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Absence of long-range superconducting correlations in the frustrated half-filled-band
Hubbard model
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We present many-body calculations of superconducting pair-pair correlations in the ground state of
the half-filled-band Hubbard model on large anisotropic triangular lattices. Our calculations cover nearly
the complete range of anisotropies between the square and isotropic triangular lattice limits. We find that the
superconducting pair-pair correlations decrease monotonically with increasing on site Hubbard interaction U for
interpair distances greater than nearest neighbor. For the large lattices of interest here the distance dependence of
the correlations approaches that for noninteracting electrons. Both these results are consistent with the absence of
superconductivity in this model in the thermodynamic limit. We conclude that the effective 1

2 -filled band Hubbard
model, suggested by many authors to be appropriate for the κ-(BEDT-TTF)-based organic charge-transfer solids,
does not explain the superconducting transition in these materials.
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I. INTRODUCTION

The two-dimensional (2D) Hubbard model has been ex-
tensively investigated because at 1

2 -filling it can successfully
describe the antiferromagnetic (AFM) phases found in many
strongly correlated materials. Since AFM phases often occur in
materials displaying unconventional superconductivity (SC),
such as the high-Tc cuprates and the organic κ-(BEDT-
TTF)2X [hereafter κ-(ET)2X] charge transfer solid (CTS)
superconductors, it has frequently been suggested that some
small modification of the model can yield a superconducting
state where the residual AFM fluctuations mediate an attractive
pairing interaction. In the case of the cuprates, this modifica-
tion involves a change in the carrier concentration (“doping”);
the doped 2D Hubbard model has been intensively investigated
with numerous analytic and numerical methods, but whether
or not SC occurs within this model is still controversial.

The AFM state in the 2D Hubbard model can also be
destroyed at fixed carrier concentration by the introduction
of lattice frustration. The model on the anisotropic triangular
lattice (see Fig. 1) has been used to describe the κ-(ET)2X
family of CTS, where SC occurs at fixed carrier density under
application of moderate pressure. The ET layers here consist
of strongly dimerized anisotropic triangular lattices, with the
intradimer hopping integrals much larger than the interdimer
ones. Each (ET)+2 dimer contains one hole carrier on the
average. This has been used to justify replacing each dimer
unit cell with a single site, and the underlying 1

4 -filled cation
band with an effective 1

2 -filled band.1

We investigate ground-state superconducting pair-pair cor-
relations within the Hamiltonian,

H = −t
∑

〈ij〉,σ
(c†i,σ cj,σ + H.c.) − t ′

∑

[kl],σ

(c†k,σ cl,σ + H.c.)

+U
∑

i

ni,↑ni,↓. (1)

In Eq. (1), c
†
i,σ creates an electron of spin σ on site i and

ni,σ = c
†
i,σ ci,σ . U is the on-site Hubbard interaction. We

consider a square lattice with hopping integral t along x and y

directions and frustrating hopping t ′ along the x + y direction
(see Fig. 1). The limits t ′/t = 0 and 1 correspond to the square
and the isotropic triangular lattices, respectively. All quantities
with dimensions of energy will be expressed hereafter in units
of t . We consider only the 1

2 -filled band corresponding to an
electron density per site ρ = 1.

The nonsuperconducting phases of this model, shown
schematically in Fig. 1, are relatively well established. As t ′ is
increased in strength, frustration destroys the q = (π,π ) AFM
ground state, replacing it with either a paramagnetic metallic
(PM) state or a nonmagnetic insulator (NMI) state.2,3 Numer-
ical calculations on this model and the related model with two
diagonal t ′ bonds in each plaquette have confirmed the pres-
ence of the PM, AFM, and NMI phases.2–19 The NMI phase has
been suggested as a candidate state3 that explains the apparent
quantum spin liquid (QSL) behavior seen in the strongly
frustrated κ-(ET)2Cu2(CN)3.1 As the NMI phase has already
been extensively investigated,3,4,6,9,15,16 in the present work we
will not consider the properties of this phase any further, but
will rather focus on the possibility of SC within the model.

