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In this paper we construct fully symmetric wave functions for the spin-polarized fractional Chern insulators
(FCIs) and time-reversal-invariant fractional topological insulators (FTIs) in two dimensions using the parton
approach. We show that the lattice symmetry gives rise to many different FCI and FTI phases even with the
same filling fraction ν (and the same quantized Hall conductance σxy in the FCI case). They have different
symmetry-protected topological orders, which are characterized by different projective symmetry groups. We
mainly focus on FCI phases which are realized in a partially filled band with Chern number 1. The low-energy
gauge groups of a generic σxy = 1/m · e2/h FCI wave function can be either SU(m) or the discrete group Zm,
and in the latter case the associated low-energy physics are described by Chern-Simons-Higgs theories. We use
our construction to compute the ground-state degeneracy. Examples of FCI/FTI wave functions on honeycomb
lattice and checkerboard lattice are explicitly given. Possible non-Abelian FCI phases which may be realized in
a partially filled band with Chern number 2 are discussed. Generic FTI wave functions in the absence of spin
conservation are also presented whose low-energy gauge groups can be either SU(m) × SU(m) or Zm × Zm. The
constructed wave functions also set up the framework for future variational Monte Carlo simulations.
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I. INTRODUCTION

Phases of matter in condensed-matter systems can almost
always be characterized by the Landau-Ginzburg symmetry-
breaking theory.1,2 Experimental discovery of integer and frac-
tional quantum Hall states in two-dimensional (2D) electron
gas under a strong external magnetic field3,4 has provided strik-
ing counterexamples of this paradigm. The fractional quantum
Hall liquids are particularly fascinating in the sense that their
low-energy excitations are quasiparticles carrying fractional
electric charge5 and obeying anyonic statistics.6 Although
these liquid phases do not break physical symmetries, they
are still different quantum phases. One measurable difference
is in their edge states: Despite the fact that these liquids are
all insulators in the bulk, they all possess certain edge metallic
modes.7 In general, different bulk phases host different edge
states, which can be detected by various experimental probes
such as electric transport.8

A few years after the experimental discovery of integer
quantum Hall effect (IQHE), Haldane showed that the essence
of it is not the external magnetic field,9 by explicitly writing
down a lattice model Hamiltonian of IQHE with zero net
magnetic field. However, it takes more than two decades for
people to show that a similar statement is true even for FQHE.
Recently, results from a series of model studies,10–18 including
convincing evidence from exact diagonalizations,12–17 indicate
that fractional quantum Hall states exist in the ground states
of interacting lattice models, in the absence of an external
magnetic field. It is found that the ground state is likely to
respect the full lattice symmetry. Here we call these fractional
ground states spin-polarized “fractional Chern insulators”
(FCIs) to distinguish them from the traditional fractional
quantum Hall states in an external magnetic field. These
proposed lattice models share a common feature: a partially
filled nearly flat 2D band with nontrivial band topology.

The concept of band topology originates from the well-
known TKNN index (or Chern number) of an IQH insulator.19

In the past few years, this concept has been generalized to

time-reversal symmetric systems and triggers the theoretical
and experimental discoveries of topological insulators in
spin-orbital coupled compounds in both two and three spatial
dimensions.20–22 In 2D, a time-reversal symmetric band insula-
tor is characterized by a Z2 topological index. Experimentally,
HgTe quantum heterostructure has been shown to be a 2D
topological insulator.23 In the simplest limit, 2D topological
insulator can be viewed as a direct product of the up-spin and
down-spin wave functions hosting opposite TKNN index.

It is then quite natural to ask whether similar time-reversal-
invariant (TRI) versions of 2D fractional topological insulators
(FTIs) exist or not, and there has been a lot of interest in this
issue.24–28 In the simplest limit when spin along the z direction
is conserved, it can be understood as the direct product
of wave functions of the up-spin and the down-spin with
opposite FQHE. Clearly, this direct product is a fully gapped
stable phase. In addition, it must have nontrivial ground-state
degeneracy on a torus even in the presence of a small Sz

conservation-breaking perturbation, because the ground-state
degeneracy cannot be lifted by an arbitrary local perturbation.
So there is no question that, in principle, this fractionalized
phase could exist. One important issue is whether this phase
hosts stable gapless edge excitations. This problem has been
studied by Levin and Stern.25 Another important open question
is whether TRI FTI can exist in a reasonable Hamiltonian.

In order to realize the FCI or FTI phases in experiments,
one should find a compound with a nearly flat topological
nontrivial band so that the correlation effect is strong. Naively,
this is unnatural because usually a flat band is realized by
spatially localized orbitals which do not support topological
nontrivial hopping terms. However, a very recent theoretical
investigation17 on transition metal oxide heterostructures
indicates that a nearly flat topological nontrivial band can
be naturally realized in the eg orbital double-layer perovskite
grown along the [111] direction. Exact diagonalization in the
same work shows that fractional quantum Hall state can be
realized, in principle, when the nearly flat band is partially
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filled. Because the temperature scale of the FCI/FTI physics in
this system is controlled by short-range Coulomb interaction,
it can be a high-temperature effect.

Fractional quantum Hall states, especially the non-Abelian
ones, have been shown to be very useful building blocks of
quantum computers. If high-temperature FCI/FTI physics can
be realized experimentally, it will certainly have deep impact in
condensed-matter physics, including the efforts on topological
quantum computation.29

Motivated by the recent progresses on FCI/FTI physics, in
this paper we try to address several important issues: What are
the many-particle wave functions of 2D FCIs/FTIs? Can there
be more than one FCI/FTI phase with the same filling fraction?
If the answer is positive, can we classify these quantum phases
(or ground-state wave functions)?

Historically, Laughlin’s wave functions of FQH states in
a magnetic field5 have been shown to be one of the most
important theoretical advances in many-particle physics. It
allows people to understand a lot of properties of FQH liquids
in a compact fashion, including the fractionalized quasiparticle
excitations,6 topological ground-state degeneracies,30,31 as
well as constructing the low-energy effective theories.32–34

Here in the case of FCI/FTI systems, analytical understanding
of the ground-state wave functions will help us extract various
measurable data in a similar way.

Recently there was an interesting work on constructing FCI
wave functions that proposed a one-to-one mapping between
the lattice problem and the magnetic field problem.35 We would
like to emphasize that the wave function problem for FCI is
related to that for the magnetic field case, yet they are very
different from each other. This is because the lattice symmetry
of FCI is fundamentally different from the continuum case
of the 2D electron gas. In fact, the recently discovered FCI
states preserve all the lattice point group symmetry as well as
translational symmetry.36 Here in this paper, we point out that
as a consequence of the lattice symmetry, there exist many
different quantum FCI phases, all respecting the full lattice
symmetry, even at the same filling fraction with the same
quantum Hall conductance. These different FCI phases are
distinct in the bulk in a more subtle way. One hand-waving
statement is that the bulk quasiparticle excitations of these
phases carry different lattice quantum numbers. These distinct
FCI phases cannot be adiabatically connected with each other
without a phase transition while the lattice symmetry is
respected. Similar phenomena of distinct topologically ordered
phases protected by symmetry is known in the context of
quantum spin liquids37 and other low-dimensional topological
phases.38

Now we outline the content of this paper. We start with the
spin-polarized FCI at filling ν = 1

m
(m is an odd number). In

Sec. II the SU(m) parton construction of the fractional quantum
Hall states (or spin-polarized FCI states) is introduced on a
lattice, which is a natural generalization of the continuum
case.5,39 We argue that a general FCI wave function could
break the SU(m) gauge group down to Zm, and consequently
the low-energy dynamics is described by Chern-Simons-Higgs
theories. We explicitly write the form of the electronic FCI
wave functions, which will be useful for future variational
Monte Carlo study. We construct quasiparticle excitations
of such FCI states. To demonstrate how lattice symmetry

restricts the structure of the wave functions, we introduce
the concept of projective symmetry group (PSG),37 which
serves as the mathematical language to classify different
symmetry-protected FCI phases.

With these theoretical preparations, in Sec. III we discuss
one particular example, that is, the checkerboard lattice
model,11,12 and write two SU(m) FCI wave functions and
two Zm FCI wave functions in distinct universality classes for
ν = 1/3. These wave functions support the same σxy = 1

3
e2

h

quantized Hall conductance and similar topological properties.
They are characterized by different PSGs in the bulk. These
states can all serve as candidate states for the FCI state found
in numerical simulations.12,13,15 Which state is realized in the
simulated model12,13,15 would be determined by energetics.
Because our proposed wave functions have the form of a
Slater determinant and can be effectively implemented by vari-
ational Monte Carlo approach, the energetics of the proposed
states can be studied by future numerical investigation. In
Appendix G we present another four examples of distinct FCI
phases in the honeycomb lattice model:9 Two are SU(m) states
and the other two are Zm states. We also propose spin-polarized
FCI states with non-Abelian quasiparticles, which might be
realized in nearly flat bands with Chern number C > 1. Such
non-Abelian FCIs might be used to build a universal quantum
computer.29,40

In Sec. IV we demonstrate that our parton construction can
be used to compute the topological ground-state degeneracy.
This is particularly important for the Zm states, which belong
to a new class of FQH wave functions.

In Sec. V we generalize our efforts to construct ground-state
wave functions of TRI FTIs. When the mixing between the
up- and down-spins is weak in the electronic Hamiltonian, it
is natural to generalize our spin-polarized results to this case.
For filling fraction ν = 2

m
(on average ν = 1

m
for each spin),

we present classes of SU(m)↑ × SU(m)↓ and Z
↑
m × Z

↓
m wave

functions and discuss their properties including quasiparticle
statistics and ground-state degeneracies. We also propose a
parton construction formalism which allows one to write
generic electron wave functions for TRI FTI states in the
absence of spin conservation. We can deform such a generic
TRI FTI wave function in the absence of spin conservation
into a Sz-conserved TRI FTI wave function (where spin-↑
and spin-↓ decouple) by continuously tuning a parameter.
The stability of such a state against perturbations is briefly
discussed.

II. SU(m) PARTON CONSTRUCTION OF SPIN-POLARIZED
FRACTIONAL CHERN INSULATOR STATES

A. A brief review of Laughlin’s FQH state
from SU(m) parton construction

Soon after the experimental discovery of fractional quantum
Hall (FQH) effects,4 Laughlin proposed a series of variational
wave functions5 which were shown41 numerically to be a very
good description of FQH states at odd-denominator filling
fraction ν = 1/m. Later this idea of constructing trial wave
functions was generalized to other filling fractions.42–44 An
important lesson we can learn from Laughlin’s wave function
is as follows. With a fixed filling fraction (or a fixed number of
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flux quanta through the sample), the many-body wave function
tends to vanish as fast as possible when two electrons approach
each other so that the repulsive Coulomb energy between
electrons could be minimized. As an example, Laughlin’s state
at ν = 1/3 is nothing but the cube of the wave function for a
filled lowest Landau level. We can construct this wave function
by splitting an electron into three fermionic partons:

c(r) = f1(r)f2(r)f3(r). (1)

Naturally, from Eq. (1) we can see each parton carries U(1)
electric charge e0 = e/3, where e stands for the electron
charge. The electron wave function is obtained through the
following projection:

�e({ri}) = 〈0|
N∏

i=1

f1(ri)f2(ri)f3(ri)|MF 〉, (2)

where |0〉 represents the parton vacuum and |MF 〉 can be
any mean-field state of the three partons f1,2,3. When each
of the three partons occupy the lowest Landau level (LLL)
one immediately obtains Laughlin’s state �ν=1/3({ri}) =
[�′

ν=1({ri})]3 = ∏
i<j (zi − zj )3 exp[−∑N

i=1 |zi |2/(4l2
B)]. We

have chosen the disk geometry and the symmetric gauge. zi =
xi + iyi are complex coordinates, lB = √

h̄/|eB| = l′B/
√

3 is
the electron magnetic length, and l′B is the parton magnetic
length.

