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Quantum kinetic description of spin transfer in diluted magnetic semiconductors
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We derive quantum kinetic equations of motion that describe laser-driven Mn-doped diluted semiconductors and
account for the carrier Mn exchange interaction beyond the mean-field theory. We treat a spatially inhomogeneous
system with arbitrary given positions of Mn dopants as well as an ensemble of randomly distributed Mn atoms
in an infinite crystal, which represents an on average spatially homogeneous system. In the latter case, special
care is taken of the interplay between higher-order correlations and the random positioning of Mn atoms.
For the ensemble-averaged system, we explicitly identify the terms responsible for a spin transfer between
spin-polarized carriers and Mn atoms in the special case valid, e.g., for paramagnetic samples without external
magnetic field, where initially the total Mn magnetization vanishes. It turns out that here the mean-field approach
as well as the virtual crystal approximation predict a vanishing spin transfer, in contrast to our quantum kinetic
equations. Moreover, in our approach, the exchange interaction with the localized Mn atoms leads to a significant
redistribution of the carrier momenta even in an on average spatially homogeneous system. The latter feature can
not be described in the virtual crystal approximation.
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I. INTRODUCTION

Diluted magnetic semiconductors (DMS) keep being a
focus of intensive research.1–4 On the one hand, the pos-
sibility to integrate magnetic properties in a semiconductor
environment is of high technological interest and, on the other
hand, these materials give rise to many open questions of
physical relevance. DMS (mostly Mn-doped semiconductors)
are particularly often discussed as a hardware for spintronic
applications. For these purposes, a targeted control of the
dynamics of carrier and Mn spins in the material is of utmost
importance. Such a control can be achieved via electrical
currents (transport of spins)5,6 or via optical manipulation of
the carriers (spin orientation).7–9 Optical control usually can be
realized on a much shorter time scale than control by transport,
but one has to face the challenge that the direct coupling of
the laser field to the Mn spins is negligible. Thus, a control
can only be achieved indirectly via the spin transfer between
optically excited carriers and the Mn system mediated by the
exchange interaction.

While the number of DMS with different compositions
steadily increases, by far the most studied systems are Mn-
doped II-VI and III-V semiconductors.10,11 In both cases,
the Mn atoms effectively provide localized spins 5/2 due
to their half-filled d shell. Moreover, the localized spins
interact with the spins of itinerant electrons and holes via
an exchange mechanism. III-V-semiconductor-based DMS are
ferromagnetic when the Mn concentration is above a certain
threshold (typically 2%).12 Here, the Mn atoms normally act
as acceptors leading to itinerant hole concentrations of up to
1020 cm−3. The ferromagnetic ordering of the Mn spins is
caused by the Mn carrier exchange interaction mediated via
the Ruderman-Kittel-Kasuya-Yosida (RKKY) mechanism. In
contrast, in II-IV materials, the Mn atoms mostly substitute the
host atoms of group II isoelectronically and therefore no free
carriers are available that could mediate the RKKY interaction.
In these materials, the Mn doping typically leads to a rather
strong paramagnetism.

The modeling of the dynamics in DMS is mostly done either
on the level of rate equations13–15 or by treating the carrier
Mn exchange interaction on the mean-field level, typically
in combination with the virtual crystal approximation.16,17

Rate equations describe the spin transfer between carriers and
Mn system as an incoherent process and thus miss coherent
features that, e.g., enable coherent control of the Mn spin
dynamics.18–21 The mean-field approach yields such a spin
transfer only when the initial average Mn magnetization is
nonzero and is commonly used to describe Mn spin precession
in ferromagnets or paramagnets with an external magnetic
field. The virtual crystal approximation disregards that the
Mn atoms are localized at certain positions. Recently, for the
ferromagnetic case, corrections to the mean-field theory have
been worked out within the Green’s function formalism.22,23

In the latter works, a spatially inhomogeneous situation
has been considered and, consequently, the virtual crystal
approximation has not been used.

In this paper, we develop a microscopic density matrix
approach to the dynamics of DMS, which accounts for
exchange-induced correlations beyond the mean-field level
and the localized character of the Mn spins. Our theory can
be applied to both ferromagnetic and paramagnetic DMS.
Within the density matrix theory, the crucial step to obtain
a numerically tractable set of equations is to truncate the
hierarchy of equations of motion for higher-order correlation
functions. We present a systematic truncation scheme that
can be applied to a system with arbitrary given positions
of the Mn atoms. The scheme fully accounts for density
matrices involving more than one spin operator for a given
Mn site by using exact relations that allow a reduction
to density matrices with only one spin operator per site.
Density matrices with spin operators referring to different Mn
atoms are treated within a correlation expansion. In addition,
we also derive a description for systems that are spatially
homogeneous after averaging over a uniform distribution of
Mn atom positions. The simplifications that result from the
assumption of a spatially homogeneous Mn distribution are
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worked out in this paper explicitly for bulk semiconductors;
analogous equations for quantum wells or quantum wires that
are on average translational invariant in the direction parallel
to the well or wire can be obtained easily with one additional
approximation that is explained in Appendix B. It turns out that
the combination of accounting for higher-order correlations
with the averaging procedure yields results that deviate from
the virtual crystal predictions even in an on average spatially
homogeneous system. We explicitly discuss the special case
of a spatially homogeneous system where initially the Mn
magnetization is zero and identify the contributions in our
equations that are responsible for a spin transfer from initially
spin-polarized carriers toward the Mn atoms under these
conditions. The elementary step in a spin-transfer process
that is mediated by the exchange interaction is a change of
a carrier spin by ±1 that is accompanied by a change of the
spin of a Mn atom by ∓1. Consequently, starting from a full
spin-polarized carrier distribution, the only possible process is
a decrease of a carrier spin accompanied by an increase of the
spin of a Mn atom. Thus, an average Mn magnetization that is
initially zero must acquire finite values in the course of time
as is also already seen in early experiments.15,24 Nevertheless,
our analysis reveals that this spin transfer is absent not only
within the mean-field theory, but also in the limit of an infinite
crystal within the virtual crystal approach. Furthermore, we
show that such a spin transfer is accompanied by a significant
redistribution of the carrier momenta even if the system is
spatially homogeneous on average. This feature is missing
completely within the virtual crystal approximation. It turns
out that it is crucial to account properly for the interplay
between spatial averaging and the dynamics of higher-order
correlations.

II. MODEL SYSTEM

The starting point for our analysis is the Hamiltonian

H = H0 + Hsd, (1)

which consists of the single-particle electron part H0 and the
s-d exchange interaction Hsd between s-like conduction-band
electrons and localized Mn spins.

In the main part of this paper, we do not account for the
exchange interaction Hpd between p-like holes in the valence
bands and the Mn atoms since all principal conclusions of this
paper can be drawn readily and more conveniently from the
reduced model H0 + Hsd . An extended set of equations for
spatially homogeneous systems in the large-volume limit that
accounts for Hpd is given in Appendix C, where we also work
out the inclusion of a coupling to an external laser field that is
needed for the optical excitation of spin-polarized carriers. In
the main part, the optical excitation is modeled by appropriate
initial conditions.

We consider electrons in two spin-degenerate conduction
bands with spin quantum number 1

2 . Since we assume that the
bands are purely s like, we neglect band-mixing effects. With
these assumptions, H0 reads as

H0 =
∑
σk

Ekc
†
σkcσk, (2)

where σ ∈ {↓↑} is the spin index, k the three-dimensional
wave vector, and Ek the corresponding energy.

The exchange interaction, which originates from hy-
bridization effects between s-like conduction-band states
and d-like Mn orbitals,25,26 is described by a Kondo-type
Hamiltonian

Hsd = Jsd

∑
I i

ŜI · ŝe
i δ(ri − RI ), (3)

where ŜI (ŝe
i ) is the spin operator and RI (ri) the position

vector of the I th Mn atom (ith conduction-band electron).
Jsd , which is also denoted by α in the literature, is the
exchange constant with typical values of 10 meV nm3 in both
(II, Mn)VI and (III, Mn)V semiconductors.13,27 The localized
character of this interaction is reflected by the delta functions
δ(ri − RI ). For reasons which will become apparent later,
we express ŜI in the basis |I,n〉 of eigenfunctions of its z

component:

ŜI = ∑
nn′ Snn′ P̂ I

nn′ , (4)

where n ∈ {− 5
2 , − 3

2 , . . . , 5
2 } is the magnetic spin quantum

number, Snn′ :=〈I,n|ŜI |I,n′〉 are the spin matrix elements,
and

P̂ I
nn′ := |I,n〉〈I,n′| (5)

are the new operators for the Mn spin degrees of freedom. In
the second quantization, Eq. (3) becomes

Hsd = Jsd

V

∑
Inn′

σσ ′kk′

Snn′ · se
σσ ′e

i(k′−k)RI c
†
σkcσ ′k′ P̂ I

nn′ , (6)

where V is the volume of the sample and se
σσ ′ is the vector of

Pauli matrices.

III. EQUATIONS OF MOTION

In this section, we derive two sets of equations of motion
describing the combined electron and Mn dynamics. The
first set of equations deals with the case of known and
fixed positions of the Mn atoms, while the second is derived
based on the assumption of a spatially homogeneous random
distribution of Mn atoms in a macroscopic system, i.e., we
consider the limit of an infinite system volume (V → ∞) and
number of Mn atoms (NMn → ∞) where the Mn density nMn

is kept finite. Altogether, the second case corresponds to an on
average spatially homogeneous system.

A. Equations for fixed Mn positions

1. Heisenberg equations

The first step of our derivation is to set up the Heisenberg
equations of motion for the expectation values of the Mn
operators

−ih̄
∂

∂t

〈
P̂ I

n1n2

〉 = Jsd

V

∑
nσσ ′
kk′

(
Snn1

〈
c
†
σkcσ ′k′ P̂ I

nn2

〉

− Sn2n

〈
c
†
σkcσ ′k′ P̂ I

n1n

〉) · se
σσ ′ e

i(k′−k)RI ,

(7a)
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and for the electronic two-point density matrices(
− ih̄

∂

∂t
+ Ek2 − Ek1

)〈
c
†
σ1k1

cσ2k2

〉
= Jsd

V

∑
I ′

∑
nn′
σk

Snn′ · (
se
σσ1

〈
c
†
σkcσ2k2 P̂

I ′
nn′

〉
ei(k1−k)RI ′

−se
σ2σ

〈
c
†
σ1k1

cσkP̂
I ′
nn′

〉
ei(k−k2)RI ′ ). (7b)

Due to the exchange interaction, these variables are coupled to
three-point density matrices 〈c†σ1k1

cσ2k2 P̂
I
n1n2

〉, which describe
correlations between Mn atoms and electrons, but still con-
tain mean-field contributions 〈c†σ1k1

cσ2k2〉〈P̂ I
n1n2

〉. In order to
separate these mean-field contributions from true correlations
between electrons and Mn atoms, we introduce

δ
〈
c
†
σ1k1

cσ2k2 P̂
I
n1n2

〉
:= 〈

c
†
σ1k1

cσ2k2 P̂
I
n1n2

〉 − 〈
c
†
σ1k1

cσ2k2

〉〈
P̂ I

n1n2

〉
,

i.e., the deviations from the mean-field factorizations, as new
dynamical variables instead of 〈c†σ1k1

cσ2k2 P̂
I
n1n2

〉. The equations
of motion for these true correlations read as(

− ih̄
∂

∂t
+ Ek2 − Ek1

)
δ
〈
c
†
σ1k1

cσ2k2 P̂
I
n1n2

〉
= QIII

δ〈c†σ1k1
cσ2k2 P̂ I

n1n2
〉 + QIV

δ〈c†σ1k1
cσ2k2 P̂ I

n1n2
〉 + QV

δ〈c†σ1k1
cσ2k2 P̂ I

n1n2
〉.

