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Anyonic Bloch oscillations
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The onset of Bloch oscillations (BOs) for two correlated anyons hopping on a one-dimensional lattice is
theoretically investigated in the framework of the anyon-Hubbard model. It is shown that, even in the absence of
on-site particle interaction, BOs are degraded for a nonvanishing statistical phase exchange owing to the nonlocal
quasiparticle nature of anyons. A remarkable exception is found for pseudofermions, i.e., particles that, although
they are bosons on site, behave as fermions off site. In this case, if the ratio of forcing to the hopping rate is
smaller than ∼0.5, in the absence of on-site interaction long-lived BOs are observed at a frequency which is half
the BO frequency of single particles. This is notably distinct from results for previously investigated BOs of two
strongly correlated bosons or fermions, in which particle correlation leads to a doubling of the BO frequency.
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I. INTRODUCTION

Bloch oscillations (BOs) represent one of the most striking
predictions of the semiclassical theory of electronic transport
in crystals; they were predicted by Bloch and Zener in two
seminal papers more than 80 years ago.1 Owing to dephasing
effects, BOs have never been observed in natural crystals,
and solely with the advent of semiconductor superlattices
has their existence been finally demonstrated as terahertz
radiation emitted from coherently oscillating electrons.2 More
recently, the analogs of electronic BOs have been predicted
and experimentally observed for ultracold atoms3 and Bose-
Einstein condensates4 in tilted optical lattices,5 for optical
waves in arrays of evanescently coupled optical waveguides6

and photonic superlattices,7 and for sound waves in acoustic
superlattices.8 The inclusion of lattice disorder, nonlinearities,
inhomogeneities, or defects has generally a detrimental effect
on BOs.9–11 In particular, it is known that BOs may be
affected rather dramatically by particle interactions, for both
bosons and fermions. The Hubbard and Bose-Hubbard models
have been recently introduced to highlight the role of on-site
particle interaction in BOs beyond mean-field models.11–16

As correlation is generally responsible for decoherence of
BOs,11,12 interesting novel phenomena have been predicted
for BOs of few interacting particles in the strong-interaction
regime,13–15 such as the frequency doubling of BOs of two
correlated particles13,14 and, more generally, fractional BOs
for N -bound-particle states.15

In addition to bosons and fermions, quasiparticles with
intermediate statistics interpolating from Bose statistics to
Fermi statistics, so-called anyons, were suggested more than
30 years ago.17,18 Anyons can be regarded as topological
states of matter whose quasiparticle excitations obey fractional
statistics. For two anyons, the wave function acquires a
fractional phase exp(iθ ) under particle exchange, where 0 <

θ < π is the statistical exchange phase; bosons and fermions
are retrieved for θ = 0 and θ = π , respectively. Although a
clean experimental demonstration of particles with fractional
statistics is missing, their existence has been generally as-
sociated with the fractional quantum Hall effect.19 Recently,
there have been a few atom-optics proposals of Abelian anyons
hopping on a one-dimensional (1D) lattice.20,21 In particular,

in Ref. 21 it was shown that anyons moving on a 1D lattice
can be realized by ordinary bosons on a lattice with conditional
hopping amplitudes. We are interested here in BOs of anyonic
particles, as well as the impact of the statistical phase θ on the
BO motion.

In this work we study BOs for two anyons hopping
on a 1D lattice in the framework of the anyon-Hubbard
model.21 The main result of our analysis is that a nonvanishing
statistical phase θ degrades BOs even in the absence of
on-site particle interaction. This behavior occurs because
anyons in 1D lattices can be effectively regarded as nonlocal
quasiparticles in which many-body effects occur even without
on-site particle interactions.21 A remarkable exception is found
for pseudofermions, i.e., particles that, although they are
bosons on site, are fermions off site. In this case, if the ratio
of forcing to the hopping rate is smaller than ∼0.5 and in
the absence of on-site interaction, long-lived BOs do appear,
but at a frequency which is half the BO frequency of single
(noninteracting) particles. This is notably distinct from results
for previously investigated BOs of strongly correlated bosons,
in which the frequency of BOs is an integer multiple of the
single-particle BO frequency.13–15

