carrier density versus sample depth
for the different photoexcitation wavelengths.

At an excitation wavelength of 650 nm, another effect be-
comes important, namely, the inhomogeneous carrier density
due to the short penetration depth of the excitation pulses
into the GaAs layer (see Fig. 9). This results in a higher
local carrier density close to the front surface of the GaAs
layer and an increase of the momentum relaxation rates (cf.
Fig. 1), additionally reducing the emitted THz amplitude. For
longer excitation wavelengths such as 680 nm, this effect
plays a minor role. The spatially inhomogeneous electron-hole
plasma relaxes toward a homogeneous distribution of lower
density via ambipolar diffusion,52 that is, electrons and holes
have to diffuse together. This results in ambipolar diffusion
being much slower than the diffusion of electrons alone. In
GaAs, the time constant for this ambipolar diffusion is 13 ps,
which agrees very well with the observed rise time of the THz
amplitude of 14 ps (Fig. 8).

At wavelengths shorter than 650 nm, the front AlGaAs layer
of our sample begins to significantly absorb the excitation
pulse. We measured the emitted fields also with 400-nm
excitation (not shown here), where the AlGaAs absorbs all
of the excitation photons. At short delays, this is essentially
a measurement of the photoelectron transport in AlGaAs. In
these data, the transport was ballistic initially, but the transition
to driftlike motion was much faster than in GaAs. By the end
of the driving THz pulse, the transport was nearly driftlike. We
found that as we increased the delay between the excitation
and the THz pulse, the transport did become more ballistic
because the carriers slowly diffuse into the GaAs layer. Even
after a 70-ps delay, the transport was still more driftlike than
in GaAs, indicating that carriers remained in the AlGaAs
layer.

V. CONCLUSIONS

Our THz experiments give evidence that the transport in an
electron-hole plasma in a semiconductor is very different from
transport by electrons and holes alone. In GaAs, the current
from holes is much smaller than the current from the same
density of electrons. The presence of holes leads, however, to
an increase of scattering and thus to a faster transition from
the initial ballistic transport to drift transport. If electrons and
holes are generated with enough excess energy, a fraction of the
electrons scatter into side valleys where they do not contribute
to the current. Because of the increase of scattering with hole
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density, a spatially inhomogeneous distribution carries less
current than a homogeneous distribution.

For the theoretical description of these results, we have
presented a model based on the description of carriers as
spatially extended wave packets. The motion of these wave
packets is governed by Ehrenfest’s theorem, which results

in a decreased coupling to other elementary excitations with
wavelengths comparable or less than the wave-packet size.
The wave-packet size is changed by incoherent heating of the
carriers. Another important point of the model is that the local
field acting on the carriers is different from the incident field,
caused by spatial correlations between the carriers.
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