Numerous mean-field theories have suggested that
unconventional SC occurs adjacent to AFM-PM phase
boundaries.7,8,20–26 Similar superconducting states have
been suggested for the closely related Hubbard-Heisenberg
model on the same lattice.27–31 Because of the proximity
of (π ,π ) AFM order, the suggested symmetry of the SC
order parameter is dx2−y2 . For t ′ ∼ 1 the magnetic ordering
q shifts to ( 2π

3 , 2π
3 ) corresponding to the 120◦ ordering found

in the triangular lattice antiferromagnetic Heisenberg model,
and consequently superconducting other order parameter
symmetries have been suggested.30 The estimated value of
t ′ for the κ-ET materials is however smaller than 1 (see
below),32,33 and also no evidence for 120◦ AFM order is
found experimentally within the κ-ET family.1

Superconducting pair-pair correlations calculated with nu-
merical methods going beyond mean field theory provide a
more accurate assessment of the presence of SC, provided
finite-size effects can be adequately controlled. Two criteria
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FIG. 1. (Color online) Lattice structure (see inset) and the ground-
state phase diagram of the 1

2 -filled band Hubbard model on the
anisotropic triangular lattice for 0 � t ′ < 1. Phases labeled are
paramagnetic metallic (PM), Néel antiferromagnetic (AFM), and
nonmagnetic insulator (NMI). dx2−y2 superconductivity has been
suggested to occur near the boundary of the AFM and PM phases
(see text). Filled circles are finite-size scaled values for phase
boundaries from PIRG calculations (see Sec. IV). The precise value
of Uc2 at t ′ = 0.8 is known with less certainty. At t ′ = 0.8 the solid
circle is an exact upper bound from the 4 × 4 lattice, while the
dashed circle shows the expected finite-size scaled value. The phase
boundary lines linking the points are only schematic guides to the eye.
Dashed vertical lines indicate the parameter regions we investigate
for superconductivity.

must be satisfied to confirm SC within the model: (i) the
superconducting pair-pair correlations must be enhanced over
the U = 0 values over at least a range of U , and (ii) the
pair-pair correlations must extrapolate to a finite value at long
inter-pair distances. We have previously calculated pair-pair
correlations for the 4×4 lattice using exact diagonalization.10

No enhancement of the pair-pair correlations by U was
found in these calculations, except for a trivial short-distance
enhancement10 (see also below). Our present work allows more
careful analyses of the distance dependence of the pair-pair
correlations, as well as the U dependence of the longer-range
components of these correlations, that were not possible within
the earlier small cluster calculation.

Pair-pair correlations for lattices comparable to those in
the present work have also been calculated using variational
quantum Monte Carlo (VMC) methods.13,15,17,34,35 VMC
results however depend to a great degree on the choice of
the variational wave function, and there are considerable
differences of opinion within the existing VMC literature.
Clearly, studies of pair-pair correlations on large lattices,
using many-body methods that do not depend on an a priori
choice of the wave function, are desirable. A candidate
method for calculations of strongly correlated systems is the
recently developed path integral renormalization group (PIRG)
method.36–39 Like VMC, PIRG is also variational and does not
suffer from a fermion sign problem as do standard quantum
Monte Carlo methods. Unlike VMC methods, however, instead
of an assumed functional form of the wave function, PIRG uses
an unconstrained sum of Slater determinants that is optimized
using a renormalization procedure.36–39 The NMI phase within
Eq. (1) was first identified using PIRG.2,3 Previous PIRG
calculations2–4,6,16 investigated the metal-insulator transition,

AFM ordering, and properties of the NMI phase in detail, but
did not discuss superconducting pair-pair correlations. Here
we revisit the model with PIRG and calculate pair-pair corre-
lations as a function of t ′ and U . As explained in Sec. III, we use
the most accurate version of the PIRG ground-state method,
quantum projection–PIRG (QP-PIRG), which combines sym-
metries with the renormalization procedure.38 As explained in
Sec. III, we also performed an “annealing” procedure to help
prevent the method from converging to local minima.