Since each kind of parton occupies a LLL, the electromag-
netic response of the FQH state �ν=1/3({ri}) = [�′

ν=1({ri})]3

is characterized by Hall conductivity σxy = 3 · ( e
3 )2/h = 1

3
e2

h
.

This reproduces the correct filling fraction and the many-body
Chern number. Note that electron operator c(r) in Eq. (1)
is invariant under any local SU(3) transformation on the
three partons (f1,f2,f3)T . The mean-field Hamiltonian density
describing the Laughlin state is45

HMF = 1

2m∗

3∑
α=1

f †
α (r)[−i∇ − e0A(r)]2fα(r), (3)

where m∗ is the effective mass of each parton. This mean-field
Hamiltonian preserves the SU(3) gauge symmetry and partons
will also couple to a SU(3) internal gauge field. Its effective
theory is the SU(3)1 Chern-Simons gauge theory, which
explains the threefold topological ground-state degeneracy
on a torus.46 These f † partons are nothing but charge e/3
quasiparticle excitations5 of Laughlin state. Indeed, after
projection (2) the three species of partons f1,2,3 become
indistinguishable thanks to the internal SU(3) symmetry: Each
f parton creates a charge −e/3 quasihole upon acting on the
ground-state |MF 〉. It is straightforward to verify that the wave
function

�e({ri}|w1,2,3)

= 〈0|f1(w1)f2(w2)f3(w3)
N−1∏
i=1

f1(ri)f2(ri)f3(ri)|MF 〉

(4)

reproduces the Laughlin wave function with three quasiholes
at w1,2,3 up to a constant factor. Hence, these partons are indeed

charge e/3 anyons obeying fractional statistics with statistical
angle θ1/3 = π

3 .

B. Zm FCI state and its quasiparticles
from SU(m) parton construction

Since the three seemingly different partons f1,2,3 are essen-
tially the same quasihole excitations with the same quantum
numbers, physically it is attempting to include the tunneling
terms f †

αfβ,α 
= β in the mean-field Hamiltonian. By mixing
different partons, these terms will break the internal SU(3)
gauge symmetry down to a a subgroup of SU(3), which is Z3,
the center of the SU(3) group, in the most generic case where
f †

αfβ,∀α 
= β terms are present. In general, the projected Z3

wave function (2) is different from its parent projected SU(3)
wave function. For a 2D electron gas in a magnetic field,
however, people usually focus on the LLL within which the
many-body wave function is an analytic function (e.g., in the
symmetric gauge on a disk). It is straightforward to show that
as long as the mixing terms act inside the Hilbert space of
LLL, the corresponding electron wave function (2) for a Z3

state remains the same as that of its parent SU(3) state. This is
because the parton wave function describes a state with LLL
fully filled. Mixing between different partons within the LLL
Hilbert space only gives a unitary transformation of basis and
does not modify the parton wave function. For a lattice model,
it is natural to consider mixing terms acting between all bands
(rather than within the filled bands), and the corresponding
electron wave function of a Z3 state will be a different wave
function from that of its parent SU(3) state. For a filling fraction
ν = 1/m, our discussion straightforwardly generalizes to the
corresponding Zm [the center of the SU(m) group] state and
its parent SU(m) state.

To our knowledge, the Zm parton states of FQHE have not
been proposed before. For this new class of wave function,
several natural questions need to be answered. What are the
quasiparticles in the Zm state? What is the low-energy effective
theory of the Zm state? Will it preserves the topological
properties, such as ground-state degeneracy? We answer these
questions in this paper and find the topological properties of the
Zm states are identical to the SU(m) states. Their difference
lies in the PSG, which is protected by lattice symmetry. In
general, Zm states and SU(m) states both serve as candidate
ground states for the FCI states of a ν = 1/m filled band with
Chern number 1.

To begin with, let us consider the quasiparticle excitations
in a Zm state. The physical quasiparticle excitations in a Zm

state are constructed by inserting fluxes in the mean-field
ansatz of f †

αfα terms and simultaneously creating vortices
(or defects) in the Higgs condensates 〈f †

αfβ〉,α 
= β. In 2D,
because π1[SU(m)/Zm] = Zm, these defects are the pointlike
vortices carrying Zm gauge fluxes. Because the Zm flux can
be considered to be localized in a single plaquette, one can
effectively interpret it as a overall U(1) gauge flux of all the f

partons. Namely, when a f parton winds around a fundamental
vortex, it experiences a 2π/m flux. Due to the Chern numbers
of the filled parton bands, this vortex also binds with a single
f -parton gauge charge and thus carries electric charge e/m.
Because this object carries both flux and gauge charge, the
fractional statistical angle θ = π/m results. These are exactly
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FIG. 1. (Color online) An anyonic quasiparticle and its antiparti-
cle in a Zm state on the honeycomb lattice. The dashed line denotes
the string of ei2πk/m phase shifts connecting the two plaquettes where
quasiparticle Q1 and its antiparticle Q2 are located. On top of
the ground-state mean-field ansatz, any mean-field bond crossing the
string should pick up a phase shift ei2πk/m. Here we only demonstrate
the phase shift of nearest-neighbor (NN) mean-field amplitudes by
triple arrows in the figure.

the same electric charge and statistics that a quasiparticle
carries in the SU(m) state. We conclude that the topological
properties of quasiparticles are the same in both the Zm and
its SU(m) parent state.

Following the above discussions, we can write the wave
functions with low-energy anyonic excitations in a Zm state.
At filling fraction ν = 1/m, in order to create one quasiparticle
Q1 at w1 and its antiparticle Q2 at w2, we need to insert 2πk/m

flux in a plaquette Pw1 at position w1 and −2πk/m flux in a
plaquette Pw2 at position w2 with k = 1, . . . ,m. Q1 carries
2πk/m flux and ek/m charge while Q2 carries −2πk/m flux
and −ek/m charge. Both Q1 and Q2 have statistical angle
θ = k2π/m and their mutual statistical angle is θ ′ = −k2π/m.
They are realized by creating ei2πk/m phase shift for all mean-
field amplitudes on the string connecting two plaquettes Pw1

and Pw2 , on top of the mean-field ansatz for the ground state.
An example of such a pair of quasiparticle and its antiparticle
in a Zm state on honeycomb lattice is schematically shown in
Fig. 1. The corresponding electron wave function is obtained
by the projection of this new mean-field ansatz to the electronic
degrees of freedom. When m = 3, this projection is given by
Eq. (2).

The ground-state degeneracy of a Zm FCI state at ν = 1/m

on a torus can also be understood once we know its quasiparti-
cle statistics.31,47 Consider the following tunneling process T1:
A pair of quasiparticle (with flux 2π/m and charge e/m) and its
antiparticle (with flux −2π/m and charge −e/m) are created
and the quasiparticle is dragged around the noncontractible
loop X1 along the x1 direction on the torus before it is finally
annihilated with it antiparticle. This tunneling process will
leave a string of ei2π/m phase shifts (as shown in Fig. 1) along
this loop X1; therefore, it has the same physical effects as
adiabatically inserting a 2π/m flux in the noncontractible
loop X2 along x2 direction on the torus. Note that when

the quasiparticle–anti-quasiparticle pair carries flux ±2πk/m

and charge ±ke/m the corresponding tunneling process is
realized by T k

1 . Similarly, we can define a tunneling process
T2 by dragging the fundamental quasiparticle around the
noncontractible loop X2 once, which is physically equivalent
to inserting 2π/m flux in noncontractible loop X1. In the
thermodynamic limit, the Hilbert space of degenerate ground
states should be expanded by these tunneling processes.47

The two tunneling operators satisfy the following “magnetic
algebra”:

T1T2 = T2T1e
2π/m. (5)

This is straightforward to understand from the point of view
of Aharonov-Bohm effect. Another way to understand it is be-
cause the tunneling process T −1

1 T −1
2 T1T2 can de continuously

deformed into two linked loops31 and corresponds to a phase
of 2θ1/m, where θ1/m = π/m is the statistical angle of the
fundamental quasiparticle. All degenerate ground states can
be labeled by, for example, eigenvalues of unitary operators
T1 and T m

2 (since they commute with each other). In this basis
T2 acts like a ladder operator and changes the eigenvalue of
T1 by a phase ei2π/m. In this way one can see the ground-state
degeneracy of a Zm state on torus is m-fold. We can easily
generalize this discussion to a genius-g Riemann surface
with g pairs of noncontractible loops and the corresponding
ground-state degeneracy is mg-fold. This is consistent with
the ground-state degeneracy calculated from the low-energy
effective theory, as will be shown in Sec. IV in a formal way.

Because the discussion on low-energy effective theory of
the Zm state involves more technical details, we postpone it
to Sec. IV, where we compute its ground-state degeneracy.
We show that the ground-state degeneracy of a Zm state is the
same as that of a SU(m) state: mg-fold on a genus-g Riemann
surface.

C. Regarding lattice symmetries

In the numerical simulations of FCI phases,12,13 only the
m-fold topological degeneracy of ν = 1/m FCI is observed
on torus. This indicates that the FCI wave functions respect
the full lattice symmetry, since otherwise there should be extra
degeneracies due to lattice symmetry breaking. This motivates
us to write down the fully symmetric FCI wave functions.

In the following, we outline the general strategy to construct
fully symmetric FCI states on a lattice in the parton approach.
Here we focus on spin-polarized FCI states with filling fraction
ν = 1/m through the SU(m) parton construction. The electron
operator is given by

c(r) =
m∏

α=1

fα(r), (6)

where r is the coordinate of a lattice site. For simplic-
ity we assume there is only one orbital per lattice site.
As mentioned earlier, this parton construction has a local
SU(m) symmetry since the electron operator c(r) is invariant
under any local transformation fα(r) → ∑

β Gαβ(r)fβ(r),
where G(r) ∈ SU(m). A generic parton mean-field ansatz is
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written as

HMF =
∑
r,r′

∑
αβ

f †
α (r)Mαβ(r|r′)fβ(r′), (7)

where M(r|r′) = M†(r′|r) is a m × m matrix assuming
there is one electron orbital per site. Under a local SU(m)
gauge transformation {G(r)} it transforms as M(r|r′) →
G(r)M(r|r′)G†(r′). Again, once we obtain a mean-field
state |MF 〉 with the right filling number from Eq. (7), the
corresponding electron wave function is obtained through

�e({ri}) = 〈0|
N∏

i=1

c(ri)|MF 〉 = 〈0|
N∏

i=1

m∏
α=1

fα(ri)|MF 〉, (8)

whose explicit form is a Slater determinant, as given later in
Eq. (10).