II. THE ANYON-HUBBARD MODEL

The starting point of our analysis is provided by the anyon-
Hubbard model,21 which describes the hopping dynamics of
correlated anyons on a 1D lattice, extended to include the
external forcing. The Hamiltonian of the model reads explicitly

Ĥ = −J
∑

l

(â†
l âl+1 + â

†
l+1âl)

+ U

2

∑
l

n̂l(n̂l − 1) + F
∑

l

ln̂l , (1)

where J is the tunneling rate between adjacent sites, U is
the on-site interaction energy, the operators â

†
l ,âl create or

annihilate an anyon at site l, and n̂l = â
†
l âl is the particle

number operator at site l. As in Ref. 21, we assume that the
operators â

†
l ,âl satisfy the generalized commutation relations

âl â
†
k = δl,k + exp[−iθε(l − k)]â†

kâl, (2)
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âl âk = exp[iθε(l − k)]âkâl , (3)

where θ is the statistical exchange phase and the function
ε(l − k) is defined as

ε(l − k) =
⎧⎨
⎩

1, l > k,

0, l = k,

−1, l < k.

(4)

Note that, since ε(l − k) = 0 for l = k, two particles on
the same site behave as ordinary bosons. Moreover, anyons
with statistics θ = π are pseudofermions, i.e., they behave as
ordinary fermions when they occupy different lattice sites.21

As in Refs. 13 and 14, here we focus our analysis to
study the motion of two correlated particles, and we wish
to highlight the impact of the statistical phase exchange θ on
the BO dynamics. With this aim, let us indicate by cn,m(t) the
amplitude probability of finding one anyon at site n and the
other one at site m of the lattice, i.e., let us expand the state
vector |ψ(t)〉 of the system in Fock space as

|ψ(t)〉 = 1√
2

∑
n,m

cn,m(t)â†
nâ

†
m|0〉. (5)

The evolution equations for the amplitudes cn,m, as obtained
from the Schrödinger equation i∂t |ψ〉 = Ĥ |ψ〉 with h̄ = 1,
read explicitly

i
dcn,m

dt
= −J [cn+1,m + cn−1,m + cn,m−1 exp(−iϕn,m−1)

+ cn,m+1 exp(iϕn,m)] + [Uδn,m + F (n + m)]cn,m,

(6)

where ϕn,m is given by

ϕn,m =
{−θ, n = m,m + 1,

0 otherwise. (7)

Equation (6) shows that the dynamics of two anyons on a
one-dimensional lattice is equivalent to the dynamics of a
single particle hopping on a two-dimensional lattice with
defects on the diagonal n = m. The defects arise not only from
the on-site interaction energy U , but also from a nonvanishing
value of the statistical phase θ , which makes the hopping
rates phase sensitive at m = n ± 1. Hence two noninteracting
anyons with θ �= 0 are expected to show correlated dynamics,
in spite of the absence of particle interaction. This remarkable
property of anyons can be explained after observing that
they can be viewed as nonlocal quasiparticles, which thus
show many-body effects even in the absence of on-site
particle interaction. In fact, by a fractional version of the
Jordan-Wigner transformation the anyon-Hubbard model (1)
can be exactly mapped into a Bose-Hubbard model with
occupation-dependent hopping amplitudes.21 This feature
indicates that anyonic dynamics can be realized using bosons
in optical lattices. An experimental setup to create anyons in
one-dimensional lattices with fully tunable exchange statistics
has been proposed in Ref. 21. As discussed in Ref. 21,
anyons are created by bosons in a driven optical lattice with
effective occupation-dependent hopping amplitudes. The latter
are realized by assisted Raman tunneling following a scheme
originally proposed by Jaksch and Zoller to create Peierls
phases in optical lattices22 (see also Ref. 23). The statistical

FIG. 1. (Color online) Evolution of (a) the revival probability
and (b) the probability density function for two correlated anyons
undergoing BOs on a 1D lattice in the absence of on-site interaction
for F/J = 1 and for increasing values of the statistical phase
exchange θ (θ = 0 corresponds to noninteracting bosons, whereas
θ = π corresponds to pseudofermions). Note that for θ = 0 BOs
with period TB = 2π/F are observed, whereas for θ �= 0 the BOs are
degraded.

phase θ can be controlled in situ by modifying the relative
phase of the external driving fields.