While early tight-binding band structures calculated using
the extended Hückel method found some κ-ET superconduc-
tors to have nearly isotropic triangular lattices with t ′ ≈ 1,
recent ab initio methods have determined that t ′ in the
experimental systems lie within the range 0.4 � t ′ � 0.8.32,33

Importantly, in this range of anisotropy the 120◦ AFM order is
not relevant. Furthermore, the AFM order is known experimen-
tally to be of the conventional Neél pattern.40,41 Consequently,
we limit our calculations to t ′ � 0.8. Specifically, we perform
our calculations for three distinct t ′ = 0.2, 0.5, and 0.8, as
shown in Fig. 1. The two large t ′ values chosen bracket the
estimated frustration in the κ-ET superconductors.32,33 We
choose a smaller t ′ = 0.2 in addition because it has been
suggested in some studies that SC is present even in the
weakly frustrated region of the phase diagram.17,26,30 The
phase diagram (Fig. 1) is qualitatively different at t ′ = 0.2
because the NMI phase does not occur for t ′ < 0.5.2,3,6 While
the estimate for degree of frustration is remarkably consistent
between different ab initio methods,32,33 the estimated value
of U for κ-(ET)2X is less certain. We therefore perform our
calculations over a range of U starting from U = 0.

The organization of the paper is as follows. In Sec. II, we
introduce definitions of the order parameters we calculate. In
Sec. III we describe the PIRG method. Section IV presents
our data for t ′ = 0.2, 0.5, and 0.8, followed by discussions
and conclusion in Sec. V.

II. ORDER PARAMETERS

To determine whether SC is present near the metal-insulator
(MI) transition, in addition to superconducting correlations
we need order parameters to distinguish between metallic
and insulating phases. To locate the MI transition we use
two different quantities. The first is the double occupancy
D = 〈ni↑ni↓〉. As U increases, a discontinuous decrease in D

occurs at the MI transition.3 In addition, we calculate the bond
order Bij between sites i and j ,

Bij =
∑

σ

〈c†i,σ cj,σ + H.c.〉. (2)

In the following we have labeled the bond order between sites
linked by the t ′ bond as B ′. This particular bond order is
nonzero in the PM phase but tends to zero in the AFM Neél
ordered phase because there electrons on sites connected by t ′
have parallel spin projections.10

The operator �
†
i,j creates a singlet pair on lattice sites i

and j :

�
†
i,j = 1√

2
(c†i,↑c

†
j,↓ − c

†
i,↓c

†
j,↑). (3)
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The pair-pair correlation function is defined as

Pα(r) = 1

4

∑

ν

g(ν)〈�†
i �i+r(ν)〉. (4)

In Eq. (4) the phase factor g(ν) determines the symmetry
of the superconducting order parameter. We consider two
possible pairing symmetries, dx2−y2 pairing (α = d in our
nomenclature below) where g(ν) = {+1,−1, + 1,−1} and
r(ν) = {x̂,ŷ,−x̂,−ŷ}, and dxy pairing (α = xy) where g(ν) =
{+1,−1, + 1,−1} and r(ν) = {x̂ + ŷ,−x̂ + ŷ,−x̂−ŷ,x̂−ŷ}.

In the presence of superconducting long-range order, Pα(r)
for the ground state in the appropriate pairing channel must
converge to a nonzero value for |r| → ∞. This is seen clearly
for example in the 2D attractive U Hubbard model.42–44

In the thermodynamic limit the long-distance limit of the
pair-pair correlation function, Pα(r → ∞), is proportional45

to the square of the superconducting order parameter, 〈�α〉2 ∝
|P (α(r → ∞)|. The magnitude of 〈�α〉 may further be used to
set limits45 on the superconducting condensation energy, gap
amplitude, and Tc.

III. METHOD

The PIRG method has been previously used for a variety
of strongly correlated systems including the 2D Hubbard
model,37 1

2 -filled frustrated 2D Hubbard models,2,3,6,16,38 and
the 1

2 -filled Hubbard model on the checkerboard lattice.46,47

Details of the method are well described in these references.
Here we discuss details of our PIRG implementation, and
present comparisons with exact results which demonstrate the
accuracy of the method for calculating pair-pair correlations.