(7c)

In the above equations, the source terms

QIII

δ

〈
c
†
σ1k1

cl2k2 P̂ I
n1n2

〉 := Jsd

V

∑
nσk

[
Snn1 · se

σσ1
ei(k1−k)RI

× (
δ
〈
c
†
σkcσ2k2 P̂

I
nn2

〉 + 〈
c
†
σkcσ2k2

〉〈
P̂ I

nn2

〉)
− Sn2n · se

σ2σ
ei(k−k2)RI

(
δ
〈
c
†
σ1k1

cσkP̂
I
n1n

〉
+ 〈

c
†
σ1k1

cσk
〉〈
P̂ I

n1n

〉)]
(8a)

collect contributions from three-point functions and their
factorized counterparts, while

QIV

δ

〈
c
†
σ1k1

cσ2k2 P̂ I
n1n2

〉
:= Jsd

V

∑
I ′ �=I

∑
nn′
σk

Snn′ · (
se
σσ1

ei(k1−k)RI ′ 〈c†σkcσ2k2 P̂
I
n1n2

P̂ I ′
nn′

〉

−se
σ2σ

ei(k−k2)RI ′ 〈c†σ1k1
cσkP̂

I
n1n2

P̂ I ′
nn′

〉)
−〈

P̂ I
n1n2

〉Jsd

V

∑
I ′

∑
nn′
σk

Snn′ · (
se
σσ1

ei(k1−k)RI ′ 〈c†σkcσ2k2 P̂
I ′
nn′

〉

−se
σ2σ

ei(k−k2)RI ′ 〈c†σ1k1
cσkP̂

I ′
nn′

〉)
, (8b)

QV

δ

〈
c
†
σ1k1

cσ2k2 P̂ I
n1n2

〉 :

= −Jsd

V

∑
nσσ ′
kk′

(
Snn1

〈
c
†
σ1k1

c
†
σkcσ2k2cσ ′k′ P̂ I

nn2

〉

− Sn2n

〈
c
†
σ1k1

c
†
σkcσ2k2cσ ′k′ P̂ I

n1n

〉) · se
σσ ′e

i(k′−k)RI

− 〈
c
†
σ1k1

cσ2k2

〉Jsd

V

∑
nσσ ′
kk′

(
Snn1

〈
c
†
σkcσ ′k′ P̂ I

nn2

〉

− Sn2n

〈
c
†
σkcσ ′k′ P̂ I

n1n

〉) · se
σσ ′ e

i(k′−k)RI (8c)

collect the contributions of higher density matrices,
i.e., four-point density matrices 〈c†σ1k1

cσ2k2 P̂
I
n1n2

P̂ I ′
n3n4

〉 with
I ′ �= I and normal ordered five-point density matrices
〈c†σ1k1

c
†
σ2k2

cσ3k3cσ4k4 P̂
I
n1n2

〉 and corresponding factorizations.

2. One-Mn-site density matrices

The restriction I ′ �= I on the Mn indices in Eq. (8b) is due
to the fact that density matrices with I ′ = I , which we refer to
as one-Mn-site density matrices, can be reduced to three-point
functions without approximation according to〈

c
†
σ1k1

cσ2k2 P̂
I
n1n2

P̂ I
n3n4

〉 = 〈
c
†
σ1k1

cσ2k2 P̂
I
n1n4

〉
δn2n3 . (9)

Here, we have used the identity

P̂ I
n1n2

P̂ I
n3n4

= P̂ I
n1n4

δn2n3 , (10)

which follows directly from the definition of the operators
in Eq. (5). The term QIII on the right-hand side of Eq. (7c)
arises from both the above relation and the normal ordering
of the five-point functions. As will be shown later, this term is
decisive for the spin-transfer mechanism discussed in Sec. IV.

3. Truncation scheme

The higher-order density matrices 〈c†σ1k1
cσ2k2 P̂

I
n1n2

P̂ I ′
n3n4

〉
with I ′ �= I , which we denote as two-Mn-site density matrices,
and the density matrices 〈c†σ1k1

c
†
σ2k2

cσ3k3cσ4k4 P̂
I
n1n2

〉 that involve
four electron operators lead to an infinite hierarchy of
equations of motion, which is not tractable without further
approximation.

In order to truncate this hierarchy, we apply a standard
correlation expansion28 and decompose all four- and five-point
density matrices in Eq. (7c) into sums of all possible products
of the basic irreducible functions 〈P̂ I

n1n2
〉 and 〈c†σ1k1

cσ2k2〉 and
the following irreducible rests:

δ
〈
c
†
σ1k1

cσ2k2 P̂
I
n1n2

〉
,

δ
〈
P I ′

n1n2
P I

n3n4

〉
:= 〈

P I ′
n1n2

P I
n3n4

〉 − 〈
P I ′

n1n2

〉〈
P I

n3n4

〉
,

δ
〈
c
†
σ1k1

c
†
σ2k2

cσ3k3cσ4k4

〉
:= 〈

c
†
σ1k1

c
†
σ2k2

cσ3k3cσ4k4

〉 − (〈
c
†
σ1k1

cσ4k4

〉〈
c
†
σ2k2

cσ3k3

〉
− 〈

c
†
σ1k1

cσ3k3

〉〈
c
†
σ2k2

cσ4k4

〉)
,

δ
〈
c
†
σ1k1

cσ2k2P
I ′
n1n2

P I
n3n4

〉
, δ

〈
c
†
σ1k1

c
†
σ2k2

cσ3k3cσ4k4P
I
n1n2

〉
.

The last two functions are implicitly defined by the rather
lengthy decompositions of the functions 〈c†σ1k1

cσ2k2P
I ′
n1n2

P I
n3n4

〉
and 〈c†σ1k1

c
†
σ2k2

cσ3k3cσ4k4P
I
n1n2

〉 in irreducible parts, which is
given explicitly in Eqs. (A1) and (A2). All five irreducible
rests describe true higher-order correlations, i.e.,the deviation
of the corresponding density matrix from its factorized form.

In this paper, we select relevant dynamical variables
according to the following arguments. Correlations which
contain Mn operators belonging to different atoms are expected
to be small since their sites are typically far apart in diluted
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magnetic semiconductors. Thus, we can neglect δ〈P I ′
n1n2

P I
n3n4

〉
and δ〈c†σ1k1

cσ2k2P
I ′
n1n2

P I
n3n4

〉. We shall also assume that cor-
relations involving four electronic operators are of minor
importance, i.e., we also disregard δ〈c†σ1k1

c
†
σ2k2

cσ3k3cσ4k4〉
and δ〈c†σ1k1

c
†
σ2k2

cσ3k3cσ4k4P
I
n1n2

〉. This reduction of dynami-
cal variables results in a closed set of equations of mo-
tion for the remaining quantities 〈P̂ I

n1n2
〉, 〈c†σ1k1

cσ2k2〉, and

δ〈c†σ1k1
cσ2k2 P̂

I
n1n2

〉. In this description, the mean-field limit

is recovered when the correlations δ〈c†σ1k1
cσ2k2 P̂

I
n1n2

〉 are
neglected. However, these correlations are the driving force
for important parts of the dynamics. For instance, the spin
transfer from spin-polarized carriers to Mn atoms start-
ing from an initially zero Mn magnetization discussed in
Sec. IV could not be described without δ〈c†σ1k1

cσ2k2 P̂
I
n1n2

〉
(cf. Sec. V).

We also would like to stress that it is of utmost importance
to use the above correlation expansion only for the two-Mn-
site density matrices with I ′ �= I . For one-Mn-site density
matrices, such an expansion is not necessary as these quantities
do not lead to a hierarchy of equations of motion, but can
rather be exactly expressed by density matrices involving only
a single Mn operator according to Eq. (9). Applying the same
factorization that is used here for two-Mn-site density matrices
also to the one-Mn-site density matrices may lead to severe
errors, e.g., in the description of the spin-transfer mechanism
in Sec. IV.

We note in passing that for the separate treatment of
one-Mn-site and two-Mn-site density matrices, it was rather
advantageous to represent the Mn spin degrees of freedom
by the operators P̂ I

n1n2
and not by the spin operators ŜI that

are common in the literature. In a representation based on
spin operators, one would have to deal with one-Mn-site
density matrices 〈c†σ1k1

cσ2k2 (ŜI )j 〉, which contain arbitrary

powers j ∈ N of ŜI . Using the spin algebra of ŜI , it is
much more cumbersome to exactly reduce these variables
to a finite closed set than in a representation based on
the operators P̂ I

n1n2
, where the simple relation (10) can be

used.

B. Spatially homogeneous disorder-averaged dynamics

The precise positions of the Mn atoms are usually not
known, and typical experiments measure effectively an average
over a more or less random distribution of these positions.
Such disorder effects can be accounted for by introducing
density matrices that are averaged over the distribution of Mn
positions, e.g., when writing〈

P̂ I
n1n2

〉
,
〈
c
†
σ1k1

cσ2k1

〉
,
〈
c
†
σ1k1

cσ2k2 P̂
I
n1n2

eik3RI
〉
,

the brackets 〈. . .〉 from now on imply that after taking the
quantum mechanical expectation value for a fixed configura-
tion of Mn positions, the result is additionally averaged over
a random distribution of Mn positions. By performing the
additional disorder averaging in Eqs. (7a) and (7b), one obtains
equations for the now disorder-averaged variables 〈P̂ I

n1n2
〉 and

〈c†σ1k1
cσ2k1〉, which differ from Eqs. (7a) and (7b) only by the

fact that the phase factors that involve the positions RI can
not be taken out of the expectation value any more. Thus, e.g.,

Eq. (7b) becomes(
− ih̄

∂

∂t
+ Ek2 − Ek1

)〈
c
†
σ1k1

cσ2k2

〉
= Jsd

V

∑
I ′

∑
nn′
σk

Snn′ · (
se
σσ1

〈
c
†
σkcσ2k2 P̂

I ′
nn′e

i(k1−k)RI ′ 〉

−se
σ2σ

〈
c
†
σ1k1

cσkP̂
I ′
nn′e

i(k−k2)RI ′ 〉), (11)

which contains the new function〈
c
†
σ1k1

cσ2k2 P̂
I
n1n2

eik3RI
〉
. (12)

The corresponding hierarchy of equations of motion can again
be reformulated in terms of correlation functions where, differ-
ent from the previously discussed case, the true correlations are
defined with respect to disorder-averaged variables. It should
be noted that phase factors, such as eik3RI in Eq. (12), are for
k3 �= 0 random variables due to their dependence on RI and
thus must be treated in the correlation expansion28 analogously
to the operators c†c or P̂ . For example, the function in Eq. (12)
involves for k3 = 0 an average over the operators c

†
σ1k1

cσ2k2 and
P̂ I

n1n2
, where the correlated part can be defined as

δ
〈
c
†
σ1k1

cσ2k2 P̂
I
n1n2

〉
:= 〈

c
†
σ1k1

cσ2k2 P̂
I
n1n2

〉 − 〈
c
†
σ1k1

cσ2k2

〉〈
P̂ I

n1n2

〉
.