Not all parton mean-field ansatzes correspond to ν = 1/m

FCI states. Let us start from a SU(m) mean-field state with
Mαβ(r|r′) = δα,βT (r|r′): HMF

α = ∑
r,r′ f †

α (r)Tα,β(r|r′)fα(r′),
where each flavor of the parton has the same filling number as
the electron. For ν = 1/m FCI states in topological flat bands,
the filling fraction is such that on average there is one electron
(hence, one parton with each flavor) per m unit cells. If the
mean-field ansatz (7) has explicit lattice translation symmetry,
however, the corresponding state with ν = 1/m filling would
most likely be a gapless metallic state48 since only a fraction
(1/m) of the lowest band is filled. How does one construct a
gapped mean-field ansatz of FCI with filling fraction 1/m?

The answer lies in the SU(m) gauge structure of the parton
construction (6). This gauge structure allows the physical
(lattice) symmetry to be realized projectively in the parton
mean-field ansatz, which gives rise to a symmetric electron
wave function after projection. Briefly speaking, the mean-
field state itself can explicitly break lattice symmetries (such
as lattice translations) while the electron wave function after
projection (8) remains fully symmetric.

By inserting, for example, 2π/m flux in each original unit
cell, one can enlarge the unit cell by m times. Therefore, the
corresponding mean-field state with filling ν = 1/m is a state
filling the lowest m bands of mean-field ansatz (7). If each of
the m lowest bands have a Chern number +1, the mean-field
state filling these m bands would have total Chern number +m,
and the corresponding Hall conductivity is

σxy = m ·
(

1

m

)2

· e2

h
= 1

m

e2

h
, (9)

because each parton carries U(1) electric charge e/m. This
gives the correct electromagnetic response of a ν = 1/m spin-
polarized FCI state.

Here the mean-field Hamiltonian (7) explicitly breaks lat-
tice translation symmetry due to the unit cell enlargement, but
as long as the translated mean-field ansatz can be transformed
to the original ansatz by a local SU(m) gauge rotation, the
corresponding electron wave function (8) still respects the
translation symmetry. This is because any two mean-field
ansatzes differing by a local SU(m) gauge rotation give exactly
the same electron wave function after projection. Similarly,
even though the mean-field Hamiltonian breaks other lattice
symmetries such as the point group symmetry, the electron
wave function after projection still can be fully symmetric.

The mean-field ansatz simply forms a projective representation
of the symmetry group. The mathematical framework of
constructing fully symmetric electron wave functions based
on parton mean-field ansatzes is the PSG, which will be
introduced shortly. The technique of enlarging the unit cell
by m times without physically breaking any lattice symmetry
will be generalized to the case of TRI FTI states with filling
fraction ν = 2/m in Sec. V.

Following this strategy, we always require that the parton
mean-field ansatz of ν = 1/m FCI state breaks lattice trans-
lation symmetry explicitly and enlarges the unit cell by m

times, so that the resultant mean-field state is an insulator. The
partons will fill the lowest m bands of the mean-field spectrum
and the corresponding electron state after projection would
still be gapped. Now that the number of momentum points
of each band in the (reduced) first Brillouin zone equals the
electron number N , we can see the electron wave function (8)
is nothing but a Slater determinant,

�e({ri})Zm
= detWmN×mN,

W(α−1)N+i,(n−1)N+j = φkn
j

(
rα
i

)
, (10)

α,n = 1, . . . ,m; i,j = 1, . . . ,N,

where φkn
j
(rα

i ) represents the eigenvector of mean-field Hamil-
tonian (7). To be specific, φkn

j
(rα

i ) corresponds to the fα parton
component in momentum-kj single-particle eigenvector of the
bottom-up nth band. Here α,n = 1, . . . ,m and i,j = 1, . . . ,N ,
where N is the total electron number at filling fraction
ν = 1/m. Note that for a SU(m) mean-field ansatz (25) in the
absence of mixing terms, the lowest m bands are all degenerate
and we have φkn(rα) = φk(r)δn,α . The corresponding electron
wave function (10) reduces to the product of m copies of a
Slater determinant:

�e({ri})SU(m) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

det

⎡
⎢⎢⎢⎣

φk1 (r1) · · · φkN
(r1)

φk1 (r2) · · · φkN
(r2)

· · · · · · · · ·
φk1 (rN ) · · · φkN

(rN )

⎤
⎥⎥⎥⎦
⎫⎪⎪⎪⎬
⎪⎪⎪⎭

m

, (11)

where φkj
(ri) is the momentum-kj single-particle

eigenvector of parton mean-field Hamiltonian HMF
α =∑

r,r′ f †
α (r)T (r|r′)fα(r′), with ∀α = 1, . . . ,m. This is a lattice

version of Laughlin’s state in free space.5 However, once we
add lattice-symmetry-preserving parton mixing terms, which
breaks gauge symmetry from SU(m) to Zm, the electron wave
function (10) of a Zm FCI state, as well as its PSG, which
will be introduced shortly, will immediately become different
from its parent SU(m) state (11). We emphasize again that
only when the unit cell is enlarged by m times, will we have
the same number of momentum points kj as the electron
number N . The mean-field amplitudes can be determined by
variational Monte Carlo study of the energetics of electronic
wave functions (10).

Considering flux insertion in order to enlarge the unit cell in
the mean-field ansatz (7), another question arises: Can there be
more than one way of inserting fluxes into plaquettes without
breaking physical lattice symmetries? If yes, how does one
classify different mean-field ansatzes (7)? The answer of the
first question is positive and to answer the second question, we
need to introduce a mathematical structure: PSG37 in order to
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characterize different “universality classes” of symmetric FCI
states. PSG classifies different mean-field ansatzes which form
a projective representation of the physical symmetry group. In
the following we give a brief introduction of PSG.

Note that there is a many-to-one correspondence between
parton mean-field states and physical electron states due to the
above projection operation: Any two parton mean-field states
related to each other by a SU(m) gauge transformation {G(r)}
correspond to the same electron state. As a result, although
the physical electron state preserves all lattice symmetry, its
parton mean-field ansatz may or may not explicitly preserve
these lattice symmetries. The physical lattice symmetries are
realized projectively in the mean-field ansatz. More precisely,
in a generic case the parton mean-field ansatz (7) should be
invariant under a combination of lattice symmetry operation U

and a corresponding gauge transformation {GU (r) ∈ SU(m)}:

M[U (r)|U (r′)] = GU [U (r)]M(r|r′)G†
U [U (r′)]. (12)

Different universality classes of parton mean-field ansatzs are
characterized by different PSGs,37 that is, different SU(m)
gauge transformations {GU } associated with symmetry oper-
ations U :

PSG = {GU (r)U |U ∈ symmetry group}. (13)

The low-energy gauge fluctuation of a mean-field ansatz is
controlled by its invariant gauge group37 (IGG),

IGG = {Ge ∈ SU(m)|GeM(r|r′)G†
e = M(r|r′),∀r,r′},

where e represents the identity operator of the (lattice)
symmetry group (SG). In other words, IGG is a subgroup of
the internal gauge group [which is SU(m) here] that keeps the
mean-field ansatz (7) invariant. Hereafter, we call a parton
mean-field state with, for example, IGG = SU(m) state a
SU(m) state. We can see that the IGG of mean-field ansatz
(7) always contains the following Zm group as a subgroup:

Zm = {
ei 2πa

m · Im×m|a = 1,2, . . . ,m
}
, (14)

where Im×m is the m × m identity matrix. This Zm group is
the center of the SU(m) group. A mean-field ansatz {M(r|r′)}
with IGG = Zm is called a Zm state.49 The low-energy theory
of this Zm state will be described by fermionic partons fα

interacting with Zm gauge fields.
The classification of PSGs with IGG = SU(m) [which we

call SU(m) PSGs in this paper] are easy to carry out. The only
gauge-invariant quantities of a SU(m) ansatz is the gauge-
invariant flux through each plaquette, which must belong to
the center of the SU(m) gauge group, namely the Zm group
in Eq. (14), because otherwise the SU(m) gauge group would
be broken and IGG cannot be SU(m). Two SU(m) states have
the same PSG if and only if they have the same Zm gauge flux
in each given plaquette. Therefore, distinct SU(m) PSGs have
different Zm gauge flux patterns and vice versa.

The classification of PSGs with IGG = Zm (which we call
Zm PSGs in this paper) involves more technical details and we
leave this analysis for the honeycomb lattice model9 and the
checkerboard lattice model11,12 in Appendixes B and D.

III. EXAMPLES

The first part of this section shows four concrete examples
of mean-field ansatzes corresponding to spin-polarized FCI
states with filling fraction ν = 1/3 in the checkerboard lattice
model.11,12 These include two Z3 ansatzes and their two SU(3)
parent states. As discussed in the previous section and proved
in Appendixes A–D, although the mean-field ansatz explicitly
breaks lattice translation symmetry by tripling the unit cell, the
physical electron state after projection (8) preserves all lattice
symmetry. Four examples for the honeycomb lattice model
with filling fraction ν = 1/3 are displayed in Appendix G.
We show the Hall conductance of all these states are σxy =
e2/(3h).

In the second part of this section, we present a scenario
which might realize non-Abelian FCI with IGG = SU(m)
by partially filling nearly flat bands with Chern number
C > 1, and two examples of such states in the SU(3) parton
construction are presented in Appendix H.

A. Four examples of spin-polarized FCI states
with ν = 1/3 in the checkerboard lattice model

The checkerboard lattice model11,12 has been shown to
support nearly flat bands with nonzero Chern numbers. Its
SG is shown in Appendix C and Fig. 2. Each lattice site
is labeled by coordinate (x,y,s) as shown in Appendix C.
Recently, there has been found numerical evidence12,13,15

of FCI states with filling fraction ν = 1/3 and ν = 1/5 in
this model. By SU(m) parton construction, we use PSG to
classify different Zm mean-field ansatz (m is an odd integer)
as shown in Appendix D. In the following we show two
Zm mean-field states that belong to different universality
classes. They correspond to two gauge-inequivalent solutions
of (D13) when m = 3. We show mean-field amplitudes up
to the next-next-nearest neighbor. Their two parent SU(3)
states also have different PSGs because they have different
patterns of the SU(3) gauge-invariant fluxes. All four states are
candidates of the FCI state found in the exact diagonalizations
of checkerboard lattice model.12,13,15

(a) (b)

FIG. 2. (Color online) The lattice structure and SG generators of
(a) honeycomb lattice and (b) checkerboard lattice. �a1 and �a2 are
primitive lattice vectors. Each site is labeled by coordinate (x,y,s):
�r = x�a1 + y�a2 corresponds to the position vector of its unit cell and
s = 0/1 are the sublattice indices for A/B sublattices. C6 represents
π/3 rotations along the ẑ axis around the honeycomb plaquette center.
σ and Px,Py,Pxy are π rotations along the axis plotted in the figure.
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FIG. 3. (Color online) The first Brillouin zone of (a) honeycomb
lattice and (b) checkerboard lattice. �b1 and �b2 denoted by arrows
are reciprocal lattice vectors satisfying �bi · �aj = δi,j , where �a1,2 are
primitive vectors shown in Fig. 2. The solid line (red) denotes the
original first Brillouin zone (BZ) of the two lattices while the bold
dashed line (blue) denotes the reduced first BZ when ±2π/3 fluxes
are inserted in each unit cell. The area of the reduced BZ is only
one-third of the original BZ. (a) For the honeycomb lattice, the three
circles have momenta �, (k1,k2) = (0,0); K,(k1,k2) = (7π/6,π/3);
and M,(k1,k2) = (π,0), where k = k1 �b1 + k2 �b2. (b) In the case of
checkerboard lattice, the three circles have momenta �,(k1,k2) =
(0,0); K,(k1,k2) = (π/3,π ); and M,(k1,k2) = (0,π ), where k =
k1 �b1 + k2 �b2.