The PIRG method uses a basis of L Slater determinants,
|φi〉. For L = 1 this coincides with the Hartree-Fock (HF)
approximation. In practical calculations, maximum L’s of a
few hundred are used. The method is initialized with the
L = 1 HF wave function or a similar random starting wave
function, and the PIRG renormalization procedure37 is used to
minimize the energy by optimizing through the action of the
operator exp(−τH ). One potential problem with the PIRG
renormalization procedure is that the method can become
trapped in a local minimum and not reach the true ground
state.46 Yoshioka et al. introduced a technique for avoiding
local trapping by introducing global modifications to the wave
function.46 Following Ref. 46, we also introduced similar
global modifications of the PIRG wave functions (“iteration
A” in Ref. 46), which modify determinants in a global manner
by acting on the wave function with exp[−τH ] defined by a
random set of Hubbard-Stratonovich variables. In addition, we
also introduced updates to the |φi〉 based on adding a random
variation to the matrix elements of [φi]j,k . The amplitude of
the variations is decreased systematically in a manner similar
to simulated annealing. We found the addition of these two
global updates to significantly improve the accuracy of the
results.

We also incorporated lattice and spin-parity symmetries
in the calculation.38 Reference 38 introduced two different
methods of using symmetry projection: (i) PIRG-QP, where
symmetry projectors are applied to the ground-state wave
function after it has optimized using PIRG; and (ii) QP-PIRG,
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FIG. 2. (Color online) Comparison of PIRG and exact results
for the 4 × 4 lattice with t ′ = 0.5. (a) Variance extrapolation of the
ground-state energy for U = 4. The symbol at �E = 0 is the exact
energy; the line is a linear fit. (b) Pd (r) versus r . Open (filled) symbols
are exact (PIRG) results. The inset shows relative percent error in
Pd (r) as a function of r . (c) Pd (r) at the largest possible pair spacing
on the finite lattice, Pd (rmax), as a function of U . Open (filled) symbols
are exact (PIRG) results. The inset shows the variance extrapolation
of Pd (rmax) for U = 4.

where symmetry projectors are applied at each step of the
PIRG optimization. Here we have used the second more
accurate of these two approaches, QP-PIRG. The lattice
symmetries we used included translation, inversion, and
mirror-plane symmetries, a total of 4N symmetries where N

is the number of lattice sites. We also applied the spin-parity
projection operator after the PIRG process. An advantage of
QP-PIRG is that much smaller basis sizes L can be used.38

Following Ref. 37 we define the energy variance �E =
(〈Ĥ 2〉 − 〈Ĥ 〉2

)/〈Ĥ 〉2. �E is used to correct for the finite
basis size L. For each set of parameters we performed the
annealing and A iterations for successively larger basis sizes
L. Each correlation function was then extrapolated to �E = 0
by performing a linear fit. The error bars reported in our results
are the standard errors estimated from the linear fit. The largest
L used here for 6 × 6 and 8 × 8 lattices was 256. The smallest
L results we used in the fitting process depended on the value
of U : for U � 2 we found that even L as small as 4 fit gave a
good linear variance extrapolation, while for larger U we only
used L � 16 results in the fit.

In Fig. 2, we compare results from our PIRG code with
exact diagonalization results for the 4 × 4 lattice.10 Here L

of up to 256 were used. Figure 2(a) shows the variance
extrapolation of the energy for t ′ = 0.5. The extrapolated value
for ground-state energy is −15.037 ± 0.002 compared to the
exact ground state of −15.031. In Fig. 2(b) we plot the pair-pair
correlation Pd (r) as a function of distance for U = 4. The
inset shows the percent relative error in Pd (r) as a function of
r . The maximum relative error is for r = rmax = 2

√
2 and is

smaller than 0.4%. Figure 2(c) shows the d-wave correlation
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FIG. 3. (Color online) PIRG results for t ′ = 0.2. Squares and
diamonds are for 6 × 6 and 8 × 8 lattices, respectively. (a) Double
occupancy D; (b) t ′ bond orders; (c) long distance dx2−y2 pair-pair
correlation function; Pd (r�) as a function of U (see text). The inset
shows Pd (r�) for the 8 × 8 lattice near the PM-AFM boundary. (d)
Enhancement over noninteracting system, �Pd (r,U ), for U = 2.75
as a function of distance. Circles here are exact 4 × 4 results. The
inset shows the long-range part of �Pd (r,U ) for the 8 × 8 lattice. In
all panels lines are only guides to the eye.

at the furthest distance, Pd (rmax), as a function of U for 4 × 4,
t ′ = 0.5. The inset here shows the variance extrapolation for
Pd (rmax) for U = 4. Again, as in Fig. 2(a), the extrapolation
of the physical quantity is well within the statistical error.