(13a)

For k3 �= 0, the phase eik3RI appears as an additional factor that
has to be averaged and thus the decomposition into factorized
and correlated parts reads as

δ
〈
c
†
σ1k1

cσ2k2 P̂
I
n1n2

eik3RI
〉

:= 〈
c
†
σ1k1

cσ2k2 P̂
I
n1n2

eik3RI
〉 − 〈

c
†
σ1k1

cσ2k2

〉〈
P̂ I

n1n2

〉〈eik3RI 〉
− δ

〈
c
†
σ1k1

cσ2k2 P̂
I
n1n2

〉〈eik3RI 〉 − δ
〈
c
†
σ1k1

cσ2k2e
ik3RI

〉〈
P̂ I

n1n2

〉
− 〈

c
†
σ1k1

cσ2k2

〉
δ
〈
P̂ I

n1n2
eik3RI

〉
, (13b)

where two additional correlation functions appear, namely,

δ
〈
c
†
σ1k1

cσ2k2e
ik3RI

〉
:= 〈

c
†
σ1k1

cσ2k2e
ik3RI

〉 − 〈
c
†
σ1k1

cσ2k2

〉〈eik3RI 〉
(13c)

and

δ
〈
P̂ I

n1n2
eik3RI

〉
:= 〈

P̂ I
n1n2

eik3RI
〉 − 〈

P̂ I
n1n2

〉〈eik3RI 〉. (13d)

From the equations for the disorder-averaged density
matrices, it is straightforward to derive equations of motion
for the correlation functions defined by Eqs. (13). These
equations involve the disorder-averaged higher-order density
matrices〈

c
†
i c

†
j ckclP̂

I eikRI
〉
,

〈
c
†
i c

†
j P̂

I P̂ I ′
eikRI eik′RI ′ 〉,〈

c
†
i c

†
j P̂

I P̂ I ′
eik′RI ′ 〉, 〈

c
†
i c

†
j P̂

I eikRI eik′RI ′ 〉, 〈
c
†
i c

†
j P̂

I eikRI
〉
.

In order to obtain a closed set of equations, these density
matrices can be decomposed into factorized parts involving
only lower-order correlation functions and a remaining high-
order correlation function. Neglecting the latter results in a
finite set of coupled dynamical variables which is, however,
in the general case of an arbitrary random distribution of Mn
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positions way too complicated for practical applications and
is therefore not given here explicitly.

Following the arguments discussed in connection with the
truncation scheme for the case without disorder averaging (cf.
Sec. III A3), we restrict the correlation functions that are kept
to the dynamical variables defined in Eqs. (13). In addition,
we concentrate on the description of diluted systems where the
Mn atoms are distributed independently and homogeneously
in space, i.e., we assume a random distribution of Mn atoms
where on average no point in space is distinguished and derive
the equations of motion relevant for this limit. A spatially
homogeneous description is often a good approximation for
bulk DMS.12 Obvious requirements for reaching the spatially
homogeneous limit is that only external fields with negligible
spatial variations may be considered, and the effects related to
the aggregation of Mn clusters29 may be disregarded. Although
for samples where translational invariance holds only in one
or two dimensions, such as quantum wires or quantum wells,
the assumption of a fully spatially homogeneous system does
not strictly apply, simplified equations can be derived that
are similar to the three-dimensional homogeneous equations.
The necessary modifications for these cases are presented in
Appendix B.

Assuming a spatially uniform random distribution of
Mn positions, the average 〈eikRI 〉 can be easily performed,
resulting in 〈

eikRI
〉 = δk0. (14)

For a system where no point in space is distinguished, all
directly observable quantities must be independent of position
variables. Thus, our assumption of an on average spatially
homogeneous system implies in particular that the values of
single Mn variables

Mn2
n1

:= 〈
P̂ I

n1n2

〉
(15a)

do not depend on the index I . The same holds for all
correlation functions defined in Eqs. (III B). Furthermore, the
electronic density must be spatially homogeneous. Therefore,
the electronic density matrix 〈c†σ1k1

cσ2k2〉 must be diagonal in
k and thus only the variables

C
σ 2
σ 1k := 〈

c
†
σ1kcσ2k

〉
(15b)

can have nonzero values. The requirement that the source
terms for the off-diagonal components of 〈c†σ1k1

cσ2k2〉 with
k1 �= k2 must vanish can in general be fulfilled only when
〈c†σ1k1

cσ2k2 P̂
I
n1n2

eik3RI 〉 is nonzero only for k3 = k2 − k1 as can
be seen by inspection of the corresponding equation of motion
(11). By combining this requirement with the decomposition
Eq. (13b), it is found that the relevant nonzero variables that
have to be kept in the spatially homogeneous limit in addition
to Mn2

n1
and C

σ 2
σ 1k are

C̄
σ 2k2
σ 1k1

:= V δ
〈
c
†
σ1k1

cσ2k2e
i(k2−k1)RI

〉
, (15c)

K
σ 2n2
σ 1n1k := V δ

〈
c
†
σ1kcσ2kP̂

I
n1n2

〉
, (15d)

K̄
σ 2n2k2
σ 1n1k1

:= V δ
〈
c
†
σ1k1

cσ2k2 P̂
I
n1n2

ei(k2−k1)RI
〉
. (15e)

C̄ is an electronic correlation that arises only due to the
ensemble averaging over the Mn positions because, in an
ensemble, the average over the product 〈c†σ1k1

cσ2k2e
i(k2−k1)RI 〉

does in general not equal the product of the averages
〈c†σ1k1

cσ2k2〉〈ei(k2−k1)RI 〉. Note that the definition of C̄ does
not involve Mn spin operators. In contrast, K is a correlation
between electrons and Mn spins that is present already for
fixed Mn positions, i.e., when only the quantum mechanical
average is performed. Finally, K̄ describes correlations that
arise partly due to the electron Mn spin correlations induced
by the exchange interaction at a given site and partly due to
the ensemble averaging over the Mn positions.

In the definition of the correlation functions in Eqs. (15c)–
(15e), we have included the volume V as a prefactor to
ensure that the so-defined functions approach finite values
in the macroscopic limit. As the assumption of a spatially
homogeneous system is most meaningful for macroscopic
systems, we shall in the following only discuss the limit
V → ∞. Specializing the truncation scheme outlined above
to the spatially homogeneous case yields indeed a closed set
of equations for the functions defined in Eqs. (15). It turns out
that in the macroscopic limit V → ∞, the correlation K

σ 2n2
σ 1n1k

[cf. Eq. (15d)] does not couple back to the other dynamical
variables and thus can be disregarded. The resulting equations
for the remaining variables Mn2

n1
, C

σ 2
σ 1k, C̄

σ 2k2
σ 1k1

, and K̄
σ 2n2k2
σ 1n1k1

,
which are the central formal development of this paper, are
given by

−ih̄
∂

∂t
Mn2

n1
= Jsd

(2π )3

∫
BZ

∑
nσσ ′

se
σσ ′ ·

{(
Cσ ′

σk +
∫

BZ

C̄σ ′k′
σk

(2π )3
d3k′

)(
Snn1M

n2
n − Sn2nM

n
n1

)

+
∫

BZ

(
Snn1K̄

σ ′n2k′
σnk − Sn2nK̄

σ ′nk′
σn1k

) d3k′

(2π )3

}
d3k, (16a)

−ih̄
∂

∂t
C

σ 2
σ 1k1

= JsdnMn

∑
nn′σ

Snn′ ·
{

Mn′
n

[
se
σσ1

(
C

σ 2
σk1

+
∫

BZ

C̄
σ 2k1
σk

(2π )3
d3k

)
− se

σ2σ

(
Cσ

σ 1k1
+

∫
BZ

C̄σk
σ 1k1

(2π )3
d3k

)]

+
∫

BZ

(
se
σσ1

K̄
σ 2n

′k1
σnk − se

σ2σ
K̄σn′k

σ 1nk1

) d3k
(2π )3

}
, (16b)
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(
− ih̄

∂

∂t
+ Ek2 − Ek1

)
C̄

σ 2k2
σ 1k1

= Jsd

∑
nn′σ

Snn′ ·
{

Mn′
n

[
se
σσ1

(
nMnC̄

σ 2k2
σk1

+ C
σ 2
σk2

) − se
σ2σ

(
nMnC̄

σk2
σ 1k1

+ Cσ
σ 1k1

)]

+ 1

(2π )3

∫
BZ

[(
se
σσ1

K̄
σ 2n

′k2
σnk − se

σ2σ
K̄σn′k

σ 1nk1

) + Mn′
n

(
se
σσ1

C̄
σ 2k2
σk − se

σ2σ
C̄σk

σ 1k1

)]
d3k

}
, (16c)

(
− ih̄

∂

∂t
+ Ek2 − Ek1

)
K̄

σ 2n2k2
σ 1n1k1

= QIII
K̄

σ2n2k2
σ1n1k1

+ QIV
K̄

σ2n2k2
σ1n1k1

+ QV
K̄

σ2n2k2
σ1n1k1

, (16d)

where

QIII
K̄

σ2n2k2
σ1n1k1

= Jsd

∑
nσ

{
1

(2π )3

∫
BZ

[
Snn1 · se

σσ1

(
K̄

σ 2n2k2
σnk + C̄

σ 2k2
σk Mn2

n

) − Sn2n · se
σ2σ

(
K̄σnk

σ 1n1k1
+ C̄σk

σ 1k1
Mn

n1

)]
d3k

+ (
Snn1 · se

σσ1
C

σ 2
σk2

Mn2
n − Sn2n · se

σ2σ
Cσ

σ 1k1
Mn

n1

)}
, (17a)

QIV
K̄

σ2n2k2
σ1n1k1

= Jsd

∑
nn′σ

Snn′ ·
{

Mn′
n

[
nMn

(
se
σσ1

K̄
σ 2n2k2
σn1k1

− se
σ2σ

K̄
σn2k2
σ 1n1k1

) − Mn2
n1

(
se
σσ1

C
σ 2
σk2

− se
σ2σ

Cσ
σ 1k1

)]

− Mn2
n1

(2π )3

∫
BZ

[(
se
σσ1

K̄
σ 2n

′k2
σnk − se

σ2σ
K̄σn′k

σ 1nk1

) + Mn′
n

(
se
σσ1

C̄
σ 2k2
σk − se

σ2σ
C̄σk

σ 1k1

)]
d3k

}
, (17b)

QV
K̄

σ2n2k2
σ1n1k1

= −Jsd

∑
nσσ ′

se
σσ ′ ·

{
Cσ ′

σ 1k1

(2π )3

∫
BZ

(
Snn1K̄

σ 2n2k2
σnk − Sn2nK̄

σ 2nk2
σn1k

)
d3k + C

σ 2
σk2

Cσ ′
σ 1k1

(
Snn1M

n2
n − Sn2nM

n
n1

)

+ 1

(2π )3

∫
BZ

[
C

σ 2
σk2

(
Snn1K̄

σ ′n2k
σ 1nk1

− Sn2nK̄
σ ′nk
σ 1n1k1

) − Cσ ′
σk

(
Snn1K̄

σ 2n2k2
σ 1nk1

− Sn2nK̄
σ 2nk2
σ 1n1k1

)]
d3k

+ 1

(2π )3

∫
BZ

(
Cσ ′

σ 1k1
C̄

σ 2k2
σk + C

σ 2
σk2

C̄σ ′k
σ 1k1

)(
Snn1M

n2
n − Sn2nM

n
n1

)
d3k

+ C̄
σ 2k2
σ 1k1

(2π )6

∫ ∫
BZ

[(
Snn1K̄

σ ′n2k′
σnk − Sn2nK̄

σ ′nk′
σn1k

) + C̄σ ′k′
σk

(
Snn1M

n2
n − Sn2nM

n
n1

)]
d3k′d3k

}
. (17c)

As usual for large systems, we have treated the momenta k in
the above equations as continuous variables and sums over k
are represented as integrals according to the standard rule:

∑
k

−→ V

(2π )3

∫
BZ

d3k, (18)

where the integral extends over the first Brillouin zone.
Note that the correlations δ〈c†σ1k1

cσ2k2 P̂
I
n1n2

eik3RI 〉 and

δ〈c†σ1k1
cσ2k2e

ik3RI 〉 have been introduced in Eqs. (13b) and
(13c) only for the case k3 �= 0, which correspond to the
off-diagonal elements with k1 �= k2 of K̄

σ 2n2k2
σ 1n1k1

and C̄
σ 2k2
σ 1k1

. This
restriction can be dropped when going over to integrals as the
components of C̄

σ 2k2
σ 1k1

and K̄
σ 2n2k2
σ 1n1k1

with k1 = k2 either couple
only to themselves [cf. Eqs. (16c) and (16d)] or appear under
integrals where they represent a set of measure zero and thus
do not affect other dynamical variables.