1. The Z3 FCI state CB1 with σx y = 1/3
and its parent SU(3) state

In the Z3 FCI state CB1 the gauge transformations
GU (x,y,s) associated with lattice symmetries U are listed
below:

GT2 (x,y,s) = I3×3,GT1 (x,y,s) = η
y

12I3×3,

GPx
(x,y,s) = ηsx

12I3×3, (15)

GPy
(x,y,s) = I3×3,GPxy

(x,y,s) = η
xy

12 I3×3,

where η12 = exp(−i2π/3). T1,2 are lattice translation oper-
ations and Px,y,xy are reflections. They are schematically
shown in Fig. 2(b) and defined mathematically in Appendix C.
As shown in Appendix D the symmetry-allowed mean-field
amplitudes are as follows (see Figs. 3–5).

(I) For nearest-neighbor (NN) amplitude uα ≡
M(0,0,1|0,0,0),

uα = uT
α ; (16)

that is, uα can be any complex symmetric 3 × 3 matrix. All
other NN amplitudes can be generated from uα by symmetry
operations through Eq. (12).

There are two independent next-nearest-neighbor ampli-
tudes:

(IIa) For next-nearest-neighbor (NNN) amplitude uβx ≡
M(1,0,0|0,0,0),

uβx = uT
βx = u∗

βx ; (17)

that is, uβx can be any real symmetric 3 × 3 matrix. Half of
NNN mean-field amplitudes can be generated from uβx by
symmetry operations through Eq. (12).

(IIb) For NNN amplitude uβy ≡ M(0,1,0|0,0,0),

uβy = eiπ/3ũβy, (18)

FIG. 4. (Color online) Mean-field ansatz of the parent SU(3)
parton states associated with FCI state CB1 on checkerboard lattice.
The solid lines on NN bonds represent the complex hopping
amplitude α along the direction of the arrow. Solid lines on NNN
bonds represents real hopping amplitude βx . The dashed lines on
NNN bonds represent complex hopping amplitude eiπ/3βy along the
direction of the arrow. The triple arrow means the original hopping
amplitude along its direction should be multiplied by a phase factor
η12. We only show up to NNN terms and all NNNN terms can be
obtained from Eq. (12). Note that in the mean-field ansatz the lattice
translation along the �a1 direction is explicitly broken by flux insertion
and the unit cell is tripled. However, the lattice translation symmetry
is preserved in the corresponding electron states after projection (8).

where ũβy can be any real symmetric 3 × 3 matrix. Half of
NNN mean-field amplitudes can be generated from uβy by
symmetry operations through Eq. (12).

(III) For next-next-nearest-neighbor (NNNN) amplitude
uβ ≡ M(1,1,0|0,0,0),

uγ = u†
γ ; (19)

that is, uγ can be any Hermitian 3 × 3 matrix. All other NNNN
mean-field amplitudes can be generated from uγ by symmetry
operations through Eq. (12).

These mean-field amplitudes of uα , uβx , uβy , and uγ

should be treated as variational parameters. Their optimal
values which minimize the variational energy of electron wave
function (10) can be determined in variational Monte Carlo
simulations.

The corresponding parent SU(3) state has uα =
αI3×3,uαx = βxI3×3,uαy = eiπ/3βyI3×3, and uγ = γ I3×3.
Choosing parameters α = eiπ/12, βx = −0.2 = βy , and γ =
0.1 we have the Chern numbers of the six bands for each
parton species as {1,−2,−2,4,−2,1} and the lowest band is
well separated from other bands, as shown in Fig. 5. This
qualitative band structure persists for a large parameter range.
Each band of the SU(3) parton ansatz is threefold degenerate,
corresponding to the three parton flavors f1,2,3. By adding
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K M
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5

0

5

CB1: parentSU (3) state

FIG. 5. (Color online) The parton band structure of the parent
SU(3) ansatz (25) of CB1 state. Each band is threefold degenerate,
corresponding to three parton flavors f1,2,3. We plot the dispersion
along � → K → M → �, as shown in Fig. 3(b). Hopping param-
eters are chosen as α = eiπ/12 for NN, βx = −0.2 = βy for NNN,
and γ = 0.1 for NNNN. The Chern numbers of the six bands are
{1,−2,−2,4,−2,1} in a bottom-up order.

small parton mixing terms to the SU(3) mean-field state,
each threefold degenerate band splits into three nondegenerate
parton bands in a Z3 mean-field state, as shown in Fig. 6.
By filling the resulting three lowest bands (all with Chern
number +1) we obtain a Z3 FCI state whose Hall conductivity
is σxy = 1/3 in the unit of e2/h.

2. The Z3 FCI state CB2 with σx y = 1/3
and its parent SU(3) state

In the Z3 FCI state CB2 the gauge transformations
GU (x,y,s) associated with lattice symmetry U are listed
below:

GT2 (x,y,s) = I3×3, GT1 (x,y,s) = η
y

12I3×3,

GPx
(x,y,s) = η

(s−1)x
12 I3×3, (20)

GPy
(x,y,s) = η

y

12I3×3, GPxy
(x,y,s) = η

xy

12 I3×3,

K M

1 2 3 4 5 6

5

0

5

CB1: Z3 stat e

FIG. 6. (Color online) The parton band structure of a Z3 mean-
field ansatz (7): the CB1 state. We plot the dispersion along � →
K → M → �, as shown in Fig. 3(b). Note that each threefold
degenerate band in its parent SU(3) ansatz (see Fig. 5) now splits
into three nondegenerate parton bands. All the three lowest bands
have Chern number +1.

where η12 = exp(−i2π/3). As shown in Appendix D the
symmetry-allowed mean-field amplitudes are as follows.

(I) For NN amplitude uα ≡ M(0,0,1|0,0,0),

uα = uT
α ; (21)

that is, uα can be any complex symmetric 3 × 3 matrix. All
other NN amplitudes can be generated from uα by symmetry
operations through Eq. (12).

There are two independent NNN amplitudes.
(IIa) For NNN amplitude uβx ≡ M(1,0,0|0,0,0),

uβx = eiπ/3ũβx, (22)

where ũβx can be any real symmetric 3 × 3 matrix. Half of
NNN mean-field amplitudes can be generated from uβx by
symmetry operations through Eq. (12).

(IIb) For NNN amplitude uβy ≡ M(0,1,0|0,0,0),

uβy = uT
βy = u∗

βy ; (23)

that is, uβy can be any real symmetric 3 × 3 matrix. Half of
NNN mean-field amplitudes can be generated from uβy by
symmetry operations through Eq. (12).

(III) For NNNN amplitude uβ ≡ M(1,1,0|0,0,0),

uγ = u†
γ ; (24)

that is, uγ can be any Hermitian 3 × 3 matrix. All other NNNN
mean-field amplitudes can be generated from uγ by symmetry
operations through Eq. (12).

The corresponding parent SU(3) state has uα =
αI3×3,uαx = eiπ/3βxI3×3,uαy = βyI3×3, and uγ = γ I3×3.
From Fig. 7 we can see that the pattern of fluxes in CB2
state is different from that in CB1 state. For example, in
CB1 state −2π/3 flux (shown by triple arrows) are inserted
in half of the NN square plaquettes (those enclosed by two
horizontal blue sites and two vertical red sites), while in CB2
state −2π/3 flux are inserted in the other half of the NN
square plaquettes (those enclosed by two horizontal red sites
and two vertical blue sites). Notice that these two types of
NN square plaquettes are inequivalent, not related to each
other by any lattice symmetry (such as translation or mirror
reflection) in the checkerboard lattice model.11 Therefore, CB1
and CB2 are different mean-field Z3 FCI states belonging to
distinct universality classes. Choosing parameters α = eiπ/12,
βx = 0.1 = βy , and γ = 0.09 we have the Chern numbers
of the six bands for each parton species as {1,1,1,−5,1,1},
and the lowest band is well separated from other bands, as
illustrated in Fig. 8. This qualitative band structure persists for
a large parameter range. Each band of a SU(3) parton ansatz is
threefold degenerate, corresponding to the three parton flavors
f1,2,3. By adding small parton mixing terms to the SU(3)
mean-field state, each threefold degenerate band splits into
three nondegenerate parton bands in a Z3 mean-field state. By
filling the resultant three lowest bands (all with Chern number
+1), we obtain a Z3 FCI state whose Hall conductivity is again
σxy = 1/3 in unit of e2/h.

B. Possible non-Abelian states by partially filling a nearly
flat band with Chern number C > 1

It has been shown46,50 that in SU(m) parton construction,
when each parton species fills n Landau levels, the effective
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FIG. 7. (Color online) Mean-field ansatz of the parent SU(3)
parton states associated with FCI states CB2 and CB3 on a
checkerboard lattice. The solid lines on NN bonds represent complex
hopping amplitude α along the direction of the arrow. Dashed lines
on NNN bonds represents real hopping amplitude βy . Solid lines on
NNN bonds represent complex hopping amplitude eiπ/3βx along the
direction of the arrow. The triple arrows mean the original hopping
amplitude along its direction should be multiplied by a phase factor
η12. We only show up to NNN terms and all NNNN terms can be
obtained from Eq. (12). Note that in the mean-field ansatz the lattice
translation along the �a1 direction is explicitly broken by flux insertion
and the unit cell is tripled. However, the lattice translation symmetry
is preserved in the corresponding electron states after projection (8).
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CB2 : parentSU state(3)

FIG. 8. (Color online) The parton band structure of the parent
SU(3) ansatz (25) of CB2 state. Each band is threefold degenerate,
corresponding to three parton flavors f1,2,3. We plot the dispersion
along � → K → M → �, as shown in Fig. 3(b). Hopping param-
eters are chosen as α = eiπ/12 for NN, βx = 0.1 = βy for NNN,
and γ = 0.09 for NNNN. The Chern numbers of the six bands are
{1,1,1,−5,1,1} in a bottom-up order.

theory of the corresponding electron state is the SU(m)n Chern-
Simons theory and the system has non-Abelian quasiparticle
excitations when n > 1. Moreover, the non-Abelian quasipar-
ticles of this state can be used as topologically protected qubits
in a universal quantum computer29 as long as m > 2. This
motivates us to propose possible realization of non-Abelian
FCI states realized in a partially filled nearly flat band with
Chern number C > 1. When this band is partially filled with
a filling fraction, for example, ν = 1/m, the Hall conductance
of the corresponding FCI state would be σ = C

m
e2

h
. If the

lowest m parton bands all have Chern number C instead of
+1, the SU(m) FCI state obtained by filling m lowest parton

bands indeed has Hall conductance σ = m
Ce2

0
h

= C
m

e2

h
with

e0 = e/m. This SU(m) FCI state can be a promising candidate
for a ν = 1/m-filled nearly flat band with C > 1.