III. THE NONINTERACTING LIMIT

In this section we will focus our analysis to study BOs of a
couple of anyons in the case U = 0, which at best highlights
the distinct features of anyons as nonlocal quasiparticles
showing many-body effects even in the absence of on-site
interaction. The onset of BOs has been investigated by direct
numerical analysis of the coupled equations (6) assuming as
an initial condition cn.m(0) = δn,0δm,0, corresponding to the
two particles initially being localized at the same lattice site
l = 0. As simple dynamical variables capable of capturing
the onset of BOs, we assume here the revival probability
Prev(t) = |〈ψ(0)|ψ(t)〉|2 and the probability density function
(PDF) Pk(t) = (1/2)〈ψ(t)|n̂k|ψ(t)〉 (k = 0,±1,±2, . . .). A
sufficiently wide lattice (typically formed by N = 40 or 50
sites) has been assumed to avoid boundary effects. For θ = 0,
i.e., for two noninteracting bosons, it is known that BOs
manifest as a periodic breathing dynamics of the PDF with
period TB = 2π/ωB = 2π/F , as shown as an example in
the upper panels of Figs. 1(b) and 2(b). For a nonvanishing
value of θ , the BOs turn out to be generally degraded. This is
shown, as an example, in Figs. 1 and 2, which depict typical
evolutions of the PDF and revival probability for F/J = 1
and F/J = 0.3, respectively. Note that, for a nonvanishing
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FIG. 2. (Color online) As Fig. 1, but for F/J = 0.3. Note that in
this case for pseudofermions (θ = π ) long-lived BOs, with a period
2TB = 4π/F , are observed.

value of θ , the evolution of Prev and Pk is not periodic. A
noticeable feature occurs for θ = π , i.e., for pseudofermions,
for which long-lived BOs do appear for values F/J smaller
than ∼0.5, but with a period that is twice the single-particle
value TB . This is clearly shown in Fig. 3. To explain such
behavior and to clarify the roles of θ and F/J in the
onset of BOs, we have numerically computed the eigenvalues
and corresponding eigenvectors for Eqs. (6), i.e., the energy
spectrum of the two-particle anyon-Hubbard Hamiltonian (1).
With this aim, we assumed a finite lattice size made of N

sites (typically we used N = 40 or 50) and computed the
N2 eigenvalues of the matrix associated with Eqs. (6); to
avoid finite-size effects, we kept only the eigenvalues whose
eigenvectors showed the largest overlap with the center of
the lattice. Figure 4 shows the behavior of the numerically
computed energy spectrum at increasing values of θ , from
noninteracting bosons (θ = 0) to pseudofermions (θ = π ), and
for two values of F/J , whereas in Fig. 5 the energy spectrum
is depicted as a function of F/J for θ = π/2 and θ = π .
At θ = 0, the spectrum is given by the well-known Wannier-
Stark ladder of two noninteracting bosons, En,m = F (n + m)
(n,m = 0,±1,±2, . . .), with degenerate eigenvalues equally
spaced by F . For a nonvanishing value of the statistical phase θ ,
some degeneracy of the spectrum is lifted, and the eigenvalues
are not equidistant any more. However, Figs. 4 and 5 clearly
show that for pseudofermions and for F/J smaller than ∼0.5
the spectrum turns out to be nearly equally spaced, but with
spacing F/2 rather than F . This explains the doubling of the
BO period observed for pseudofermions. It should be noted
that the halving of BO frequency is strictly a feature of the

FIG. 3. (Color online) Evolution of the revival probability for
U = 0, θ = π (pseudofermions), and for decreasing values of F/J .
Note that for F/J <∼0.5 long-lived BOs with a period 2TB can be
observed.

correlated dynamics of the two pseudofermions in the absence
of on-site particle interaction. This kind of correlation is related
to the nonlocal nature of anyons,21 and its impact on BOs
is very different from the correlation of bosons induced by
strong on-site interaction. In this case, in fact, for two particles
interaction would lead to a doubling of the BO frequency,
rather than to a frequency halving.14,15