It should be noted that the volume V does not appear
explicitly in Eqs. (16), which implies that when the dynamical
variables are initially O(1) in the volume V , this will hold true
for all times. For the observables Mn2

n1
and C

σ 2
σ 1k that describe

occupations or coherences, it thus follows directly from their
definitions that they scale with the volume as O(1). In order to

determine initial values for C̄
σ 2k2
σ 1k1

and K̄
σ 2n2k2
σ 1n1k1

, a more detailed
characterization of the initial state is required. For many
typical DMS (paramagnetic as well as ferromagnetic samples),
calculations based on the mean-field and virtual crystal (MF
and VC) approximation are commonly used and known to yield
reasonable results for ground-state properties.30 On this level
of description, C̄

σ 2k2
σ 1k1

and K̄
σ 2n2k2
σ 1n1k1

are zero. Immediately after
a short pulse excitation starting from the MF and VC ground
state, the correlations did not have the time to build up and
thus the above equations (16) can be used with nonequilibrium
initial values for Mn2

n1
and C

σ 2
σ 1k that result from the excitation

and C̄
σ 2k2
σ 1k1

= K̄
σ 2n2k2
σ 1n1k1

= 0 as initial values. Of course, a full
modeling of the excitation process requires the inclusion of
the valence bands and the coupling to the external laser field.
The corresponding rather lengthy extension of Eqs. (16) is
straightforward along the same lines discussed so far. The
resulting equations can be found in Appendix C.

Whenever approximations are made in order to solve many-
particle problems, the question arises as to whether central
physical properties are maintained by the approximation.
In particular, conservation laws play an important role in
physical processes such as, e.g., the conservation of quantities
such as
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(i) the total spin �total := 〈∑I ŜI + ∑
i ŝe

i 〉,
(ii) the number of electrons Ne := ∑

σk Cσ
σk, and

(iii) the energy E := 〈H0 + Hsd〉.
All the above quantities can be expressed by our dynamical
variables for which we have derived the approximate equations
of motion (16). By evaluating the time derivative of �total,
Ne, and E according to these equations, it is straightforward
but lengthy to show that these quantities are conserved also
by the dynamics defined by our truncation scheme as long
as the system is not externally driven. The conservation of
the total spin, the number of electrons, and the energy is an
important consistency requirement that is perfectly fulfilled by
our approach.

IV. SPIN TRANSFER AND MOMENTUM
REDISTRIBUTION FOR PARAMAGNETS

The spatially homogeneous equations of motion can be
applied to both paramagnetic and ferromagnetic DMS. Yet,
the true correlations C̄ and K̄ influence the spin dynamics of
the system most prominently when a mean-field description of
the exchange interaction yields no dynamics at all. This is the
case for paramagnetic DMS at zero magnetic field since here
the mean magnetization of the Mn atoms is initially zero (cf.
Sec. V A). In this section, we shall discuss general properties of
the spin dynamics in such systems. To be specific, we study the
onset of the spin transfer between electrons and Mn atoms in a
spatially homogeneous system where initially the electrons are
fully spin polarized and the Mn spins are randomly oriented.

A. Initial conditions

The assumption of randomly oriented Mn spins in the
absence of an external magnetic field, which is characteristic
for a paramagnet, translates into the following initial values of
the Mn variables at the initial time t = 0:

Mn2
n1

|t=0 = 1
6δn1n2 . (19a)

Assuming that initially the bottom of the conduction band is
occupied up to a maximal energy Em, a spin-polarized electron
density corresponds to the initial condition

C
σ 2
σ 1k1

∣∣
t=0 = δσ1σ2δσ1↑�

(
Em − Ek1

)
. (19b)

As discussed before for typical DMS, it can be expected to be
a good approximation to assume that immediately after a short
pulse excitation from the ground state, the correlations C̄ and
K̄ are zero, which translates to

C̄
σ 2k2
σ 1k1

∣∣
t=0 = K̄

σ 2n2k2
σ 1n1k1

∣∣
t=0 = 0 (19c)

as initial condition for Eqs. (16).

B. Onset of the dynamics

Starting from these initial conditions, the spin-polarized
electrons interact with the Mn atoms and a spin transfer
between these subsystems sets in. In order to analyze the onset
of the dynamics in detail, it is instructive to expand all pertinent
variables in powers of the time t up to O(t2). Inserting these
expansions into Eqs. (16) yields analytical expressions for M ,
C, C̄, and K̄ , which allow us to evaluate the relative importance

and the mutual dependencies of these variables in the very early
phase of dynamics.

In zeroth order O(t0), M , C, C̄, and K̄ are given by the
initial conditions (19), respectively. Up to linear order in t , all
variables remain constant with the exception of the electron
Mn spin correlations K̄ , which evolve according to

K̄
σ 2n2k2
σ 1n1k1

= t
iJsd

12h̄
[δn1n2δσ1σ2δσ1↑Sz

n1n1
(�(Em − Ek2 )

−�(Em − Ek1 )) + S+
n1(n1−1)δσ2↑δσ1↓

δn1(n2+1)�(Em − Ek2 )

− S+
(n1−1)n1

δσ2↓δσ1↑δn1(n2−1)�(Em − Ek1 )],

(20)

where S+
n1n2

= Sx
n1n2

+ iS
y
n1n2 denote the elements of the raising

matrix. The first-order dynamics arise only from the first term
on the right-hand side of QIII

K̄
in Eqs. (17a), namely,

Jsd

∑
nσ

(
Snn1 · se

σσ1
C

σ 2
σk2

Mn2
n − Sn2n · se

σ2σ
Cσ

σ 1k1
Mn

n1

)
. (21)

This term is in the disorder-averaged case the analog of Eq. (8a)
and, like in Eq. (8a), reflects the exact reduction of the one-
Mn-site density matrices to density matrices with only a single
Mn operator. In the order O(t2), only the terms proportional
to t , i.e., the correlations K̄ , act as sources in the equations of
motion. If these correlations were neglected, all other variables
would be constant up to any order. Hence, under the special
conditions studied here, the electron Mn spin correlations K̄

play a pivotal role for the onset of the spin transfer.
The change of the Mn and electron variables mediated by

the correlations K̄ up to the second order in time is given
by

δMn2
n1

= t2δn1n2

p

24h̄2

J 2
sd

Vc
2

[(
S+

n1(n1−1)

)2 − (
S+

(n1+1)n1

)2]
, (22a)

δC
σ 2
σ 1k1

= t2δσ1σ2nMn
35

24h̄2

J 2
sd

Vc

×
[
δσ1↑

(
p

2
− 3

2
�(Em − Ek1 )

)
+ δσ1↓p

]
, (22b)

respectively, where Vc denotes the volume of a primitive lattice
cell and

p :=
∫

BZ �(Em − Ek)d3k∫
BZ d3k

� 1

is the fraction of the Brillouin zone that is initially occupied.
Only the diagonal variables change in time, i.e., the onset
of the spin transfer is not accompanied by a buildup of spin
coherences such as, e.g., C

↑
↓k or M

3/2
5/2 . It is also seen from

Eqs. (20) and (22) that the sign of the exchange coupling Jsd

determines the sign of the correlations K̄ but does not enter
the values of the electronic or Mn occupations. In Eq. (22b),
we can distinguish three terms: a term ∼ �(Em − Ek1 ) which
describes the depopulation of the initially occupied states and
two terms which represent an inflow that depends on the spin
of the target state but is independent of its k vector. This
implies that in the course of time all parts of the Brillouin
zone will acquire finite occupations. Such a redistribution in
k space has to be expected for scattering processes caused by
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a localized interaction such as, e.g., the exchange interaction
with localized Mn spins given by the interaction Hamiltonian
Eq. (3) because such a Hamiltonian is not translational invari-
ant and, thus, does not preserve momentum. The interesting
point here is that the transfer of occupation between states with
different momenta is still present in our on average spatially
homogeneous equations. It should be noted that, in contrast
to the loss term, both gain terms are proportional to p. For
carriers generated by near band-gap excitations with excess
energies Em between 10–100 meV the factor p is very small
in the range of 10−5–10−3. Consequently, for such conditions,
an initially occupied state is rapidly depopulated, while the
populations of initially unoccupied states takes place on a
much longer time scale. Moreover, the two gain terms have
different prefactors: at a given time, twice as many spin-up
than spin-down occupations are built up.

The initial dynamics up to second order in time for the
initial conditions (19) are illustrated in Fig. 1 for the case of
a parabolic band Ek = h̄2k2

2m
with m = 0.2me, where me is the

free-electron mass. Furthermore, we used Jsd = 11 meV nm3,
nMn = 1.7 × 10−1 nm−3, Vc = 5.7 × 10−2 nm3, and Em =
96 meV corresponding to p = 3.4 × 10−4. The material-
specific parameters are typical values for Zn1−xMnxTe,31

where the chosen Mn density nMn corresponds to x = 0.01.
The expansion up to second order in time is, of course,
expected to be quantitatively correct only for a few time
steps where the absolute values of all quantities are not much
changed. We found it, however, instructive to analyze the
relative magnitudes of the changes of some relevant quantities
in this initial phase of the dynamics. To this end, we plotted
these quantities over some short but more or less arbitrary
time. As all quantities in this second-order expansion evolve
on parabolas, the relative magnitudes of the corresponding
changes can be evaluated even when the range over that the
plot is extended might be beyond the limit of validity of the
expansion. Figure 1(a) displays the fraction of electrons with
either spin up or down as well as the fraction of electrons with
energies below or above Em, i.e., in states with k vectors that
are initially occupied or unoccupied. It is seen that spin-up
electrons are converted into spin-down electrons and that
a redistribution from lower to higher kinetic energies takes
place. It should be noted that the curvature of the parabolas
that describe the spin conversion is proportional to nMn but
independent of p. In contrast, the curvature of the parabolas
representing the redistribution of kinetic energies depends
on both nMn and p, and for our parameters it is stronger,
implying that the momentum redistribution is initially faster
than the spin flipping. Plotted in Fig. 1(b) is the corresponding
change of the occupations of the Mn spin states. All Mn
spin changes are up to second order in time proportional to
p and independent of nMn. Consequently, for the low-p values
considered here, the changes in the Mn occupations are rather
low. The occupations of states with positive z component of
the Mn spin rise, while states with negative z component are
depopulated. The increase or decrease is stronger the larger the
modulus of the z component. As expected for initially spin-up
polarized electrons and unpolarized Mn spins, the exchange
interaction leads to a net flow of spin from the electronic to the
Mn subsystem. This is further illustrated in Fig. 1(c), where

the z components of the total electron spin �e := ∑
i〈ŝe

i 〉 and
Mn spin �Mn := ∑

I 〈ŜI 〉 normalized to the z component of
the total spin are plotted. Finally, Fig. 1(d) displays separately
different contributions to the energy, namely, the total kinetic
energy of the electrons 〈H0〉, the total energy 〈H0 + Hsd〉, the
MF and VC exchange energy〈

Hsd

〉MF
VC := JsdnMn

∑
nn′

∑
σσ ′k

Snn′ · se
σσ ′C

σ ′
σkM

n′
n (23)

as well as the correlated part of the exchange energy
〈Hsd〉C :=〈Hsd〉 − 〈Hsd〉MF

VC. Clearly, the changes of the kinetic
energy and the correlation energy are much stronger than the
change of the MF and VC energy [cf. also the inset of Fig. 1(d)].
This is related to the small value of p. For the other extreme of
an initially fully occupied spin-up band, i.e., p = 1, the kinetic
energy would be constant and the change in the correlation
energy would exactly compensate the change of the MF and
VC exchange energy. It is worth mentioning that the sign of the
change of the MF and VC exchange energy is given by the sign
of Jsd . This follows from Eq. (23) by noting that the carrier and
Mn densities are up to second order in time, independent of the
sign of Jsd . In all cases, the total energy is strictly conserved
for all times.