We discuss the C = 2 case as an example. In Appendix H,
using the SU(3) parton construction, we show two examples
of SU(3) FCIs, one on the honeycomb lattice and the other on
the checkerboard lattice; both have three lowest parton bands
with Chern number +2. These two SU(3) FCIs with ν = 1/3
and σ = 2

3
e2

h
are non-Abelian FCIs. The low-energy effective

theory of these SU(3) states is SU(3)2 Chern-Simons theory,46

featuring sixfold ground-state degeneracy on the torus and
non-Abelian quasiparticle excitations.51 These results indicate
that once a nearly flat band with Chern number C > 1 is
found, by partially filling it one may realize non-Abelian
FCIs, which have the potential to build a universal quantum
computer.29,40

IV. EFFECTIVE THEORY AND GROUND-STATE
DEGENERACY OF SPIN-POLARIZED Zm FCI STATES

As mentioned earlier, the partons in our construction not
only couples to the external electromagnetic gauge field, but
also couples to a dynamical internal gauge field, which is a
SU(m)(Zm) gauge field for a SU(m)(Zm) state. The low-energy
effective theories of the partons coupled with the internal gauge
fields control all the topological properties of the systems.
The topological properties of a SU(m) state has been studied
before.45,46 In this section we analyze the low-energy effective
theory of the spin-polarized Zm FCI state (7) from the SU(m)
parton construction. We try to answer the following questions.
What is the ground state degeneracy of the Zm FCI state?
Is it the same as or different from that of a SU(m) FCI
state?

We start from a SU(m) mean-field state which has been
shown46 to describe the ν = 1/m Laughlin state in the
continuum limit. Its mean-field ansatz is

Mα,β (r|r′) = δα,βT (r|r′). (25)

In other words, there is no hopping between partons of different
species and the m species of partons have exactly the same band
structure. As shown in Eq. (11), its electron wave function
is a lattice version of the Laughlin state.5 Apparently this
mean-field state does not break the SU(m) gauge symmetry
which leaves the electron operator (6) invariant. Since here the
partons couple to both the U(1) electromagnetic field and the
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SU(m) gauge field, the Lagrangian writes

LSU(m)

=
∫

dt

{∑
α

∑
r

if †
α (r,t)∂tfα(r,t) −

∑
α,r,r′

f †
α (r,t)T (r|r′)

· e−ie0
∫ r′

r
�A(x,t)· �dxP

[
e−i

∫ r′
r �a(x,t)· �dx]fα(r′,t)

}
, (26)

where P means path-ordered integral. Aμ and aμ are the U(1)
and the SU(m) gauge fields, respectively. Strictly speaking,
they are both defined on the link of a lattice here. To linear
order the above action can be written as

LSU(m)

=
∫

dt

{∑
α

∑
r

f †
α (r,t)

[
i∂tfα(r,t) −

∑
r′

T (r|r′)fα(r′,t)

]

− e0

∑
r

J U(1)
μ (r,t)Aμ(r,t)

−
∑

r

(
J SU(m)

μ

)
α,β

(r,t)aμ
α,β(r,t)

}
, (27)

where Aμ(r) stands for electromagnetic U(1) gauge field, while
aμ(r) represents the internal SU(m) gauge field. e0 = e/m is
the electric charge of each parton. Here J U(1)(r) and J SU(m)

μ (r)
are conserved U(1) and SU(m) parton currents, respectively.
To be precise, J

U(1)
0 = ∑

α f †
αfα and (J SU(m)

0 )αβ = f †
αfβ −

δα,β

∑
γ f †

γ fγ /m. In the long-wavelength limit the spatial
components of the parton currents in momentum space (with
momentum q) writes

−−→
J U(1)

μ,q =
∑

k

�∇kTk

∑
α

f
†
α,k−q/2fα,k+q/2,

(−−−→
J SU(m)

μ,q

)
α,β

=
∑

k

�∇kTkf
†
α,k−q/2fβ,k+q/2 − δα,β

−−→
J U(1)

μ,q

m
.

Since the partons form a band insulator, the band gap allows us
to safely integrate out the partons and obtain an effective action
L[A,a] for the gauge fields. Let us assume all the filled m

lowest parton bands have Chern number +1. Upon integrating
out partons {fα,f †

α }, the effective Lagrangian density writes

LSU(m)[A,a] = me2
0

4π
εμνλAμ∂νAλ

+ 1

4π
εμνλTr

(
aμ∂νaλ + i

3
aμaνaλ

)
,

where the first term corresponds to the quantized Hall
conductance σxy = me2

0/h, while the second term, that is, a
SU(m)1 Chern-Simons term, describes the low-energy gauge
fluctuations. As shown in Appendix E, the Chern-Simons
theory of SU(m) gauge field aμ can be reduced to Chern-
Simons theory of U(1) gauge fields aI

μ,I = 1, . . . ,m − 1. The

gauge field configuration is given by (aμ)α,β = ∑m−1
I=1 aI

μgI
α,β ,

where gI are m × m matrices defined in Eq. (E2). In the a0 = 0
gauge, a1 and a2 are conjugate variables since the Lagrangian

density for internal gauge fields aμ writes

LSU(m)1 [a] = 1

4π

m−1∑
I=1

I (I + 1)
(
aI

1∂ta
I
2 − aI

2∂ta
I
1

)
.

According to uncertainty principle, aI
1 and aI

2 cannot be deter-
mined simultaneously and we choose to fix the configuration
of aI

2 . Aside from these U(1) gauge symmetries, there are also
discrete symmetries associated with essentially all permuta-
tions between partons (for details, see Appendix E). Taking all
these into account we can obtain the ground-state degeneracy
as the number of gauge-inequivalent configurations of {aI

μ}.
As shown in Appendix E, the m-fold degenerate ground states
correspond to the following gauge field configurations:

aI
2 = 0, (I = 1,2, . . . ,m − 2);

(29)

am−1
2 = 2π

L2

k

m
, k = 1, . . . ,m.

Physically, this means once we insert 2πk/m flux in the hole
along the x1 direction of the torus for each parton, the original
ground state is transformed into a different degenerate ground
state. This is a “small” gauge transformation for the partons
since they transform as

fα → exp

[
i
∑
i=1,2

x2

m−1∑
I=1

aI
2gI

αβ

]
fβ. (30)

Now we add Higgs terms Mα,β(r|r′), which break the
original SU(m) gauge symmetry down to Zm. Does the
corresponding Zm state have the same ground-state degeneracy
as a SU(m) state? The answer is positive. In the long-
wavelength limit we introduce the Higgs fields φαβ which
carry no electric U(1) charge but carry the internal gauge
charge. As an example, the f

†
1 (r)M1,m(r|r′)fm(r′) terms in

the lattice model will introduce Higgs field φ1,m(x1,x2) in the
long-wavelength limit. The Higgs field φ1,m carries aI charge
+1 for I = 1, . . . ,m − 2 and am−1 charge +m. Likewise,
for example, φ2,m carries a1 charge −1, aI charge +1 for
I = 2, . . . ,m − 2 and am−1 charge +m. In general for a Higgs
field φα,β = φ∗

β,α , α < β associated with mixing term f †
αfβ

has aI
μ charge QI

α,β , where

QI
α,β =

⎧⎪⎨
⎪⎩

0, I � α − 2 or I � β,

α − 1, I = α − 1,

+1, α � I � β − 2,

β, I = β − 1.

(31)

In the end one can see that the condensation of Higgs field can
be viewed as adding a potential in the phase space of gauge
field configurations to the SU(m)1 Chern-Simons action (29).
To be specific, once we integrate out partons with the presence
of Higgs fields the effective Lagrangian density for internal
gauge fields becomes

Leff[a
I ,φα,β ] = LSU(m)1 [a]

+LHiggs

[(
∂μ − i

∑
I

QI
α,βaI

μ

)
φα,β

]
.
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Note that the above action is invariant under the following
“large” gauge transformations

(
aI

1 ,aI
2

) →
(

aI
1 + 2πp1

L1
,aI

2 + 2πp2

L2

)
,

φα,β → φα,β exp

[
i2π

∑
I

QI
α,β

(
p1x1

L1
+ p2x2

L2

)]
,

where p1,2 are integers so that φα,β is a single-valued
function on the torus. Besides, there are other large gauge
transformations, as listed in Eq. (E8). All the discrete gauge
transformations associated with permutations between partons
are also present, such as P1,2,

f1 ←→ f2, a1
μ → −a1

μ, φ1,2 ←→ φ2,1.

Upon integrating out the fluctuations of Higgs fields δφα,β

around their mean-field values φ̄α,β in Leff[aI ,φα,β] we have

LZm
[a] = LSU(m)1 [a] − V

[
aI

1 ,aI
2

]
. (32)

The exact shape of potential V [aI
1 ,aI

2 ] depends on, for
example, magnitudes of Higgs fields φα,β , but it has certain
robust features determined by the gauge charges QI

α,β of Higgs
fields φα,β which condense.31 More precisely, this potential
is periodic in aμ configuration space, with periodicity 2π/L1

for aI
1 ,I � m − 2 and 2π/L2 for aI

2 ,I � m − 2. It also has
periodicity 2π/(mL1) for am−1

1 and 2π/(mL2) for am−2
2 .

The minimum of this potential sits exactly on the
configurations shown in Eq. (29) of the m-fold degenerate
ground states of SU(m)1 Chern-Simons theory. Besides
these features associated with large gauge transformations,
the potentials V [aI

1 ,aI
2 ] are not invariant under the discrete

symmetries associated with parton permutations such as P1,2.
This is essentially because the introduced mixing terms (or
Higgs condensation) breaks the SU(m) gauge symmetry. The
Lagrangian (32) actually describes the motion of particles in
a magnetic field46,52 and a periodic potential: the I th particle
associated with aI

μ experiences a magnetic field of I (I + 1)
flux quanta piercing through the torus. Due to the periodicity
of potential V [aI

1 ,aI
2 ], the m-fold ground-state degeneracy

(as calculated in Appendix E) is still present when the gauge
symmetry is broken from SU(m) down to Zm by introducing
mixing terms between different partons (or Higgs fields).

This can be understood physically: By threading a 2πk/m

flux of gauge field am−1
μ in the hole along x1 direction on

the torus, one creates a vortex (or 2π phase winding) in
the φI,m,I = 1, . . . ,m − 1 condensates in the noncontractible
loop along the x1 direction. This operation exactly corresponds
to the tunneling process T k

2 mentioned in Sec. II and will
cost zero energy in the thermodynamic limit. Therefore, the
presence of Higgs fields will not lift the m-fold ground-state
degeneracy in the thermodynamic limit.