Our PIRG code was further verified against quantum Monte
Carlo (QMC) results for larger lattices in the t ′ = 0 limit
where QMC does not suffer from the fermion sign problem
at 1

2 -filling. For the 6 × 6 lattice, the QMC estimate for the
ground-state energy38 of Eq. (1) with U = 4 and t ′ = 0 is
E = −30.87 ± 0.05. Previous QP-PIRG calculations using
lattice translations and spin-parity during the PIRG projection
process, followed by a total-spin S = 0 projection, obtained38

E = −30.879. The extrapolated energy with our choice of 4N

lattice symmetries, spin-parity projection, and a maximum L

of 256 was almost identical, E = −30.89 ± 0.04.

IV. RESULTS

A. t ′ = 0.2

At t ′ = 0.2 a single transition is expected between PM and
AFM phases.3,10 In Figs. 3(a) and 3(b) we plot D and B ′ as
a function of U . The transition from the PM to an insulating
phase is clearly seen as a discontinuous decrease in B ′ and D at
U = Uc. Uc is only weakly size dependent at t ′ = 0.2—for the
4 × 4 lattice10 Uc = 2.95 ± 0.05, while for 6 × 6 and 8 × 8
lattices we found 2.75 < Uc < 3.00. We estimate Uc ≈ 2.7 in
the thermodynamic limit.

For all of the t ′ values we considered, we found that
dx2−y2 pair-pair correlations were of larger magnitude than
dxy correlations (in Sec. IV C below we show an explicit
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U
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0.1

0.2

0.3

0.4

P
d (

r=
0)

FIG. 4. (Color online) Short-distance (see text) dx2−y2 pair-pair
correlation function, Pd (r = 0), as a function of U for t ′ = 0.2.
Circles, squares, and diamonds are for 4 × 4, 6 × 6, and 8 × 8 lattices,
respectively. Lines are only guides to the eye.

comparison between the two). Figure 3(c) shows the dx2−y2

pair-pair correlations Pd (r�) as a function of U . The distance r�

is defined as the next-to-furthest possible separation r between
two lattice points on the finite lattice; r� = 2.24, 3.61, and 5.00
for 4 × 4, 6 × 6, and 8 × 8 lattices, respectively. Here we use
r� rather than the furthest distance rmax because of finite-size
effects45 associated with rmax. The 4 × 4 correlations are
considerably larger in magnitude because of the larger r� on
that lattice and we have not included them on Fig. 3(c). As seen
in Fig. 3(c), Pd (r�) has a tendency to decrease monotonically
with U and is smaller at all nonzero U compared to U = 0. At
UcPd (r�) decreases discontinuously.

In addition to the U dependence, it is also important to
examine the distance dependence of pair-pair correlations.
In Fig. 3(d) we plot �Pd (r,U ), defined as �Pd (r,U ) =
Pd (r,U ) − Pd (r,U = 0), as a function of r for U = 2.75.
Positive �Pd (r,U ) indicates enhanced pairing correlations
over the noninteracting limit. We choose U = 2.75 in the PM
state and close to the PM-AFM boundary where the greatest
enhancement of pair-pair correlations from AFM fluctuations
might be expected from prior work. Figure 3(d) includes the
exact 4 × 4�Pd (r,U ) as well. Our results in Figs. 3(c) and 3(d)
show that, as the system size increases, the long-range dx2−y2

pair-pair correlation function approaches that of noninteracting
fermions. We have confirmed similar behavior of �Pd (r,U ),
viz., absence of enhancement for other values of U (not shown
here) in either the PM or AFM regions.