C. Nonzero variables

As already hinted by the starting dynamics, the number
of nonzero variables can be further reduced for the initial
conditions discussed here. This can be seen by noting that
within the equations of motion (16a)–(16d), the following
variables form a closed subset if all other variables are initially
zero:

Mn
n , Cσ

σk, C̄
σk2
σk1

, K̄
↓nk2
↑(n−1)k1

, K̄
↑nk2
↓(n+1)k1

, K̄
σnk2
σnk1

, (24)

which implies that all other variables remain zero when they
are initially zero. This is the case for the initial conditions given
by Eqs. (19). We thus only need to consider the variables
in Eq. (24) to describe the dynamics that start from these
conditions.

Limiting the set of dynamical variables according to
Eq. (24) simplifies the equations of motion (16a) and (16b)
for the Mn and electron variables to

−ih̄
∂

∂t
Mn2

n1
= δn1n2

Jsd

(2π )6

∑
nσσ ′

se
σσ ′ ·

∫ ∫
BZ

d3k′d3k

× (
Snn1K̄

σ ′n1k′
σnk − Sn1nK̄

σ ′nk′
σn1k

)
, (25a)

−ih̄
∂

∂t
C

σ 2
σ 1k1

= δσ1σ2

Jsd

(2π )3
nMn

∑
nn′σ

Snn′ ·
∫

BZ
d3k

×
[

se
σσ1

(
K̄

σ 1n
′k1

σnk + Mn′
n C̄

σ 1k1
σk

)
− se

σ1σ

(
K̄σn′k

σ 1nk1
+ Mn′

n C̄σk
σ 1k1

)]
. (25b)

Interestingly, all terms of the form C times M , i.e., MF and
VC contributions, cancel out although the expectation value
of the Mn spin acquires nonzero values in the course of time.
As we have already seen perturbatively up to the order O(t2),
coherences between different electron or Mn spin states do
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FIG. 1. (Color online) Time evolution up to second order in time of (a) fraction of spin-up or spin-down electrons and fraction of electrons
with kinetic energies below or above Em (as indicated); (b) change of the occupation of Mn spin states; (c) z component of the total electron
(�e

z ) and Mn (�Mn
z ) spin normalized to the z component of the total spin (�total

z ); (d) total kinetic energy of the electrons 〈H0〉, total energy
〈H0 + Hsd〉, MF and VC exchange energy 〈Hsd〉MF

VC, correlated part of the exchange energy 〈Hsd〉C . The inset in (d) shows the time evolution
of 〈Hsd〉MF

VC with an adjusted energy scale.

not arise. The spin transfer between electrons and Mn atoms
is mediated by the correlations K̄ and C̄ only.

Note that for different initial conditions, e.g., for a fer-
romagnetic system, nonzero coherences may build up, the
equations of motion of M and C may contain source terms of
the form C times M . Moreover, the reduction of variables to
the set in Eqs. (24) is not applicable for other initial conditions.

V. LIMITING CASES

Spin dynamics in ferromagnetic DMS are often treated
within the mean-field and virtual approximation. Although
these are different approximations, usually they are applied
together.12 The spatially homogeneous equations of motion
(16) contain the MF and VC dynamics as a limiting case.
In the following, we derive this limit and also compare our
equations with the results of theories that invoke only one of
these two approximations. We show that both approximations
fail to describe a spin transfer between carriers and Mn atoms
in homogeneous systems when initially the Mn magnetization
is zero.

A. Mean-field and virtual crystal approximation

Within the virtual crystal approximation, the localized
character of the Mn atoms is neglected.12 The electrons interact
with Mn spins, which are homogeneously smeared out over
the whole crystal. Then, the exchange Hamiltonian is spatially
homogeneous and reads as

H VC
sd = Jsd

V

∑
I i

ŜI · ŝe
i . (26)

Formally, the virtual crystal Hamiltonian (26) is obtained
from the exchange Hamiltonian (3) by replacing the factors
δ(ri − RI ) by 1/V . In Eq. (3), these factors contain the
information on the Mn atom positions. Applying additionally
the mean-field approximation implies that the Mn spins are
only influenced by the expectation values of the electron spins
and vice versa.12 Thus, Eq. (26) transforms to the following
MF and VC exchange Hamiltonian:

H MF VC
sd = Jsd

V

∑
I i

(
ŜI · 〈

ŝe
i

〉 + 〈ŜI 〉 · ŝe
i − 〈ŜI 〉 · 〈

ŝe
i

〉)
.

(27)
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Starting with this Hamiltonian leads directly to a closed set of
equations of motion. As no Mn position is distinguished in the
Hamiltonian (27), all expectation values calculated from these
equations do not depend on these positions. Thus, averaging
over the random distribution of Mn atoms has no effect on the
resulting equations that resemble our equations of motion (16)
for the spatially homogeneous case except for one important
change: the true correlations C̄ and K̄ are absent. Thus, we
only need to consider the Mn variables and the electronic
density matrices. Their equations of motion in the MF and VC
approximation read as

−ih̄
∂

∂t
Mn2

n1
= Jsd

�e

V
·
∑

n

(
Snn1M

n2
n − Sn2nM

n
n1

)
, (28a)

−ih̄
∂

∂t
C

σ 2
σ 1k1

= Jsd

�Mn

V
·
∑

σ

(
se
σσ1

C
σ 2
σk1

− se
σ2σ

Cσ
σ 1k1

)
,

(28b)

where �e/V and �Mn/V are the electron and Mn spin densi-
ties, respectively. The former equation of motion is equivalent
to an undamped Landau-Lifshitz-Gilbert equation,32 which is
commonly used to describe spin precession in ferromagnets.
The spin-transfer mechanism discussed in Sec. IV, however,
can not be described within the MF and VC approximation
since the correlations K̄ and C̄, which are the only sources for
the spin transfer in this case, vanish [cf. Eqs. (25)].

B. Mean-field approximation

When only the mean-field approximation is applied without
virtual crystal approximation, then we have to replace Hsd in
Eq. (3) by its mean-field counterpart. Let us first concentrate
on the case of given Mn positions without disorder averaging.
Then, the resulting Hamiltonian reads as

H MF
sd = Jsd

∑
I i

(
ŜI · 〈

ŝe
i δ(ri − RI )

〉 + 〈ŜI 〉 · ŝe
i δ(ri − RI )

−〈ŜI 〉 · 〈
ŝe
i δ(ri − RI )

〉)
, (29)

where the expectation values involve only the quantum
mechanical average for fixed Mn positions. The Heisenberg
equations derived from this Hamiltonian provide a closed
set for 〈c†σ1k1

cσ2k2〉 and 〈P̂ I
n1n2

〉, which can be obtained from
Eqs. (7a) and (7b) by the replacement〈

c
†
σ1k1

cσ2k2 P̂
I
n1n2

〉 −→ 〈
c
†
σ1k1

cσ2k2

〉 〈
P̂ I

n1n2

〉
.

As can be easily seen, all source terms in these equations
vanish when the dynamical variables are either of the form〈

c
†
σ1k1

cσ2k2

〉 = 〈
c
†
σ1k1

cσ1k2

〉
δσ1σ2 ,

〈
P̂ I

n1n2

〉 = 〈
P̂ I

n1n1

〉
δn1n2 (30)

or when〈
P̂ I

n1n2

〉 = 1
6 δn1n2 without restrictions to

〈
c
†
σ1k1

cσ2k2

〉
. (31)

When either of these relations holds initially, as is the case,
e.g., for a paramagnet where Eq. (31) applies, then this will
be true for all times because these variables will not change at
all. Thus, the mean-field theory is unable to describe the spin
transfer in a paramagnet with initially spin-polarized carriers
and zero initial Mn magnetization for any given configuration
of Mn atoms. Averaging this vanishing spin transfer over a

random distribution of Mn positions obviously can not lead to
a finite spin flow in an on average homogeneous system.

C. Virtual crystal approximation

The above analysis revealed that correlations beyond the
mean-field level are crucial for the spin transfer when the initial
Mn magnetization is zero. A model based on the virtual crystal
Hamiltonian H VC

sd describes such correlations when the mean-
field approximation is not applied additionally. It is tempting
to think of the virtual crystal Hamiltonian H VC

sd in Eq. (26) as a
spatially averaged version of the exchange Hamiltonian Hsd in
Eq. (3) that generates the dynamics in an on average spatially
homogeneous system. However, the dynamics obtained from
H VC

sd significantly deviates from our results [Eqs. (16)] that
were derived from the full Hamiltonian Hsd for an on average
spatially homogeneous system. This can be made explicit by
starting with H VC

sd instead of Hsd and repeating all the steps
that led to Eqs. (16). As discussed already for the MF and VC
dynamics in the virtual crystal model, all expectation values
are independent of the positions of the Mn atoms and therefore
the disorder averaging is redundant in this model. Before going
over to the limit V → ∞, the resulting equation of motion for
the Mn variables Mn2

n1
reads as

−ih̄
∂

∂t
Mn2

n1
= Jsd

(2π )3

∑
nσσ ′

∫
BZ

[
Cσ ′

σk

(
Snn1M

n2
n − Sn2nM

n
n1

)

+ 1

V

(
Snn1K

σ ′n2
σnk − Sn2nK

σ ′n
σn1k

)] · se
σσ ′d

3k,

(32)

where the correlation K
σ 2n2
σ 1n1k has been defined in Eq. (15d).

By comparing this result with our Eq. (16a), we note that
the correlations C̄ and K̄ are missing in Eq. (32), while all
contributions involving only C and M remain unchanged. The
term on the right-hand side of Eq. (32) containing K

σ 2n2
σ 1n1k would

for finite V also appear in Eq. (16a) but has been dropped
as it does not contribute in the limit V → ∞ (see below).
Analogous changes apply to the equation of motion (16b) for
the electronic density matrix C

σ 2
σ 1k1

.
Instead of discussing these changes in general, we would

like to focus here only on the resulting consequences for the
initial spin-transfer dynamics that sets in starting from the
initial conditions in Eqs. (19). In this case, it turns out that by
using the virtual crystal approximation, the driving term for the
correlations K to first order in t coincides with the source for K̄

in Eq. (17) evaluated at k1 = k2. Consequently, to linear order
in t , the correlations K

σ 2n2
σ 1n1k are given by the k-diagonal parts

of Eq. (20). By inserting these correlations into the equations
of motion in the virtual crystal approximation for Mn2

n1
and

C
σ 2
σ 1k1

, we obtain instead of Eqs. (22)

δMn2
n1

= t2δn1n2

p

24h̄2

J 2
sd

VcV

[(
S+

n1(n1−1)

)2 − (
S+

(n1+1)n1

)2]
,

(33a)

δC
σ 2
σ 1k1

= t2δσ1σ2nMn
35

24h̄2

J 2
sd

V
�

(
Em − Ek1

)(
δσ1↓ − δσ1↑

)
.