IV. THE STRONG-INTERACTION LIMIT

In the previous section we considered the hopping dynamics
of two anyons on a lattice in the absence of on-site interaction
and showed that correlations are still observed in the BO
dynamics. In particular, we showed that, while nonlocality of
anyons generally causes the BO motion to degrade, for pseud-
ofermions a halving of the BO frequency can be observed. On
the other hand, for two bosons initially occupying the same
site it is known that correlations induced by on-site particle
interaction lead to a doubling of the BO frequency, rather than
halving.14,15 This result follows from the circumstance that two
strongly interacting bosons initially occupying the same site
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FIG. 4. (Color online) Numerically computed energy spectrum
of the two-particle anyon-Hubbard Hamiltonian for U = 0 versus the
statistical phase exchange θ for (a) F/J = 0.3, and (b) F/J = 1.
The energies are given in units of F . For the sake of clearness only
the energies in the range (−4F,4F ) are plotted.

form a bound pair and tunnel together on the lattice.24 It is thus
worth investigating the dynamics of two correlated anyons,
initially occupying the same lattice site, when the on-site
interaction is switched on. As an example, in Fig. 6 we show
the numerically computed evolution of the revival probability
and PDF for increasing values of U/J and for F/J = 0.3
in the case of pseudofermions (i.e., θ = π ). Note that, as
U/J is increased, a transition from an oscillatory behavior
at frequency ωB/2 to an oscillatory motion at frequency 2ωB

is observed. More generally, for an arbitrary statistical phase θ

one observes BOs at frequency 2ωB in the strong-interaction
limit |U |/J � 1. This behavior can be explained by an
asymptotic analysis of Eqs. (6) in the limit J/U → 0. Let
us assume as an initial condition cn,m(0) = An(0)δn,m, where
An(0) is the amplitude probability to find both anyons at site
n of the lattice, and let us search for a solution to Eqs. (6) as
a power expansion in the smallness parameter J/|U | 	 1.
An approximate solution to Eqs. (6) can be derived by a

FIG. 5. (Color online) Numerically computed energy spectrum
(in units of the forcing F ) for U = 0 versus F/J for (a) θ = π and
(b) θ = π/2.

FIG. 6. (Color online) Evolution of (a) the revival probability and
(b) the probability density function for two correlated antifermions
(θ = π ) for F/J = 0.3 and for increasing values of the normalized
on-site interaction U/J . Note a transition from BOs with frequency
ωB/2 = F/2 at U = 0 to BOs with frequency 2ωB = 2F at U/J = 6.

multiple-scale asymptotic analysis using standard techniques
(see, for instance, Ref. 25). The solution at leading order can
be written as cn,m(t) 
 An(t)δn,m exp(−iσ t − iUt), where the
slow evolution of the amplitudes An(t) is governed by the
coupled equations (see the Appendix for technical details)

i
dAn

dt
= J ∗

effAn+1 + JeffAn−1 + 2FnAn (8)

and where we have set

σ = 4J 2

U
, Jeff = 2J 2 exp(iθ )

U
. (9)

Equations (8) clearly show that, in the strong-interaction limit,
the two anyons tunnel together with an effective hopping rate
Jeff given by Eq. (9), and behave effectively like a single
bound particle which is subjected to a dc force 2F rather
than F . This behavior is analogous to that previously found
for correlated tunneling and BOs of two bosons,14,15 which is
retrieved from the previous equations after setting θ = 0. Note
that the statistical phase θ of anyons enters solely in the phase
of the effective hopping rate Jeff , which nevertheless does not
alter the dynamics of correlated BOs. Hence, in contrast to the
noninteracting limit studied in the previous section, where the
BOs are deeply sensitive to the anyon phase, the correlated
dynamics of two strongly interacting anyons is not sensitive to
their statistical phase θ . This is shown in Fig. 7, which depicts
the evolution of revival probability for U/J = 4, F/J = 0.3,
and a few values of the statistical phase θ .
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FIG. 7. (Color online) Evolution of the revival probability in the
strong-interaction regime (U/J = 6) for F/J = 0.3 and for a few
values of the statistical phase θ .