As seen in Fig. 3(d), the only enhancement by U in
the pairing correlations is at r = 0. The r = 0 enhancement
occurs because Pd (r = 0) contains a component proportional
to the nearest-neighbor spin-spin correlation function; the
enhancement of AFM order by U leads to an increase45

in Pd (r = 0). In Fig. 4 we plot Pd (r = 0) as a function
of U . Precisely at Uc there is a discontinuous increase in
Pd (r = 0), even as the system becomes semiconducting, due
to the increase in the magnitude of AFM spin-spin correlations.
Importantly, only pair separations of r > 2 should be used to
judge the enhancement of pairing correlations, because for
r � 2dx2−y2 pairs overlap on the lattice.10 Here we find that
Pd (r) for distances beyond nearest-neighbor pair separation
always decrease monotonically with increasing U . As we
discuss further in Sec. V, the spurious increase of short-range
correlations is the primary reason that mean-field calculations
find SC near the MI transition.
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FIG. 5. (Color online) PIRG results for t ′ = 0.5. Circles, squares,
and diamonds are for 4 × 4, 6 × 6, and 8 × 8 lattices, respectively.
Panels (a)–(c) are the same as Figs. 3(a)–3(c) except t ′ = 0.5. Panel
(d) is the same as Fig. 3(d) except t ′ = 0.5 and U = 4.5. In all panels
lines are only guides to the eye.

B. t ′ = 0.5

Figure 5 shows D, B ′, and Pd (r) for t ′ = 0.5. Not
surprisingly, compared to t ′ = 0.2, Uc1 depends here more
strongly on lattice size, decreasing with increasing system size
(Uc1 = 5.4 ± 0.1 and 4.6 ± 0.1 in the 6 × 6 and 8 × 8 lattices,
respectively). Previous PIRG calculations found Uc1 ∼ 4.1
after performing finite-size scaling.3 Our results are consistent
with this value.

In contradiction to t ′ = 0.2 [see Fig. 3(b)], B ′ here is
nonzero on the insulating side of the MI transition, suggesting
that the nature of the insulating phase is different. We have also
calculated the spin structure factor Sσ (�q) (not shown here).
For U > Uc1, a peak appears in Sσ (�q) at �q = (π,π ). However,
S(π,π )/N appears to extrapolate to zero as N → ∞, based on
the three lattice sizes we have considered. This indicates that
the system does not have long-range AFM order at t ′ = 0.5 for
U > Uc1, consistent with the NMI phase previously identified
in this parameter region.2,3 Note that the larger B ′ in the
NMI phase than in the AFM phase is also consistent with
our previous exact diagonalization calculation (see Fig. 2 in
Ref. 10.) The properties of the NMI phase and the subsequent
NMI-AFM transition at even larger Uc2 have both been
extensively discussed in the literature before.2–4,6,15,16 Here
therefore we focus on the strength of pair-pair correlations as
a function of U and distance.

Figure 5(c) shows Pd (r�) as a function of U . As at t ′ = 0.2,
Pd (r�) decreases monotonically with U . At U = Uc1, Pd (r�)
decreases discontinuously and is of very small magnitude in
the NMI phase. The magnitude of Pd (r) does not increase as
U is increased further approaching the AFM phase. Figure
5(d) shows �Pd (r,U ) as a function of distance for t ′ = 0.5 for
U = 4.5. As in Fig. 4, at t ′ = 0.5 Pd (r = 0) increases at the MI
transition due to the increase in strength of nearest-neighbor
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FIG. 6. (Color online) PIRG results for t ′ = 0.8. Circles, squares,
and diamonds are for 4 × 4, 6 × 6, and 8 × 8 lattices, respectively.
Panels (a)–(c) are the same as Figs. 5(a)–5(c) except t ′ = 0.8. In (d)
t ′ = 0.8 and U = 5.5. In all panels lines are only guides to the eye.

AFM correlations, while long distance correlations are again
weaker at nonzero U than at U = 0.