(33b)
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According to these equations, in the virtual crystal ap-
proximation the changes of Mn2

n1
and C

σ 2
σ 1k1

scale as ∼ 1/V .
Thus, in the macroscopic limit V → ∞, the virtual crystal
approximation is unable to describe a spin transfer from
initially spin-polarized carriers to the initially unpolarized Mn
system although the correlations K are nonzero. Obviously,
the correlations K̄ that are off diagonal with respect to k are
decisive for the spin transfer. Therefore, for finite volumes V

where also in the virtual crystal approximation a finite transfer
is obtained, such results should be expected to be quantitatively
doubtful as they have a wrong V scaling. Furthermore, also in
contrast to Eqs. (22) in the virtual crystal approximation, there
is no redistribution in momentum space. This is a consequence
of the fact that the virtual crystal Hamiltonian is translational
invariant. From this analysis, it is clearly seen that it makes a
significant difference whether the dynamics in a spatially av-
eraged Hamiltonian are considered or the dynamical equations
of a spatially inhomogeneous system are averaged to describe
an on average spatially homogeneous system.

VI. CONCLUSION

We have derived quantum kinetic equations of motion
for the dynamics of diluted magnetic semiconductors. Our
theory accounts for the exchange interaction between carriers
and localized magnetic dopants beyond the mean-field and
virtual crystal approximations. The main achievement is a
systematic truncation scheme that exactly reduces density
matrices involving two Mn spin operators for the same site
to expectation values containing only a single Mn operator.
Fundamental conservations laws, e.g., for total spin, particle
numbers, and energy, are preserved when the hierarchy of
equations of motion is truncated according to our scheme.
Explicitly worked out are the cases of an on average spatially
homogeneous single-band bulk system [Eqs. (16)], a spatially
inhomogeneous single-band bulk system [Eqs. (7)], as well as
the case of a spatially homogeneous multiband bulk system
with laser coupling [Eqs. (C8)]. Also explained are the
modifications needed to describe quantum wells or wires (cf.
Appendix B).

For the spatially homogeneous single-band bulk case, we
have analyzed how the spin transfer between initially spin-
polarized carriers and unpolarized Mn atoms sets in. It turns
out that the correct treatment of the density matrices with two
Mn spin operators for the same site is decisive for the dynamics
of genuine Mn-carrier correlations K̄ that provide the only
driving term for the onset of this spin transfer. In a mean-field
theory, this spin transfer can not be described as such Mn
carrier correlations are disregarded. Even though the virtual
crystal approximation yields finite correlations when it is not
combined with the mean-field approximation, it turns out that
the spin transfer predicted on this level of theory would vanish
in the limit of an infinite crystal volume. Clearly, this prediction
is unphysical in contrast to the results of our quantum kinetic
equations. The decisive difference to our approach is that in the
virtual crystal approximation, the Mn carrier correlations K̄ ,
which are off diagonal with respect to the involved momenta,
are missing.

The spin transfer is in the quantum kinetic equations accom-
panied by a redistribution of the carriers in momentum space.

This reflects the fact that the exchange interaction is spatially
localized and thus momentum is not conserved. Interestingly,
this feature remains after the dynamical equations have been
averaged over spatially homogeneous distributions of Mn
atoms, which makes the dynamics spatially homogeneous on
average. In contrast, the virtual crystal approximation, which
starts from a translationally invariant model Hamiltonian,
misses this momentum redistribution completely.

Our quantum kinetic equations of motion provide a widely
applicable microscopic basis for future research on the dynam-
ics of both paramagnetic and ferromagnetic DMS, which shall
allow us also to address issues related to coherent phenomena
that occur on short time scales.

APPENDIX A: DECOMPOSITION INTO CORRELATION
FUNCTIONS

In this Appendix, we shall give for all quantities that are
kept in our theory the explicit decomposition into factorized
and irreducible parts, which form the basis for the truncation
scheme that is described in Sec. III A3.

The decomposition for the two-Mn-site density matrices
〈c†σ1k1

cσ2k2P
I ′
n1n2

P I
n3n4

〉 with I ′ �= I reads as

〈
c
†
j1
cj2P

I ′
P I

〉 I �=I ′= 〈
c
†
j1
cj2

〉〈P I 〉〈P I ′ 〉 + 〈P I 〉δ〈c†j1
cj2P

I ′ 〉
+〈P I ′ 〉δ〈c†j1

cj2P
I
〉 + 〈

c
†
j1
cj2

〉
δ
〈
P I ′

P I
〉 + δ

〈
c
†
j1
cj2P

I ′
P I

〉
,

(A1)

where we have combined the two indices σ and k of the
electronic operators c and c† to one index j and omitted the
n indices of the Mn operators P I for the sake of a shorter
notation. Equation (A1) has to be regarded as the definition
of the irreducible correlation function δ〈c†j1

cj2P
I ′
P I 〉 as all

other quantities that appear in that equation have been defined
independently in the main part of the text. The five-point
density matrices 〈c†j1

c
†
j2
cj3cj4P

I 〉 are decomposed according
to the following scheme:〈

c
†
j1
c
†
j2
cj3cj4P

I
〉 = (〈

c
†
j1
cj4

〉〈
c
†
j2
cj3

〉 − 〈
c
†
j1
cj3

〉〈
c
†
j2
cj4

〉)〈
P I

〉
+ 〈

c
†
j1
cj4

〉
δ
〈
c
†
j2
cj3P

I
〉 + 〈

c
†
j2
cj3

〉
δ
〈
c
†
j1
cj4P

I
〉

− 〈
c
†
j1
cj3

〉
δ
〈
c
†
j2
cj4P

I
〉 − 〈

c
†
j2
cj4

〉
δ
〈
c
†
j1
cj3P

I
〉

+ 〈
P I

〉
δ
〈
c
†
j1
c
†
j2
cj3cj4

〉 + δ
〈
c
†
j1
c
†
j2
cj3cj4P

I
〉
,

(A2)

which defines δ
〈
c
†
j1
c
†
j2
cj3cj4P

I 〉.

APPENDIX B: QUANTUM WELLS AND WIRES

The equations of motion which have been developed in
the main part of this paper can only describe bulk systems
where the conduction-band electrons can move freely in
all directions. Nevertheless, our theoretical approach can be
adopted to quantum wells and wires as will be detailed in the
following. In such structures, the conduction-band electrons
can move freely in the plane of the well (along the wire),
but are confined in the direction(s) perpendicular to the well
(wire). In the position representation, the eigenfunctions of the
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electronic part of the Hamiltonian are of the form

	k‖jσ (r) = 1√
A

eik‖r‖ηj (r⊥)uσ (r), (B1)

where k‖ and r‖ are the components of k and r in the directions
parallel to the well (wire), r⊥ are the components in the
confined directions, ηj the envelope functions in the confined
directions, and uσ the lattice periodic functions. A denotes
the area of the well (length of the wire). In this basis, the
matrix elements of the operator ŝe

i δ(ri − RI ) in the exchange
Hamiltonian in Eq. (3) have the form

〈
	k‖jσ

∣∣ŝe
i δ(ri − RI )

∣∣	k′
‖j ′σ ′

〉 = 1

A
ei(k′

‖−k‖)R‖I

×ηj (R⊥I )∗ηj ′(R⊥I )se
σσ ′ . (B2)

In order to follow the scheme presented in Sec. III, we require
that η(R⊥I ) does not depend on the perpendicular components
R⊥I of the Mn position vector RI . This can be achieved by
using the approximation

η(R⊥I ) ≈ 1√
D

, (B3)

where D is the thickness of the well (the cross-sectional area
of the wire), i.e., with respect to the spatial distribution of the
Mn atoms in the confined direction the model is replaced by
its average over the components of the Mn positions in these
directions. Inserting Eq. (B3) into (B1) yields

〈
	k‖jσ

∣∣ŝe
i δ(ri − RI )

∣∣	k′
‖j ′σ ′

〉 ≈ 1

V
ei(k′

‖−k‖)R‖I se
σσ ′, (B4)

where V = AD is the volume of the well (wire). Due to the
approximation given in Eq. (B3), the above matrix elements
have the same structure as their counterparts in bulk systems
with the only difference lying in the dimension of the k vector:
in the case of quantum wells, k‖ is two dimensional, while
for quantum wires k‖ has only one independent component.
Hence, the theoretical approach presented in Sec. III can be
analogously applied to well and wire structures.

APPENDIX C: LASER-DRIVEN MULTIBAND DYNAMICS

In this section, we present an extended version of the
spatially homogeneous equations of motion (16). The extended
set additionally accounts for p-like valence bands, the dipole
interaction between the light field of a laser beam and the
carriers, and the exchange interaction between p-like holes
and localized Mn spins. It allows us to explicitly model
the optical excitation of spin-polarized carriers and the spin
transfer between holes and Mn spins.

For the derivation of the extended set of equations of
motion, we use the following Hamiltonian as a starting point:

H ′ = H ′
0 + Hem + Hsd + Hpd, (C1)

and

H ′
0 =

∑
lk

Elkc
†
lkclk +

∑
vk

Evkd
†
vkdvk (C2)

describes the band structure of the host semiconductor, where
l denotes s-like conduction bands, v p-like valence bands. Elk

and Evk are positive electron and hole energies, respectively.
Here,

Hem = −
∑
ll′k

E · Me
ll′kc

†
lkcl′k −

∑
vv′k

E · Mh
vv′kd

†
vkdv′k

−
∑
lvk

(E · Mlvkc
†
lkd

†
v−k + E · Mvlkdv−kclk) (C3)

denotes the dipole interaction between a spatially homoge-
neous, time-dependent electric field E of a laser beam and the
carriers. The dipole moments M are given by

Mvlk := −e〈vk|r|lk〉 = M∗
lvk,

Me
ll′k := −e〈lk|r|l′k〉,

Mh
vv′−k := +e〈v′k|r|vk〉,

where |lk〉 and |vk〉 are Bloch functions, r the position vector,
and e the positive elemental charge. Hsd is given in Eqs. (3)
and (6), respectively. For an arbitrary set of conduction bands,
the spin index σ in Eq. (6) is replaced by the conduction-band
index l, and se

ll′ is, thus, not necessarily the vector of Pauli
matrices but becomes

se
ll′ := V ei(k−k′)RI

〈
lk|ŝδ(r − RI )|l′k′〉,

where ŝ is the spin operator in the electron picture. By analogy,
Hpd reads as

Hpd = Jpd

∑
I i

ŜI · ŝh
i δ(ri − RI )

= Jpd

V

∑
Inn′

∑
vv′
kk′

Snn′ · sh
vv′e

i(k′−k)RI d
†
vkdv′k′ P̂ I

nn′ , (C4)

where the hole spin matrix sh
vv′ is defined by

sh
vv′ := − V ei(k′−k)RI

〈
v′k′|ŝδ(r − RI )|vk

〉
.

This definition of the matrix elements leads to high formal
symmetry between electrons and holes in the Hamiltonian.