It should be finally noticed that the doubling of the BO
frequency in the strong-correlation regime, shown in Figs. 6
and 7, is observed, provided that the two particles occupy the
same lattice site at the initial time. In this case, the two particles
form a bound state and they tunnel together along the lattice
with an effective hopping rate Jeff which decreases toward zero
as the on-site interaction U is increased, according to Eq. (9).
In this regime, the initial condition basically excites bound
states of the two-dimensional lattice model, defined by Eq. (6)
with F = 0, which are localized along the defect diagonal
n = m.13,14 Such bound states form a narrow band of width
4|Jeff|, which shrinks as U/J → 0.13,14 This explains why the
amplitude of frequency-doubled BOs, observed in Fig. 6(b),
decreases as |U |/J increases. However, if the initial condition
corresponds to a nonvanishing probability of the particles to
occupy distinct sites, both bound and unbound states of the
two-dimensional lattice (6) are initially excited. While the
wave packet component exciting the localized states on the
diagonal n = m is responsible for the doubling of the BOs, the
wave packet component that excites delocalized states of the
two-dimensional lattice (6) basically undergoes BOs without
frequency doubling, corresponding to uncorrelated BOs of the
two particles. Since the amplitude of the frequency-doubled
BOs vanishes as the particle-particle interaction U is increased,
we expect that in the strong-interaction regime the oscillation
of the mean single-particle position induced by the forcing
shows the single-frequency component solely of BOs, regard-
less of the statistical phase θ . This behavior, which is analogous
to that observed for two fermions or bosons,14 is shown in
Fig. 8, which depicts as an example the typical evolution
of the probability density function Pk corresponding to the
initial wave packet condition cn,m(0) ∝ exp[−(n2 + m2)/σ 2]
for σ = 3 and in the case of pseuodofermions (θ = π ). For
such an initial condition, the probability of finding the two
anyons at distinct sites does not vanish, and excitation of
both bound and delocalized states of the two-dimensional
lattice (6) is attained in this case. The superposition of the
two kinds of states yields a dynamical evolution comprising
the interference of uncorrelated (fundamental-frequency) and
correlated (frequency-doubled) BOs, which is clearly visible in

FIG. 8. (Color online) Evolution of the probability density
function of pseudofermions (θ = π ) for F/J = 0.3 and for an
initial condition corresponding to a Gaussian distribution cn,m(0) ∝
exp[−(n2 + m2)/σ 2] with σ = 3. (a) U/J = 0; (b) U/J = 5;
(c) U/J = 8; (d) U/J = 20.

the evolution of the particle density function shown in Fig. 8. In
the absence of particle interaction, frequency doubling of BOs
is mainly absent [Fig. 8(a)]; however, as compared to bosons
or fermions, even for U = 0 some correlation can be seen, i.e.,
the two particles do not exactly undergo uncorrelated dynamics
and BOs are not exactly periodic, as discussed in the previous
section. As the particle-particle interaction U is switched
on, frequency-doubled BOs clearly appear [see Figs. 8(a)
and 8(b)], but their amplitude vanishes as |U |/J increases
[see Fig. 8(d)]. Hence, in the strong-interaction regime,
the oscillation of the single-particle mean position basically
arises from the unbound states, and thus the phenomenon of
frequency doubling of BOs disappears. This behavior is fully
analogous to that observed for a pair of bosons or fermions,14

and it is not substantially influenced by the anyonic nature of
the particles, i.e., by the statistical phase θ .