We have shown that the ground-state degeneracy of a
Zm FCI state is m on a torus. The above analysis for the
torus case can be easily generalized to study the ground-
state degeneracy on a genus-g Riemann surface. There are
g pairs of noncontractible loops {Aa,Ba|a = 1, . . . ,g} on
a genus-g Riemann surface where each pair is just like
the two noncontractible loops on a torus. Thus, one can

straightforwardly show that the ground-state degeneracy of
a Zm FCI state is mg on a genus-g Riemann surface.

V. PARTON CONSTRUCTION OF
TIME-REVERSAL-INVARIANT FTI STATES

A. SU(m)↑ × SU(m)↓ parton construction of TRI FTI states

We have focused on spin-polarized FCI states. Taking
into account spin degrees of freedom, nearly flat bands with
TRI Z2 index11 can exist. When a pair of bands carrying
Z2 index are partially filled, can a fractionalized topological
phase preserving both time-reversal and lattice symmetries
be realized? In principle, the answer is yes. As a direct
generalization of spin-polarized SU(m) and Zm FCI states,
when the pair of nearly flat Z2 bands are filled partially
with ν = 2/m, by SU(m)↑ × SU(m)↓ parton approach we
can construct a TRI fractionalized phase which we term
as SU(m)↑ × SU(m)↓ and Z

↑
m × Z

↓
m FTIs. In a simple way,

a SU(m)↑ × SU(m)↓ (Z↑
m × Z

↓
m) FTI wave function with

ν = 2/m is a direct product of a spin-polarized SU(m) (Zm)
FCI state with σxy = e2/(mh) for spin ↑ and its time-reversal
counterpart: a spin-polarized SU(m) (Zm) FCI state with
σxy = −e2/(mh) for spin ↓. Consequently, in these FTI wave
functions, entanglement between electrons with opposite spins
is absent. We term these wave functions as spin-conserved FTI
wave functions and construct FTI wave functions involving
entanglement with opposite spins in the next section. However,
as a fully gapped topological phase, this phase is stable at least
when the mixing between spin ↑ and spin ↓ is weak in the
electronic Hamiltonian. As in the case of spin-polarized SU(m)
and Zm FCI states, we still use the technique of enlarging the
unit cell by m times to guarantee that the ground state with the
correct filling fraction is an insulator with a band gap.

The mean-field ansatz of a generic spin-conserved FTI wave
function is written as

HMF
0 =

∑
r,r′

∑
σ,σ ′

f †
α,σ (r)M̃α,β(r,σ |r′,σ ′)fβ,σ ′(r′),

(33)
M̃α,β (r,σ |r′,σ ′) = δσ,σ ′[Mα,β(r|r′)δσ,↑ + M∗

α,β(r|r′)δσ,↓],

where σ,σ ′ = ↑,↓ are the spin indices. Mα,β(r|r′) can be any
mean-field ansatz of a SU(m) (or Zm) FCI state constructed in
Sec. II and demonstrated in Sec. III. And the corresponding
FTI state is a SU(m)↑ × SU(m)↓ (Z↑

m × Z
↓
m) FTI. Apparently,

Eq. (33) is invariant under time-reversal transformation while
preserving all the lattice symmetries.

Again the N -electron wave function (with N/2 electrons
for each spin here in the Sz-conserved case) is obtained by
projection on mean-field state |MF 〉 = |MF↑〉 ⊗ |MF↓〉,

�e({r↑
i }; {r↓

j }) = 〈0|
N/2∏
i=1

c↑(r↑
i )

N/2∏
j=1

c↓(r↓
j )|MF 〉, (34)

which is simply a product of two Slater determinants (10)
for spin-up and -down partons. Following our discussion
in Sec. IV, the ground-state degeneracy of this SU(m)↑ ×
SU(m)↓ (Z↑

m × Z
↓
m) FTI is m2 on a torus and there are

quasiparticle excitations (with both spin) with electric charge
±e/m.
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The SU(m)↑ × SU(m)↓ (or Z
↑
m × Z

↓
m) FTI wave functions

constructed above explicitly conserve both the ↑ and ↓
electrons. However, in a spin-orbit coupled system where the
Sz conservation is not a symmetry, the true ground-state wave
function must involve mixings between the two spin species.
Of course, it is possible that this true ground state is in the same
universality class as those spin-conserved FTI states, because
they are gapped stable topological phases. Nevertheless, it is
still interesting to explicitly write down a FTI state without
spin conservation.

There is a natural question that needs to be answered in
the current formalism: When spin mixing terms f

†
α,↑fβ,↓ are

present in the parton mean-field Hamiltonian [Eq. (33)] while
preserving the time-reversal symmetry, is the corresponding
electronic state Eq. (34) a TRI FTI wave function without spin
conservation? The answer is negative. Below we study the
properties of this state in detail.

The mean-field Hamiltonian including spin mixings be-
tween partons is

HMF = HMF
0 +

∑
αβ

[f †
α,↑(r)M̃α,β(r, ↑ |r′, ↓)fβ,↓(r′) + H.c.].

(35)

Note that upon mixing partons with different spins, for
example, for a Z

↑
m × Z

↓
m FTI, the internal gauge symmetry

is further broken from Z
↑
m × Z

↓
m (one Z

↑
m for spin-↑ parton

and another independent Z
↓
m for spin-↓ parton),

fα,σ (r) → ei 2πaσ
m fα,σ (r), a↑,a↓ = 1,2, . . . ,m, (36)

to a single Zm symmetry (for partons with both spin ↑
and ↓),53

fα,σ (r) → ei 2πa
m fα,σ (r), a = 1,2, . . . ,m. (37)

In this paper, we define the FTI phase as the phase of
matter which is in the same universality class as the direct
product of two FCI states of opposite spins while preserving
the time-reversal symmetry. Following this definition, the Zm

state defined in Eq. (35) with spin mixings is not a FTI state.
One clear difference between the Zm state Eq. (35) and the

Z
↑
m × Z

↓
m FTI state is their quasiparticle statistics. In a Z

↑
m ×

Z
↓
m FTI state, the Z

↑
m fluxes and the Z

↓
m fluxes bind with parton

charges due to the Chern numbers of the parton bands and are
anyons with statistical angles θ = ± π

m
. However, in a Zm state

Eq. (35), the Zm fluxes do not bind with parton charges, and
are bosons. This indicates that the Zm state Eq. (35), which is
described by a regular Zm lattice gauge dynamics with bosonic
flux excitations, must separate from the Z

↑
m × Z

↓
m FTI state by

a phase transition.
Another observation that we have is that, in the SU(m)↑ ×

SU(m)↓ parton construction, the Zm state Eq. (35) cannot
preserve both time-reversal symmetry and lattice translation
symmetry simultaneously. Essentially, the technique of en-
larging unit cell m times by inserting fluxes fails to generate
a translation symmetric wave function when partons with
opposite spins are mixed. In a TRI Z

↑
m × Z

↓
m FTI state, when

2π/m fluxes are inserted in each unit cell for spin ↑ parton,
opposite −2π/m fluxes are inserted in each unit cell for spin

↓ parton to preserve the time-reversal symmetry. After the
partons with opposite spins are mixed, the gauge flux pattern
of the partons no longer enjoys well-defined ±2π/m value per
plaquette. As a result physical translation symmetry is broken.
This simple argument dictates that, using SU(m)↑ × SU(m)↓
parton construction, when partons with opposite spins are
mixed, either time-reversal symmetry or lattice translation
symmetry must be broken to form a gapped state with
filling fraction 2/m (ν = 1/m for each spin on average). In
Appendix F we prove this statement by a careful PSG analysis.

The analysis in this section seems to suggest that it is diffi-
cult to explicitly construct a FTI wave functions breaking the Sz

conservation. In fact, this difficulty is due to the formalism of
SU(m)↑ × SU(m)↓ parton construction. In the next section, we
propose another parton construction formalism which allows
us to explicitly write FTI wave functions with spin mixings.

B. Parton construction of generic TRI FTI states
in the absence of spin conservation

In the following we demonstrate that in a new parton
construction formalism, one can write the electron wave
functions for fully symmetric TRI FTI states breaking the Sz

conservation and with mean-field terms mixing partons with
different spins. We introduce the following parton construction
(m being an odd integer and θ is an arbitrary real number)

c↑(r) = cos θ

m∏
α=1

fα,↑(r) + sin θ

m∏
β=1

gβ,↑(r),

(38)

c↓(r) = − sin θ

m∏
α=1

fα,↓(r) + cos θ

m∏
β=1

gβ,↓(r),

where fα,σ and gβ,σ are all fermionic partons each of which
carries electric charge e/m. It is straightforward to see that
the electron constructed in this way is indeed a fermion
with electric charge e. The N -electron wave function at
filling fraction ν = 2/m (with N↑ spin-↑ electrons and N↓ =
N − N↑ spin-↓ electrons) is obtained by projection,

�e({r↑
i }; {r↓

j }) = 〈0|
N↑∏
i=1

cσ (r↑
i )

N−N↑∏
j=1

cσ (r↓
j )|MF 〉, (39)

where |MF 〉 is the parton mean-field ground state as is
described later. N↑ can be any integer between 0 and total
electron number N .

The mean-field ansatz can be written as

HMF =
m∑

α,α′=1

∑
σ,σ ′=↑,↓

∑
r,r′

[f †
α,σ (r)Mα,α′ (r,σ |r′,σ ′)fα′,σ ′(r′)

+ g†
α,σ (r)M ′

α,α′ (r,σ |r′,σ ′)gα′,σ ′(r′)], (40)

where Hamiltonian M ′
α,α′ (r,σ |r′,σ ′) is the time-reversal con-

jugate of Mα,α′ (r,σ |r′,σ ′):

M ′
α,α′ (r,σ |r′,σ ′) = σσ ′M∗

α,α′ (r,−σ |r′,−σ ′). (41)

We use spin index σ = ±1 to denote spin ↑,↓. In the
simplest case when Mα,α′ (r,σ |r′,σ ′) = δα,α′M(r,σ |r′,σ ′), the
mean-field ansatz has SU(m) gauge symmetry, or, in other
words, IGG = SU(m). As discussed earlier in Sec. II, in
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a generic case, parton mixing terms f †
α,σ fβ,σ ′ ,α 
= β could

exist and the IGG of the parton mean-field Hamiltonian
Mα,α′ (r,σ |r′,σ ′) could be Zm, which is the center of group
SU(m). Here Mα,α′ (r,σ |r′,σ ′) can be any mean-field ansatz
as a solution of the PSG constraints on the lattice, so that
the N -electron wave function obtained by projection (39)
preserves all the lattice symmetries. More precisely, mean-field
Hamiltonian Mα,α′ (r,σ |r′,σ ′) should be invariant under a
symmetry operation U followed by a SU(m) gauge rotation
GU (r,σ ) on f partons.

For instance, the lattice SGs are shown in Appendix A
for honeycomb lattice and in Appendix C for checkerboard
lattice for spin ↑ / ↓. The constraints for GU (r,σ ) will
still be those in Appendix B on honeycomb lattice and
Appendix D on checkerboard lattice in the case when IGG =
Zm. Namely, GU (r, ↑) and GU (r, ↓) can be any two solutions
of PSG constraints: Equation (B11) on honeycomb lattice
and Eq. (D13) on checkerboard lattice when IGG = Zm. The
symmetry-allowed mean-field Hamiltonian Mα,α′ (r,σ |r′,σ ′)
can be obtained in the same way shown in Appendix B
and Appendix D. It is easy to check that spin-mixing terms
in mean-field Hamiltonian Mα,α′ (r,σ |r′,σ ′) is, in general,
allowed by these PSG constraints.