With the new system Hamiltonian H ′, we follow the
procedure detailed in Sec. III B in order to obtain the cor-
responding extended set of equations of motion for a spatially
homogeneous system in the macroscopic limit V → ∞: at
first we set up Heisenberg equations of motions for operators

P̂ I
n1n2

, c
†
l1k1

cl2k2 , d
†
v1k1

dv2k2 , dv1k1cl2k2 .

We average these equations over both the quantum mechanical
statistical operator and the random distribution of the Mn
positions. This leads to equations of motion for the basic
disorder-averaged variables〈

P̂ I
n1n2

〉
,

〈
c
†
l1k1

cl2k2

〉
,

〈
d
†
v1k1

dv2k2

〉
,

〈
dv1k1cl2k2

〉
, (C5)

which are coupled to disorder-averaged density matrices of
higher order, namely,〈

c
†
l1k1

cl2k2 P̂
I
n1n2

eik3RI
〉
,

〈
d
†
v1k1

dv2k2 P̂
I
n1n2

eik3RI
〉
,〈

dv1k1cl2k2 P̂
I
n1n2

eik3RI
〉
. (C6a)

In analogy to Eqs. (13), these density matrices are expressed
by their decomposition into the basic irreducible functions
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given in Eqs. (C5) and true correlation functions. Setting up
equations of motion for these correlation functions leads to an
infinite hierarchy of equations of motion. Along the lines of
Sec. III B, this hierarchy is truncated by applying a correlation
expansion to all higher-order density matrices and, for the case
of an on average spatially homogeneous system in the macro-
scopic limit, only keeping four basic irreducible variables and
six correlation functions. The former are given by

Mn2
n1

:= 〈
P̂ I

n1n2

〉
, (C7a)

C
l2
l1k := 〈

c
†
l1kcl2k

〉
, (C7b)

D
v2
v1k := 〈

d
†
v1kdv2k

〉
, (C7c)

Y
l2
v1k := 〈

dv1kcl2−k
〉
, (C7d)

and represent Mn variables, electron and hole density matrices,
and electron-hole coherences. The true correlations are

defined as

C̄
l2k2
l1k1

:= V δ
〈
c
†
l1k1

cl2k2e
i(k2−k1)RI

〉
, (C7e)

D̄
v2k2
v1k1

:= V δ
〈
d
†
v1k1

dv2k2e
i(k2−k1)RI

〉
, (C7f)

Ȳ
l2k2
v1k1

:= V δ
〈
dv1k1cl2k2e

i(k2+k1)RI
〉
, (C7g)

K̄C
l2n2k2
l1n1k1

:= V δ
〈
c
†
l1k1

cl2k2 P̂
I
n1n2

ei(k2−k1)RI
〉
, (C7h)

K̄D
v2n2k2
v1n1k1

:= V δ
〈
d
†
v1k1

dv2k2 P̂
I
n1n2

ei(k2−k1)RI
〉
, (C7i)

K̄Y
l2n2k2
v1n1k1

:= V δ
〈
dv1k1cl2k2 P̂

I
n1n2

ei(k2+k1)RI
〉
, (C7j)

in analogy to the single-band correlation functions C̄ and
K̄ defined in Eq. (15). The resulting closed set of equations
of motion for these dynamical variables that applies for
an optically driven spatially homogeneous multiband bulk
system is given by

(i) equations for the Mn variables M:

−ih̄
∂

∂t
Mn2

n1
= Jsd

(2π )3

∫
BZ

∑
nll′

se
ll′ ·

[(
Cl′

lk+
∫

BZ

C̄l′k′
lk

(2π )3
d3k′

)(
Snn1M

n2
n − Sn2nM

n
n1

)+ ∫
BZ

(
Snn1K̄C

l′n2k′
lnk − Sn2nK̄C

l′nk′
ln1k

) d3k′

(2π )3

]
d3k

+ Jpd

(2π )3

∫
BZ

∑
nvv′

sh
vv′ ·

[(
Dv′

vk +
∫

BZ

D̄v′k′
vk

(2π )3
d3k′

)(
Snn1M

n2
n − Sn2nM

n
n1

)

+
∫

BZ

(
Snn1K̄D

v′n2k′
vnk − Sn2nK̄D

v′nk′
vn1k

) d3k′

(2π )3

]
d3k; (C8a)

(ii) equations for the electron two-point density matrices C:(
− ih̄

∂

∂t
+ El2k1 − El1k1

)
C

l2
l1k1

=
∑

v

E · (
M∗

vl2k1

(
Y

l1
v−k1

)∗ − Mvl1k1Y
l2
v−k1

) +
∑

l

E · (
Me

l2lk1
Cl

l1k1
− Me

ll1k1
C

l2
lk1

)

+ JsdnMn

∑
nn′l

Snn′ ·
{
Mn′

n

[
se
ll1

(
C

l2
lk1

+
∫

BZ

C̄
l2k1
lk

(2π )3
d3k

)
− se

l2l

(
Cl

l1k1
+

∫
BZ

C̄lk
l1k1

(2π )3
d3k

)]

+
∫

BZ

(
se
ll1

K̄C
l2n

′k1
lnk − se

l2l
K̄C

ln′k
l1nk1

) d3k
(2π )3

}
; (C8b)

(iii) equations for the hole two-point density matrices D:(
− ih̄

∂

∂t
+ Ev2k1 − Ev1k1

)
D

v2
v1k1

=
∑

l

E · (
M∗

v2l−k1

(
Y l

v1k1

)∗ − Mv1l−k1Y
l
v2k1

) +
∑

v

E · (
Mh

v2vk1
Dv

v1k1
− Mh

vv1k1
D

v2
vk1

)

+ JpdnMn

∑
nn′v

Snn′ ·
{
Mn′

n

[
sh
vv1

(
D

v2
vk1

+
∫

BZ

D̄
v2k1
vk

(2π )3
d3k

)
− sh

v2v

(
Dv

v1k1
+

∫
BZ

D̄vk
v1k1

(2π )3
d3k

)]

+
∫

BZ

(
sh
vv1

K̄D
v2n

′k1
vnk − sh

v2v
K̄D

vn′k
v1nk1

) d3k
(2π )3

}
; (C8c)

(iv) equations for the electron-hole coherences Y :(
− ih̄

∂

∂t
+ Ev1k1 + El2−k1

)
Y

l2
v1k1

= E · Ml2v1−k1 +
∑

l

E · (
Me

l2l−k1
Y l

v1k1
− Mlv1−k1C

l2
l−k1

) +
∑

v

E · (
Mh

v1vk1
Y

l2
vk1

− Ml2v−k1D
v1
vk1

)
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− nMn

∑
nn′

Snn′ ·
{
Mn′

n

[
Jpd

∑
v

sh
v1v

(
Y

l2
vk1

+
∫

BZ

Ȳ
l2−k1
vk

(2π )3
d3k

)
+ Jsd

∑
l

se
l2l

(
Y l

v1k1
+

∫
BZ

Ȳ lk
v1k1

(2π )3
d3k

)]

+
∫

BZ

(
Jpd

∑
v

sh
v1v

K̄Y
l2n

′−k1
vnk + Jsd

∑
l

se
l2l

K̄Y
ln′k
v1nk1

)
d3k

(2π )3

}
; (C8d)

(v) equations for correlations C̄ involving electron operators and Mn position phase factors:(
− ih̄

∂

∂t
+ El2k2 − El1k1

)
C̄

l2k2
l1k1

=
∑

v

E · (
M∗

vl2k2

(
Ȳ

l1k1
v−k2

)∗ − Mvl1k1 Ȳ
l2k2
v−k1

) +
∑

l

E · (
Me

l2lk2
C̄

lk2
l1k1

− Me
ll1k1

C̄
l2k2
lk1

)

+ Jsd

∑
nn′l

Snn′ ·
{
Mn′

n

[
se
ll1

(
nMnC̄

l2k2
lk1

+ C
l2
lk2

) − se
l2l

(
nMnC̄

lk2
l1k1

+ Cl
l1k1

)]

+
∫

BZ

[(
se
ll1

K̄C
l2n

′k2
lnk − se

l2l
K̄C

ln′k
l1nk1

) + Mn′
n

(
se
ll1

C̄
l2k2
lk − se

l2l
C̄lk

l1k1

)] d3k
(2π )3

}
; (C8e)

(vi) equations for correlations D̄ involving hole operators and Mn position phase factors:(
− ih̄

∂

∂t
+ Ev2k2 − Ev1k1

)
D̄

v2k2
v1k1

=
∑

l

E · (
M∗

v2l−k2

(
Ȳ

l−k2
v1k1

)∗ − Mv1l−k1 Ȳ
l−k1
v2k2

) +
∑

v

E · (
Mh

v2vk2
D̄

vk2
v1k1

− Mh
vv1k1

D̄
v2k2
vk1

)

+ Jpd

∑
nn′v

Snn′ ·
{
Mn′

n

[
sh
vv1

(
nMnD̄

v2k2
vk1

+ D
v2
vk2

) − sh
v2v

(
nMnD̄

vk2
v1k1

+ Dv
v1k1

)]

+
∫

BZ

[(
sh
vv1

K̄D
v2n

′k2
vnk − sh

v2v
K̄D

vn′k
v1nk1

) + Mn′
n

(
sh
vv1

D̄
v2k2
vk − sh

v2v
D̄vk

v1k1

)] d3k
(2π )3

}
; (C8f)

(vii) equations for correlations Ȳ involving electron-hole operators and Mn position phase factors:(
−ih̄

∂

∂t
+ Ev1k1 + El2k2

)
Ȳ

l2k2
v1k1

=
∑

l

E · (
Me

l2lk2
Ȳ

lk2
v1k1

− Mlv1−k1C̄
l2k2
l−k1

) +
∑

v

E · (
Mh

v1vk1
Ȳ

l2k2
vk1

− Ml2vk2D̄
v1k1
v−k2

)

−
∑
nn′

Snn′ ·
{
Mn′

n

[
Jpd

∑
v

sh
v1v

(
nMnȲ

l2k2
vk1

+ Y
l2
v−k2

) + Jsd

∑
l

se
l2l

(
nMnȲ

lk2
v1k1

+ Y l
v1k1

)]

+
∫

BZ

[
Jpd

∑
v

sh
v1v

(
K̄Y

l2n
′k2

vnk + Mn′
n Ȳ

l2k2
vk

) + Jsd

∑
l

se
l2l

(
K̄Y

ln′k
v1nk1

+ Mn′
n Ȳ lk

v1k1

)] d3k
(2π )3

}
;

(C8g)

(viii) equations for correlations K̄C involving electron and Mn spin operators as well as Mn position phase factors:(
− ih̄

∂

∂t
+ El2k2 − El1k1

)
K̄C

l2n2k2
l1n1k1

= QE
K̄C

l2n2k2
l1n1k1

+ QIII
K̄C

l2n2k2
l1n1k1

+ QIV
K̄C

l2n2k2
l1n1k1

+ QV
K̄C

l2n2k2
l1n1k1

, (C8h)

where

QE
K̄C

l2n2k2
l1n1k1

:=
∑

v

E · (
M∗

vl2k2

(
K̄Y

l1n1k1
vn2−k2

)∗ − Mvl1k1K̄Y
l2n2k2
vn1−k1

) +
∑

l

E · (
Me

l2lk2
K̄C

ln2k2
l1n1k1

− Me
ll1k1

K̄C
l2n2k2
ln1k1

)
,

QIII
K̄C

l2n2k2
l1n1k1

:= Jsd

∑
nl

{(
Snn1 · se

ll1
C

l2
lk2

Mn2
n − Sn2n · se

l2l
Cl

l1k1
Mn

n1

)