V. CONCLUSIONS AND DISCUSSION

In this work we have investigated the onset of Bloch os-
cillations of correlated anyons hopping on a one-dimensional
lattice in the framework of the anyon-Hubbard model. Anyons
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can be regarded as topological states of matter whose quasipar-
ticle excitations obey fractional statistics. Even in the absence
of on-site particle interaction, many-body effects exist for
anyons.18,21 As a result, BOs of anyons are generally degraded
even in the absence of on-site particle interaction. However,
an exception is found for pseudofermions, i.e., particles that,
although they are bosons on site, are fermions off site. In this
case, if the ratio of forcing to the hopping rate is smaller than
∼0.5, in the absence of on-site interaction long-lived BOs are
observed at a frequency which is half the BO frequency of
single particles. This is remarkably distinct from the results
for previously investigated BOs of two strongly correlated
bosons or fermions, in which particle correlation leads to
a frequency doubling of the BO frequency, rather than to
a frequency halving. On the other hand, for strong on-site
particle interaction the onset of BOs turns out to be insensitive
to the statistical phase exchange of anyons, and bound particle
states undergoing BOs at a frequency twice the single-particle
BO frequency are attained, as in previous studies.14,15 The
present numerical results show that BOs of correlated anyons
are very different from those of bosons in the noninteracting
limit and that a special dynamics is found for pseudofermions.
It is envisaged that such interesting and previously unexplored
results should motivate further studies on BOs of anyons,
addressing a few questions that remain open. For example, is
it possible to analytically calculate the energy spectrum of the
anyon-Hubbard Hamiltonian (1) in the noninteracting limit, at
least in the two-particle case? What happens to BOs of more
than two anyons in the noninteracting limit? Are long-lived
BOs for pesudofermions still observed, and at what frequency?
Our results are also expected to stimulate experimentalists to
devise quantum or classical simulators aimed at observing
BOs of correlated anyons, for example using trapped bosons in
optical lattices with occupation-dependent hopping amplitudes
as suggested in Ref. 21.
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APPENDIX: BLOCH OSCILLATIONS OF BOUND ANYONS
IN THE STRONG-INTERACTION LIMIT

In this Appendix we derive Eq. (8) from an asymptotic
analysis of Eq. (6) in the strong-interaction limit |U | � J and
assuming that the two anyons initially occupy the same lattice
site. In this case, the two anyons form a bound particle which
undergoes BOs at a frequency twice the BO frequency of a
single particle, regardless of the value of the statistical phase
θ . To derive Eq. (8), let us introduce in Eq. (6) the scaled time
variable τ = Ut (Ref. 26) and the amplitudes

bn,m = cn,m exp[iUtδn,m + iF (n + m)t], (A1)

so that the amplitude probabilities bn,m satisfy the coupled
equations

i
dbn,m

dτ
= − J

U
bn+1,m exp[iτ (δn,m − δn+1,m) − i(F/U )τ ]

− J

U
bn−1,m exp[iτ (δn,m − δn−1,m) + i(F/U )τ ]

− J

U
bn,m−1 exp[iτ (δn,m − δn,m−1) + i(F/U )τ

− iϕn,m−1] − J

U
bn,m+1 exp[iτ (δn,m − δn,m+1)

− i(F/U )τ + iϕn,m]. (A2)

Let us introduce the smallness parameter ε = J/U , which
measures the ratio between the hopping rate and the on-site
interaction energy, and let us assume a small forcing F such
that F/U ∼ ε2, i.e., let us set (F/U ) = f0ε

2, with f0 ∼ 1.
Let us then search for a solution to Eq. (A2) as a power series
expansion in ε:

bn,m(τ ) = b(0)
n,m(τ ) + εb(1)

n,m(τ ) + ε2b(2)
n,m(τ ) + · · · . (A3)

To ensure that the expansion (A3) is uniformly valid as τ

grows, multiple time scales

T0 = τ, T1 = ετ, T2 = ε2τ, . . . (A4)

have to be introduced to avoid the occurrence of secular
growing terms in the asymptotic expansion. Equation (A2)
can then be written in the form

i
dbn,m

dτ
= −εbn+1,m exp[iT0(δn,m − δn+1,m) − if0T2]

− εbn−1,m exp[iT0(δn,m − δn−1,m) + if0T2]

− εbn,m−1 exp[iT0(δn,m − δn,m−1) + if0T2

− iϕn,m−1] − εbn,m+1 exp[iT0(δn,m − δn,m+1)