Meanwhile, time-reversal symmetry is also preserved since
the antiunitary time-reversal operation T is realized by com-
plex conjugation C combined with the following operation:

fα,σ (r) ↔ σgα,−σ (r), (42)

where spin index σ = ±1 denotes spin ↑ / ↓. One can easily
check that under time reversal T the spin- 1

2 electron operators
indeed transform as cσ (r) → σc−σ (r). Apparently, the above
time-reversal operation T leaves the mean-field ansatz (40)
invariant. At filling ν = 2/m (1/m filling for each spin on
average) we still use the technique of inserting flux to enlarge
the unit cell by m times. Note that when 2π/m flux is inserted
into each unit cell for f partons, an opposite −2π/m flux
must be inserted in each unit cell for g partons to keep the
time-reversal symmetry. Then we fill the lowest m bands
for both f partons and g partons. Each filled band contains
N/2 f partons (or g partons), which correspond to a filling
fraction of 1/m. It is straightforward to demonstrate that the
electron filling fraction of state (39) is indeed ν = 2/m. There
can be symmetry-allowed mixing terms between partons with
different spins in ansatz Mα,α′ (r,σ |r′,σ ′). The mean-field state
in Eq. (39) is a direct product of the f -parton state and the
g-parton state: |MF 〉 = |MFf 〉 ⊗ |MFg〉.

There is a real parameter θ ∈ [0,π/4] which can be
continuously tuned in our parton construction (38). This
parameter controls the many-body entanglement between
spin-↑ and spin-↓ electrons in wave function (39). It should be
considered as a variational parameter in variational Monte
Carlo studies of projected wave functions. When θ = 0,
clearly there must be equal number of spin-↑ and spin-
↓ electrons: N↑ = N↓ = N/2 since other components of
the many-body wave function with N↑ 
= N↓ all vanish in
Eq. (39). In this case the electron wave function (39) is
nothing but a direct product of spin-↑ wave function �↑(r↑

i ) =
〈0|∏N/2

i=1

∏m
α=1 fα,↑(r↑

i )|MFf 〉 and spin-↓ wave function

�↓(r↓
j ) = 〈0|∏N/2

j=1

∏m
α=1 gα,↓(r↓

j )|MFg〉. This corresponds to
the spin-conserved limit when there is no entanglement
between electrons with different spins.

When θ is nonzero, many-body entanglement between
electrons with different spins is encoded in electron wave
function (39) as long as the spin mixing terms are present in the
mean-field Hamiltonian (40). In general the component of the
many-body wave function with an arbitrary number of spin-↑
electrons ∀ 0 � N↑ � N should be nonzero. In a generic case
with θ 
= 0 the many-body wave function (39) is complicated
and cannot be written as a Slater determinant. Now one can
see the parton construction (38) allows us to write generic
electron wave functions for TRI FTI states in the absence of
spin conservation. The spin-conserved TRI FTI wave function
(θ = 0) can be deformed into a generic TRI FTI state in the
absence of spin conservation (θ 
= 0) by continuously tuning
parameter θ , while keeping the mean-field Hamiltonian (40)
unchanged. In the process of tuning θ continuously, we expect
the low-energy effective theory and quasiparticles of such a
TRI FTI state to remain the same.

In the end we comment on the low-energy effective
theory of such a TRI FTI state. In the simplest case when
Mα,α′ (r,σ |r′,σ ′) = δα,α′M(r,σ |r′,σ ′), the mean-field ansatz
(40) has a SU(m) × SU(m) gauge symmetry, or, in other
words, IGG = SU(m)f × SU(m)g . Let us assume the filled
lowest band of M(r,σ |r′,σ ′) for {fα,↑/↓|α = 1, . . . ,m} partons
has a Chern number k. Then, due to time-reversal symmetry,
the filled lowest band for {gα,↑/↓|α = 1, . . . ,m} partons will
have a Chern number −k. Its low-energy effective theory is a
SU(m)k × SU(m)−k Chern-Simons theory,

Leff = k

4π
εμνλTr

(
aμ∂νaλ + i

3
aμaνaλ

)

− k

4π
εμνλTr

(
bμ∂νbλ + i

3
bμbνbλ

)
, (43)

where aμ is the SU(m) gauge field coupled to f partons
and bμ is the SU(m) gauge field coupled to g partons. Such
a SU(m)f × SU(m)g TRI FTI state will host non-Abelian
quasiparticles if k > 1.

When k = 1 this is an Abelian TRI FTI state with ground-
state degeneracy m2 on a torus and anyonic quasiparticles.
When parton mixing terms f †

α,σ fβ,σ ′ ,α 
= β are present, again
the IGG is reduced from SU(m)f × SU(m)g to Zm

f × Zm
g

and the low-energy effective theory is described by Chern-
Simons-Higgs theory, that is, effective action (43) with a
periodic potential due to Bose condensation of Higgs fields.
Such an Abelian Zm

f × Zm
g TRI FTI has the same topological

properties as an Abelian SU(m)f × SU(m)g FTI, such as
ground-state degeneracy and quasiparticle charge/statistics.
In the parton construction (38), both SU(m)f × SU(m)g and
Zm

f × Zm
g TRI FTI states are possible candidates for a

symmetric TRI FTI state in the absence of spin conservation:
Which state is realized depends on the IGG of mean-field
amplitudes Mα,α′ (r,σ |r′,σ ′) and should be determined by
energetics of wave functions (39) in variational studies.

In the end we comment on the robustness of such a
symmetry-protected TRI FTI state against perturbations. As
discussed in the previous section, in the presence of time-
reversal symmetry and lattice translation symmetry, no terms
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that mix f↑/↓ partons and g↑/↓ partons can be added to
mean-field ansatz (40). Since both f partons and g partons
form a band insulator, such a TRI FTI is stable in the absence
of mean-field terms mixing f and g partons. On the other
hand, once time-reversal symmetry or translation symmetry is
broken one can always add a mixing term in the mean-field
ansatz (40), which will drive the system from a FTI state into
a different phase. Therefore, the stability of this TRI FTI state
is protected by time-reversal symmetry.

VI. CONCLUSION

To summarize, we show that a large class of Abelian
(and non-Abelian) fractionalized topological phases can be
constructed on a lattice using parton construction. These states
preserve all the lattice symmetry and are featured by, for
example, fractionalized excitations and topological ground-
state degeneracy. In the spin-polarized case, we construct FCI
phases belonging to distinct universality classes even at the
same filling ν = 1/m. Their differences are characterized by
the PSG in the bulk and are protected by the lattice symmetry.
The low-energy gauge groups of these states are found to be
either SU(m) or Zm. Their low-energy physics is described
by SU(m)1 Chern-Simons theory and Chern-Simons-Higgs
theory, respectively, and they all have m-fold degenerate
ground states on a torus. We explicitly construct the ground-
state wave functions and bulk quasiparticles on the lattice. We
demonstrate our construction by several explicit examples,
including non-Abelian FCIs which may be realized in a nearly
flat band with Chern number C > 1. Furthermore, we show
that when time-reversal symmetry is present, classes of frac-
tionalized topological insulator phases preserving both time-
reversal symmetry and lattice symmetries can be constructed.
These TRI FTI states are characterized by SU(m) × SU(m)
or Zm × Zm gauge groups. Their electron wave functions on
the lattice, which are essentially products of spin-polarized
FCI states for spin ↑ and its time-reversal conjugate, are
provided. These are stable topological phases even when
Sz conservation is not a symmetry in the electronic system.
In order to explicitly construct TRI FTI wave functions
with entanglement between opposite spins, we propose a
new parton construction formalism. It allows one to write
generic electron wave functions of TRI FTI states, which
preserve both time-reversal and lattice symmetries in the
absence of spin conservation. Our work provides important
insight for future numeric study using variational Monte Carlo
method.

At this point, we would like to note that a recent paper54 also
discusses the technique of inserting 2π/m fluxes in unit cells
in order to construct translational invariant FCI wave functions
by parton approach.
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APPENDIX A: SYMMETRY GROUP
OF THE HONEYCOMB LATTICE MODEL

The SG of Haldane’s model is generated by the following
symmetry operations as shown in Fig. 2(a): (1) translations T1,2

by Bravais lattice vector �a1,2; (2) π/3 rotation C6 along ẑ axis
around the honeycomb plaquette center; (3) mirror reflection
with respect to the x̂-o-ẑ plane combined with time-reversal
operation, labeled as σ .

Note that σ is an antiunitary symmetry since it includes
time-reversal operation. It acts on the Hamiltonian through a
combination of a unitary symmetry operation and complex
conjugation C. Besides, the spatial C6 rotation should be
accompanied with a corresponding spin rotation along the Sz

axis in a generic electron Hamiltonian with spin-orbit coupling
terms.

We label a lattice site by coordinates (x,y,s), where
�r = x�a1 + y�a2 + �rs is its position vector. �a1 = a(

√
3,0) and

�a2 = a(
√

3,3)/2 are two Bravais lattice vectors. s = 0,1
is the sublattice index with �r0 = −a(

√
3,1)/2 and �r1 =

a(−√
3,1)/2. Under the symmetry operations the (x,y,s)

coordinates transform as

T1 : (x,y,s) → (x + 1,y,s),

T2 : (x,y,s) → (x,y + 1,s),
(A1)

σ : (x,y,s) → (x + y,−y,1 − s),

C6 : (x,y,s) → (1 − s − y,x + y + s − 1,1 − s).

The multiplication rules of the above SG are completely
determined by the following algebraic relations:

C6
6 = σ 2 = e, T −1

1 T2T1T
−1

2 = e, T −1
2 C6T1C6

−1 = e,

T −1
1 C6T1T

−1
2 C6

−1 = e, T −1
1 σT1σ

−1 = e, (A2)

T −1
2 σT1T

−1
2 σ−1 = e, σC6σC6 = e,

where e represents the identity element of the SG.