C. t ′ = 0.8

Our results for t ′ = 0.8, shown in Fig. 6, are similar to those
for t ′ = 0.5. Here the PM region extends to somewhat larger3

U . As at t ′ = 0.2 and t ′ = 0.5 there is no enhancement of the
pairing correlations. Pd (r = 0) again shows an increase at the
MI transition. From finite-size scaling we estimated the value
for Uc1 = 5.0 ± 0.3 from our data. This value is identical to
earlier results.3

Several authors have suggested that the symmetry of the
superconducting order parameter changes from dx2−y2 to dxy

or s + dxy in the region of the phase diagram close to the
isotropic triangular lattice limit.25,30 In Fig. 7 we compare
the dx2−y2 and dxy correlations for U = 4 as a function of r .
Except at specific small r where pairs can overlap each other
on the lattice,10 we find that dx2−y2 correlations are always
stronger than dxy correlations. Plots of the Pxy(r) versus U also
show a monotonic decrease with increasing U , and �Pxy(r,U )
similarly approaches zero for large r .

V. DISCUSSION

In Sec. IV we presented superconducting pair-pair cor-
relations for the ground state of the 1

2 -filled band Hubbard
model on the anisotropic triangular lattice calculated using
the PIRG method. Our main results are that (i) in all cases
the superconducting pair-pair correlations at all finite U are
clearly weaker than in the noninteracting limit, except for
an enhancement of the very short-range component, and
(ii) at large distances the distance dependence of the pair-pair
correlations approaches that of the noninteracting system.
These results, in conjunction with earlier exact diagonalization
results,10 which show exactly the same trends, strongly suggest
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FIG. 7. (Color online) Comparison of dx2−y2 and dxy pair-pair
correlations as a function of distance r at t ′ = 0.8 and U = 4. (a) 6 ×
6 lattice; (b) 8 × 8 lattice. In both panels, circles (squares) correspond
to α = d (α = dxy). Lines are only guides to the eye.

that the superconductivity is not present in the model. Since
many of the earlier works did find SC within the same model
Hamiltonian, it is useful to compare these approaches and
results with ours. Broadly speaking, two different kinds of
methods had predicted SC within the triangular lattice Hubbard
model, mean field and the VMC. We discuss them separately.

Mean-field approaches. In all cases, mean-field methods
find a superconducting phase between the PM and AFM
phases.7,8,21,22 A NMI phase is found by some mean-field
methods7,8,21 but not others.22 However, there are further
inconsistencies—for example, the paramagnetic insulating
(PMI) phase in Ref. 21 in some regions of the phase diagram
unrealistically occurs at a temperature higher than that of
the PM phase. In the NMI phase the nearest-neighbor AFM
correlations are strong but AFM long-range order is not
present. At fixed t ′, increasing U drives the system from
the PM to NMI phases. Upon entering the NMI the dx2−y2

correlation at r = 0 increases in strength because the r = 0
correlation is proportional to the nearest-neighbor spin-spin
correlations. Our present results show that at the same time
as this trivial short-range correlation increases, the strength
of longer-ranged correlations decrease greatly. Mean-field
methods cannot capture these longer-ranged correlations and
erroneously extrapolate from the short-distance limit.

VMC. Within VMC a functional form for the wave function
is assumed at the outset. The three different phases found for
intermediate t ′ (PM, NMI, and AFM) require three different
assumptions for the functional form of the wave function. This
makes determining the true ground-state behavior extremely
difficult using VMC, especially near the phase boundaries.
PIRG uses instead an unconstrained superposition of Slater
determinants which does not suffer from these problems. The
assumption of a functional form is a serious disadvantage as
evidenced from the variety of results from different VMC
studies which are not consistent with one another. For example,
Ref. 34 did find SC in the model, while a later study by
the same authors did not.13 Liu et al. assume that the wave
function is a Gutzwiller projected BCS function and find SC.25

The appropriateness of such a wave function to describe SC

is however a controversial assumption—Tocchio et al., for
example, did not find SC within the same assumed wave
function form.15 The occurrence of the NMI phase within
VMC methods seems to be as much of a problem as within
mean-field methods—Tocchio et al. do not find evidence for
NMI at t ′ = 0.6, while PIRG does.3,15

SC has also been found in several models that are closely
related to the 1

2 -filled Hubbard model on the anisotropic
triangular lattice. These include the Hubbard-Heisenberg
model17,27–31 and the Hubbard model with two diagonal t ′
bonds per square plaquette.26,35 While we cannot compare
directly our PIRG results with these models, in nearly all cases
the methods used to study these models are identical to those
that have erroneously predicted SC within the present model.
We have begun a reinvestigation of these models.