− if0T2 + iϕn,m], (A5)

which is suited for an asymptotic analysis. Using the derivative
rule

d

dτ
= ∂

∂T0
+ ε

∂

∂T1
+ ε2 ∂

∂T2
+ · · · , (A6)

substitution of Eqs. (A3) and (A6) into Eq. (A5), and after
equating terms of the same power in ε, a hierarchy of equations
for successive corrections to bn,m is obtained. At leading order
∼ε0 one simply obtains

i
∂b(0)

n,m

∂T0
= 0, (A7)

i.e., b(0)
n,m does not evolve on the time scale T0. If we assume

as an initial condition that the two anyons occupy the same
lattice site n, one then has

b(0)
n,m = Bn(T1,T2, . . .)δn,m, (A8)

where the amplitudes Bn vary on the slow time scales T1,T2,....
At the order ∼εl (l � 1), one generally obtains an equation of
the form

i
∂b(l)

n,m

∂T0
= −i

∂b(0)
n,m

∂Tl

− G(l)
n,m

(
b(0)

n,m,b(1)
n,m, . . . ,b(l−1)

n,m

)
, (A9)

where the driving term G(l)
n,m on the right-hand side in the

equation depends on the lower-order approximations to bn,m.
To avoid the occurrence of secular growing terms, the dc term
in T0 on the right-hand side of Eq. (A9) should vanish. Such
a solvability condition enables one to determine the evolution
of the amplitudes Bn on the slow time scale Tl , namely, one
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has

i
∂Bn

∂Tl

= Ḡ(l)
n,n, (A10)

where the overbar denotes the time average with respect to the
T0 variable. In particular, at order ∼ε one has

G(1)
n,m = 0 for n = m or |n − m| > 1,

G
(1)
n,n+1 = −Bn+1 exp(−iT0 − if0T2)

−Bn exp(−iT0 + if0T2 + iθ ), (A11)

G
(1)
n,n−1 = −Bn−1 exp(−iT0 + if0T2)

−Bn exp(−iT0 − if0T2 − iθ ).

The solvability condition at order ∼ε is thus

∂Bn

∂T1
= 0, (A12)

and the solution at this order can be readily calculated from
Eq. (A9) and reads

b(1)
n,m = −Bn+1 exp(−if0T2)[exp(−iT0) − 1]

−Bn exp(iθ + if0T2)[exp(−iT0) − 1] for m = n + 1,
(A13)

b(1)
n,m = −Bn−1 exp(if0T2)[exp(−iT0) − 1]

−Bn exp(−iθ−if0T2)[exp(−iT0)−1] for m = n − 1,

b(1)
n,m = 0 otherwise.

To determine the slow evolution of the amplitudes Bn, we have
to push the asymptotic analysis to the order ∼ε2. At this order,
one obtains

G(2)
n,n = −b

(1)
n+1,n exp(iT0 − if0T2) − b

(1)
n−1,n exp(iT0 + if0T2)

− b
(1)
n,n−1 exp(iT0 + if0T2 + iθ )

− b
(1)
n,n+1 exp(iT0 − if0T2 − iθ ), (A14)

where b
(1)
n+1,n, b

(1)
n−1,n, b

(1)
n,n+1, and b

(1)
n,n−1 are given by Eq.

(A13). The solvability condition [Eq. (A10)] at order ∼ε2 thus
yields

i
∂Bn

∂T2
= 4Bn + 2Bn+1 exp(−iθ − 2if0T2)

+ 2Bn−1 exp(iθ + 2if0T2). (A15)

If we stop the asymptotic analysis at this order and reintroduce
the original variables, from Eqs. (A1), (A3), and (A8) one then
obtains

cn,m(t) = Bn(t)δn,m exp(−2inF t − iUt) + O(ε), (A16)

where the amplitude Bn evolves according to the
equation

i
dBn

dt
= iU

dBn

dτ
= iU

(
∂Bn

∂T0
+ ε

∂Bn

∂T1
+ ε2 ∂Bn

∂T2

)

= i
J 2

U

∂Bn

∂T2
. (A17)

Substitution of Eq. (A15) into Eq. (A17) yields

i
dBn

dt
=J ∗

effBn+1 exp(−2iF t)+JeffBn−1 exp(2iF t) + σBn,

(A18)

where Jeff and σ are defined by Eq. (9) given in the text.

Finally, after setting An(t) = Bn(t) exp(−2inF t + iσ t), one
has

cn,m(t) = An(t)δn,m exp(−iUt − iσ t) + O(ε), (A19)

where the slowly varying amplitudes An evolve according to

Eq. (8) given in the text.
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