+
∫

BZ

[
Snn1 · se

ll1

(
K̄C

l2n2k2
lnk + C̄

l2k2
lk Mn2

n

) − Sn2n · se
l2l

(
K̄C

lnk
l1n1k1

+ C̄lk
l1k1

Mn
n1

)] d3k
(2π )3

}
,

QIV
K̄C

l2n2k2
l1n1k1

:= Jsd

∑
nn′l

Snn′ ·
{
Mn′

n

[
nMn

(
se
ll1

K̄C
l2n2k2
ln1k1

− se
l2l

K̄C
ln2k2
l1n1k1

) − Mn2
n1

(
se
ll1

C
l2
lk2

− se
l2l

Cl
l1k1

)]

− Mn2
n1

(2π )3

∫
BZ

[(
se
ll1

K̄C
l2n

′k2
lnk − se

l2l
K̄C

ln′k
l1nk1

) + Mn′
n

(
se
ll1

C̄
l2k2
lk − se

l2l
C̄lk

l1k1

)]
d3k

}
,
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QV
K̄C

l2n2k2
l1n1k1

:= Jpd

∑
nvv′

sh
vv′ ·

{
(Y l1

v−k1
)∗

(2π )3

∫
BZ

(
Snn1K̄Y

l2n2k2
v′nk − Sn2nK̄Y

l2nk2
v′n1k

)
d3k + Y

l2
v′−k2

(Y l1
v−k1

)∗
(
Snn1 (Mn

n2
)∗ − Sn2n(Mn1

n )∗
)

+
∫

BZ

[
Y

l2
v′−k2

(
Snn1

(
K̄Y

l1nk1
vn2k

)∗ − Sn2n

(
K̄Y

l1n1k1
vnk

)∗) + Dv′
vk

(
Snn1K̄C

l2n2k2
l1nk1

− Sn2nK̄C
l2nk2
l1n1k1

)] d3k
(2π )3

+
∫

BZ

((
Y

l1
v−k1

)∗
Ȳ

l2k2
v′k + Y

l2
v′−k2

(
Ȳ

l1k1
vk

)∗)(
Snn1M

n2
n − Sn2nM

n
n1

) d3k
(2π )3

− C̄
l2k2
l1k1

(2π )6

∫ ∫
BZ

[(
Snn1K̄D

v′n2k′
vnk − Sn2nK̄D

v′nk′
vn1k

) + D̄v′k′
vk

(
Snn1M

n2
n − Sn2nM

n
n1

)]
d3k′d3k

}

− Jsd

∑
nll′

se
ll′ ·

{[ Cl′
l1k1

(2π )3

∫
BZ

(
Snn1K̄C

l2n2k2
lnk − Sn2nK̄C

l2nk2
ln1k

)
d3k + C

l2
lk2

Cl′
l1k1

(
Snn1M

n2
n − Sn2nM

n
n1

)]

+
∫

BZ

[
C

l2
lk2

(
Snn1K̄C

l′n2k
l1nk1

− Sn2nK̄C
l′nk
l1n1k1

) − Cl′
lk

(
Snn1K̄C

l2n2k2
l1nk1

− Sn2nK̄C
l2nk2
l1n1k1

)] d3k
(2π )3

+
∫

BZ

(
Cl′

l1k1
C̄

l2k2
lk + C

l2
lk2

C̄l′k
l1k1

)(
Snn1M

n2
n − Sn2nM

n
n1

) d3k
(2π )3

+ C̄
l2k2
l1k1

(2π )6

∫ ∫
BZ

[(
Snn1K̄C

l′n2k′
lnk − Sn2nK̄C

l′nk′
ln1k

) + C̄l′k′
lk

(
Snn1M

n2
n − Sn2nM

n
n1

)]
d3k′d3k

}
;

(ix) equations for correlations K̄D involving hole and Mn spin operators as well as Mn position phase factors:(
− ih̄

∂

∂t
+ Ev2k2 − Ev1k1

)
K̄D

v2n2k2
v1n1k1

= QE
K̄D

v2n2k2
v1n1k1

+ QIII
K̄D

v2n2k2
v1n1k1

+ QIV
K̄D

v2n2k2
v1n1k1

+ QV
K̄D

v2n2k2
v1n1k1

, (C8i)

where

QE
K̄D

v2n2k2
v1n1k1

:=
∑

l

E · (
M∗

v2l−k2

(
K̄Y

ln1−k2
v1n2k1

)∗ − Mv1l−k1K̄Y
ln2−k1
v2n1k2

) +
∑

v

E · (
Mh

v2vk2
K̄D

vn2k2
v1n1k1

− Mh
vv1k1

K̄D
v2n2k2
vn1k1

)
,

QIII
K̄D

v2n2k2
v1n1k1

:= Jpd

∑
nv

{(
Snn1 · sh

vv1
D

v2
vk2

Mn2
n − Sn2n · sh

v2v
Dv

v1k1
Mn

n1

)

+
∫

BZ

[
Snn1 · sh

vv1

(
K̄D

v2n2k2
vnk + D̄

v2k2
vk Mn2

n

) − Sn2n · sh
v2v

(
K̄D

vnk
v1n1k1

+ D̄vk
v1k1

Mn
n1

)] d3k
(2π )3

}
,

QIV
K̄D

v2n2k2
v1n1k1

:= Jpd

∑
nn′v

Snn′ ·
{
Mn′

n

[
nMn

(
sh
vv1

K̄D
v2n2k2
vn1k1

− sh
v2v

K̄D
vn2k2
v1n1k1

) − Mn2
n1

(
sh
vv1

D
v2
vk2

− sh
v2v

Dv
v1k1

)]

− Mn2
n1

(2π )3

∫
BZ

[(
sh
vv1

K̄D
v2n

′k2
vnk − sh

v2v
K̄D

vn′k
v1nk1

) + Mn′
n

(
sh
vv1

D̄
v2k2
vk − sh

v2v
D̄vk

v1k1

)]
d3k

}
,

QV
K̄D

v2n2k2
v1n1k1

:= Jsd

∑
nll′

se
ll′ ·

{(
Y l

v1k1

)∗

(2π )3

∫
BZ

(
Snn1K̄Y

l′n2k
v2nk2

− Sn2nK̄Y
l′nk
v2n1k2

)
d3k + Y l′

v2k2

(
Y l

v1k1

)∗(
Snn1

(
Mn

n2

)∗ − Sn2n

(
Mn1

n

)∗)

+
∫

BZ

[
Y l′

v2k2

(
Snn1

(
K̄Y

lnk
v1n2k1

)∗ − Sn2n

(
K̄Y

ln1k
v1nk1

)∗) + Cl′
lk

(
Snn1K̄D

v2n2k2
v1nk1

− Sn2nK̄D
v2nk2
v1n1k1

)] d3k
(2π )3

+
∫

BZ

((
Y l

v1k1

)∗
Ȳ l′k

v2k2
+ Y l′

v2k2
(Ȳ lk

v1k1
)∗

)(
Snn1M

n2
n − Sn2nM

n
n1

) d3k
(2π )3

− D̄
v2k2
v1k1

(2π )6

∫ ∫
BZ

[(
Snn1K̄C

l′n2k′
lnk − Sn2nK̄C

l′nk′
ln1k

) + C̄l′k′
lk

(
Snn1M

n2
n − Sn2nM

n
n1

)]
d3k′d3k

}

− Jpd

∑
nvv′

sh
vv′ ·

{
Dv′

v1k1

(2π )3

∫
BZ

(
Snn1K̄D

v2n2k2
vnk − Sn2nK̄D

v2nk2
vn1k

)
d3k + D

v2
vk2

Dv′
v1k1

(
Snn1M

n2
n − Sn2nM

n
n1

)

+
∫

BZ

[
D

v2
vk2

(
Snn1K̄D

v′n2k
v1nk1

− Sn2nK̄D
v′nk
v1n1k1

) − Dv′
vk

(
Snn1K̄D

v2n2k2
v1nk1

− Sn2nK̄D
v2nk2
v1n1k1

)] d3k
(2π )3
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+
∫

BZ

(
Dv′

v1k1
D̄

v2k2
vk + D

v2
vk2

D̄v′k
v1k1

)(
Snn1M

n2
n − Sn2nM

n
n1

) d3k
(2π )3

+ D̄
v2k2
v1k1

(2π )6

∫ ∫
BZ

[(
Snn1K̄D

v′n2k′
vnk − Sn2nK̄D

v′nk′
vn1k

) + D̄v′k′
vk

(
Snn1M

n2
n − Sn2nM

n
n1

)]
d3k′d3k

}
;

(x) equations for correlations K̄Y involving electron-hole and Mn spin operators as well as Mn position phase factors:(
−ih̄

∂

∂t
+ Ev1k1 + El2k2

)
K̄Y

l2n2k2
v1n1k1

= QE
K̄Y

l2n2k2
v1n1k1

+ QIII
K̄Y

l2n2k2
v1n1k1

+ QIV
K̄Y

l2n2k2
v1n1k1

+ QV
K̄Y

l2n2k2
v1n1k1

, (C8j)

where

QE
K̄Y

l2n2k2
v1n1k1

:=
∑

l

E · (
Me

l2lk2
K̄Y

ln2k2
v1n1k1

− Mlv1−k1K̄C
l2n2k2
ln1−k1

) +
∑

v

E · (
Mh

v1vk1
K̄Y

l2n2k2
vn1k1

− Ml2vk2K̄D
v1n2k1
vn1−k2

)
,

QIII
K̄Y

l2n2k2
v1n1k1

:= −
∑

n

Sn2n ·
{(

Jsd

∑
l

Y l
v1k1

Mn
n1

se
l2l

+ Jpd

∑
v

Y
l2
v−k2

Mn
n1

sh
v1v

)

+
∫

BZ

[
Jsd

∑
l

(
K̄Y

lnk
v1n1k1

+ Ȳ lk
v1k1

Mn
n1

)
se
l2l

+ Jpd

∑
v

(
K̄Y

l2nk2
vn1k + Ȳ

l2k2
vk Mn

n1

)
sh
v1v

]
d3k

(2π )3

}
,

QIV
K̄Y

l2n2k2
v1n1k1

:= −
∑
nn′

Snn′ ·
{

Mn′
n

[
nMn

(
Jpd

∑
v

sh
v1v

K̄Y
l2n2k2
vn1k1

+ Jsd

∑
l

se
l2l

K̄Y
ln2k2
v1n1k1

)

−Mn2
n1

(
Jpd

∑
v

sh
v1v

Y
l2
v−k2

+ Jsd

∑
l

se
l2l

Y l
v1k1

)]

− Mn2
n1

(2π )3

∫
BZ

[(
Jpd

∑
v

sh
v1v

K̄Y
l2n

′k2
vnk + Jsd

∑
l

se
l2l

K̄Y
ln′k
v1nk1

)
+ Mn′

n

(
Jpd

∑
v

sh
v1v

Ȳ
l2k2
vk + Jsd

∑
l

se
l2l

Ȳ lk
v1k1

)]
d3k

}
,

QV
K̄Y

l2n2k2
v1n1k1

:= −Jsd

∑
nll′

se
ll′ ·

{
C

l2
lk2

(2π )3

∫
BZ

(
Snn1K̄Y

l′n2k
v1nk1

− Sn2nK̄Y
l′nk
v1n1k1

)
d3k + Y l′

v1k1
C

l2
lk2

(
Snn1M

n2
n − Sn2nM

n
n1

)

+ 1

(2π )3

∫
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