We now return to the superconducting phase found in the
organic CTS. Our results here cover the entire parameter region
(0.4 � t ′ � 0.8) thought to be appropriate32,33 for the κ-phase
CTS superconductors within the effective Hubbard model
description for them, and clearly indicate that the 1

2 -filled band
Hubbard model is not sufficient to explain the occurrence
of SC in κ-ET. It is important in this context to recall that
in many CTS superconductors the insulator-superconductor
transition is not from an AFM phase but from a different
kind of exotic insulator. Examples include κ-(ET)2Cu2(CN)3,
which lacks long-range AFM order even at the lowest
temperatures of measurement and has been considered a
QSL candidate,1 but is superconducting under pressure,48

and other CTS superconductors where the insulating phase
adjacent to superconductivity is nonmagnetic and charge-
ordered (CO).49 Once again mean-field theory, now within the
1
4 -field band extended Hubbard Hamiltonian on anisotropic
triangular lattices, has suggested the possibility of a charge
fluctuation mediated CO-SC transition.50 Based on our present
work, there are reasons to doubt mean-field approaches to SC
within correlated-electron models in general and these earlier
results should be checked through many-body calculations.

The different natures of the unconventional semiconductors
proximate to SC in the CTS confront theorists with a unique
challenge. While mean-field theories suggest a different
mechanism for each different semiconductor-superconductor
transition, it appears unlikely to us that structurally similar
materials, with identical molecular components in some cases,
should require different mechanisms for SC. Given how
difficult a problem correlated-electron SC has turned out to
be we suggest that an alternate approach is to determine
first how to construct a theoretical framework within which
a unified theory of SC begins to look feasible, and then to
search for the same. We have recently shown how it may be
possible to construct such a framework for the CTS.51–54 In
this picture, the κ-(ET)2X and other dimerized CTS should
be described in terms of the underlying 1

4 -filled band as
with the other CTS superconductors.51,52 n the presence of
strong dimerization and relatively weak frustration, AFM
wins. Under increasing frustration though, a transition occurs
from AFM with uniform charge density on each dimer to
a charge-ordered paired singlet state we have termed the
paired electron crystal (PEC).51,52 Experimental examples of
the PEC in 2D CTS include β-(meso-DMBEDT-TTF)2PF6
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(Ref. 55) and β ′-EtMe3P[Pd(dmit)2]2 (Refs. 56 and 57),
which have precisely the same CO and bond patterns as in
the PEC model,51,52 and are superconducting under pressure.
The application of pressure corresponds to a further increase
in frustration and gives the possibility of a paired electron
liquid superconductor,58 a realization of the charged boson
SC first proposed by Schafroth.59 Although more work will
be necessary to prove this, this theoretical approach has the
advantage that it leads to a single model for correlated-electron
SC in the CTS. Even more interestingly, we have pointed out
that there exist several frustrated strongly correlated inorganic
1
4 -filled superconductors that can perhaps be described within
the same model.52–54

Finally, the experimental observation of AFM60 in ex-
panded fullerides A3C60 has led to the modeling of these
compounds in terms of a 3D nondegenerate 1

2 -filled band
Hubbard model.61 The threefold degeneracy of the lowest

antibonding molecular orbitals in C60 is removed by Jahn-
Teller instability.60,61 The observation of a spin gap in the anti-
ferromagnetic state validates the nondegenerate description.61

The dynamic mean-field theory (DMFT) proposed for the
AFM to SC transition in the fullerides within this 3D effective
1
2 -filled band Hubbard model61 is, however, very similar to the
DMFT theories of SC in the 2D CTS.7 Our results here suggest
that a reexamination of the spin-fluctuation mechanism of SC
in the fullerides may also be called for.
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