APPENDIX B: MEAN-FIELD ANSATZ OF
SPIN-POLARIZED Zm FCI STATES ON HONEYCOMB

LATTICE IN SU(m) PARTON CONSTRUCTION

1. Projective symmetry group analysis of different Zm

mean-field states

Since the IGG of a spin-polarized Zm state is

Ge ∈ Zm = {
η · Im×m|η = ei2π k

m ,k = 1, . . . ,m
}
, (B1)

the algebraic relations (A2) give us algebraic conditions on the
gauge transformations GU (x,y,s):

Gσ (σ (r))G∗
σ (r) = ησ Im×m, (B2)

GC6

(
C−1

6 (r)
)
GC6

(
C−2

6 (r)
)
GC6

(
C3

6 (r)
)

(B3)

·GC6

(
C2

6 (r)
)
GC6 (C6(r))GC6 (r) = ηC6Im×m, (B4)

G−1
T1

(
T −1

2 T1(r)
)
G−1

T2
(T1(r)) · GT1 (T1(r))GT2 (r) = η12Im×m,

(B5)

G−1
T2

(T2(r))GC6 (T2(r)) · GT1

(
T1C

−1
6 (r)

)
G−1

C6
(r) = ηC61Im×m,

(B6)
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G−1
T1

(T1(r))GC6 (T1(r))GT1

(
C−1

6 T1(r)
) · G−1

T2

(
C−1

6 (r)
)
G−1

C6
(r)

= ηC62Im×m, (B7)

G−1
T1

(T1(r))Gσ (T1(r)) · G∗
T1

(T1σ
−1(r))G−1

σ (r) = ησ1Im×m,

(B8)

G−1
T2

(T2(r))Gσ (T2(r))G∗
T1

(σT2(r)) · [G−1
T2

(σ (r))
]∗

G−1
σ (r)

= ησ2Im×m, (B9)

Gσ (r)G∗
C6

(σ (r)) · G∗
σ (σC6(r))GC6 (C6(r)) = ησC6Im×m,

(B10)

where all the η’s are Zm quantum numbers {ei2π k
m |k =

1, . . . ,m}. Note that σ is a antiunitary symmetry so it is
accompanied with complex conjugate C. We can always
choose a proper gauge so that GT1 (x,y,s) = GT2 (0,y,s) =
Im×m. ηC61 = ηC62 = 1 can also be fixed by certain gauge
choice. After solving the above algebraic conditions we have
ησ1 = ησ2 = η−1

12 and ησ = 1. There are only two independent
Zm quantum numbers left, that is, η12 and ησC6 . In the end we
have

GT1 (x,y,s) = Im×m, GT2 (x,y,s) = ηx
12Im×m,

Gσ (x,y,s) = η
−x−y(y+1)/2
12 gσ (s),

GC6 (x,y,s) = η
xy+x(x−1)/2
12 gC6 (s), (B11)

[gC6 (0)gC6 (1)]3 = η12ηC6, gσ (1)g∗
σ (0) = 1,

gC6 (s)gσ (1 − s)g∗
C6

(s)g∗
σ (1 − s) = ησC6 ,

where gσ (s) and gC6 (s) are all SU(m) matrices.
Different Zm mean-field states are given by gauge-

inequivalent solutions of equations (B11).

2. Symmetry conditions on Zm mean-field states

To choose a representative of all mean-field amplitudes
M(r|r′), we choose r′ = (0,0,0) and label independent mean-
field bonds as

[x,y,s] ≡ M(x,y,s|0,0,0). (B12)

All other symmetry-related mean-field amplitudes can be
generated by [x,y,s]: That is, all first nearest neighbor (NN)
mean-field amplitudes can be generated by [0,0,1] through
symmetry operations; all second NNN amplitudes can be
generated by [0,1,0].

Using symmetry operations (A1) it is straightforward to
verify the following relations:

T −1
2 σC6 : [−2x,x,0] → [−2x,x,0],

T x−1
2 σC6 : [0,x,0] → [0,x,0]†,

T −1
1 σC3

6 : [x,−2x,0] → [x,−2x,0],

T x−1
1 σC3

6 : [x,0,0] → [x,0,0]†,

σC−1
6 : [x,x,0] → [x,x,0],

T x
1 T −x

2 σC−1
6 : [x,−x,0] → [x,−x,0]†

for mean-field amplitudes [x,y,0] = M(x,y,0|0,0,0) between
sites within the same sublattice and

T x
1 T −2x

2 σ : [x,−2x,1] → [x,−2x,B]†,

σC−1
6 : [x + 1,x,1] → [x + 1,x,B],

T −2x−2
1 T x+1

2 σC−2
6 : [−2x − 1,x,1] → [−2x − 1,x,1]†,

T x−1
1 T

y

2 C3
6 : [x,y,1] → [x,y,1]†

for mean-field amplitudes [x,y,1] = M(x,y,1|0,0,0) between
sites from different sublattices. The symmetry condition
(12) now becomes constraints on the mean-field amplitudes
[x,y,s].

In the following we list the symmetry conditions on mean-
field amplitudes for first n.n. uα ≡ [0,0,1],

gσ (1)u∗
αg†

σ (0) = u†
α,

gC6 (0)gC6 (1)gC6 (0)uαg
†
C6

(1)g†
C6

(0)g†
C6

(1) = u†
α,

and second n.n. uβ ≡ [0,1,0],

gσ (0)g∗
C6

(1)u∗
βgT

C6
(1)g†

σ (0) = u
†
β.

APPENDIX C: SYMMETRY GROUP
OF THE CHEKERBOARD LATTICE MODEL

The SG of checkerboard lattice model is generated by
the following symmetry operations as shown in Fig. 2(b):
(1) translations T1,2 by Bravais lattice vector �a′

1,2; (2) mirror
reflection with respect to x̂-o-ẑ plane combined with time-
reversal operation, labeled as Px ; (3) mirror reflection with
respect to the ŷ-o-ẑ plane combined with time-reversal opera-
tion, labeled as Py ; (4) mirror reflection along the (x̂ + ŷ)-o-ẑ
plane combined with time-reversal operation, labeled as Pxy .

Again, here Px , Py , and Pxy are all antiunitary symmetries.
They act on the Hamiltonian through a combination of unitary
symmetry operations and complex conjugation C.

Here we also label each lattice site by coordinates (x,y,s),
where �r = x�a1 + y�a2 + �rs corresponds to its position vector.
�a1 = a(1,0) and �a2 = a(0,1) are two Bravais lattice vectors
and a is the lattice constant. Again, s = 0,1 is the sublattice
index with �r0 = −a(1/2,0) and �r1 = −a(0,1/2). Under the
symmetry operations the (x,y,s) coordinates transform as

T1 : (x,y,s) → (x + 1,y,s),

T2 : (x,y,s) → (x,y + 1,s),

Px : (x,y,s) → (x,s − y,s), (C1)

Py : (x,y,s) → (1 − s − x,y,s),

Pxy : (x,y,s) → (y,x,1 − s).

The multiplication rules of the SG are completely deter-
mined by the following algebraic relations:

P 2
x = P 2

y = Pxy
2 = e, T −1

1 T2T1T
−1

2 = e,

T −1
1 PxT1P

−1
x = e, T −1

2 PxT
−1

2 P −1
x = e,

T −1
1 PyT

−1
1 P −1

y = e, T −1
2 PyT2P

−1
y = e, (C2)

T −1
1 PxyT2Pxy

−1 = e, T −1
2 PxyT1Pxy

−1 = e,

PxPyPxPy = e, PxyPyPxyPx = e, PxyPxPxyPy = e,

where e represents the identity element of the SG.
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APPENDIX D: MEAN-FIELD ANSATZ OF
SPIN-POLARIZED Zm FCI STATES ON CHECKERBOARD

LATTICE IN SU(m) PARTON CONSTRUCTION

1. Projective symmetry group analysis of different Zm

mean-field states

From algebraic relations (C2) we have algebraic conditions
on the gauge transformations GU (x,y,s):

G−1
T1

(x + 1,y − 1,s)G−1
T2

(x + 1,y,s)

·GT1 (x + 1,y,s)GT2 (x,y,s) = η12Im×m, (D1)

G−1
T1

(x,y,s)GPx
(x,y,s)G∗

T1
(x,s − y,s) · G−1

Px
(x − 1,y,s)

= ηx1Im×m, (D2)

G−1
T2

(x,y,s)GPx
(x,y,s)

[
G−1

T2
(x,1 + s − y,s)

]∗
·G−1

Px
(x,y − 1,s) = ηx2Im×m, (D3)

G−1
T1

(x,y,s)GPy
(x,y,s)

[
G−1

T1
(2 − s − x,y,s)

]∗
·G−1

Py
(x − 1,y,s) = ηy1Im×m, (D4)

G−1
T2

(x,y,s)GPy
(x,y,s)G∗

T2
(1 − s − x,y,s)

·G−1
Py

(x,y − 1,s) = ηy2Im×m, (D5)

G−1
T1

(x,y,s)GPxy
(x,y,s)G∗

T2
(y,x,1 − s)

·G−1
Pxy

(x − 1,y,s) = ηxy1Im×m, (D6)

G−1
T2

(x,y,s)GPxy
(x,y,s)G∗

T1
(y,x,1 − s)

·G−1
Pxy

(x,y − 1,s) = ηxy2Im×m, (D7)

GPx
(x,y,s)G∗

Px
(x,s − y,s) = ηxIm×m, (D8)

GPy
(x,y,s)G∗

Py
(1 − s − x,y,s) = ηxIm×m, (D9)

GPxy
(x,y,s)G∗

Pxy
(y,x,1 − s) = ηxyIm×m, (D10)

GPx
(x,y,s)G∗

Py
(x,s − y,s)GPx

(1 − s − x,s − y,s)

·G∗
Py

(1 − s − x,y,s) = ηPxPy
Im×m, (D11)

GPxy
(x,y,s)G∗

Px
(y,x,1 − s)GPxy

(y,1 − s − x,1 − s)

·G∗
Py

(1 − s − x,y,s) = ηPxyPx
Im×m, (D12)

where again all η’s are Zm quantum numbers {ei2π k
m |k =

1, . . . ,m}. Note that Px,Py,Pxy are all a antiunitary symmetries
and they are accompanied with complex conjugate C. We
can always choose a proper gauge so that GT2 (x,y,s) =
GT1 (x,0,s) = Im×m. ηxy1 = 1 can also be fixed by certain
gauge choice. After solving the above algebraic conditions
one can see ηy1 = ηx2 = ηx = ηy = ηxy = 1, ηxy2 = ηxy1 =
1, ηy2 = η−1

x1 . It turns out η12,ηx1,ηPxPy
,ηPxyPx

are the only
four independent Zm quantum numbers. In the end we have

GT2 (x,y,s) = Im×m,GT1 (x,y,s) = η
y

12Im×m,

GPx
(x,y,s) = ηsx

12η
x
x1gx(s),

GPy
(x,y,s) = η

−y

x1 gy(s), GPxy
(x,y,s) = η

xy

12gxy(s),

gx(s)g∗
x (s) = gy(s)g∗

y (s) = gxy(s)g∗
xy(1 − s) = 1,

[gx(s)g∗
y (s)]2 = η−1

x1 ηPxPy
,

gxy(s)g∗
y (1 − s)gxy(1 − s)g∗

x (s) = ηPxyPx
, (D13)

where gx(s), gy(s) and gxy(s), are all SU(m) matrices.

Different Zm mean-field states are given by gauge-
inequivalent solutions of Eqs. (D13).

2. Symmetry conditions on Zm mean-field states

A representative of all mean-field amplitudes M(r|r′) is
given by r′ = (0,0,0) and we label independent mean-field
amplitudes as

[x,y,s] ≡ M(x,y,s|0,0,0). (D14)

All other symmetry-related mean-field amplitudes can be
generated by [x,y,s]: for example, all first n.n. mean-field
amplitudes can be generated by [0,0,1] through symmetry
operations; all second n.n. amplitudes can be generated by
[0,1,0] and [1,0,0] etc.

Using symmetry operations (C1) it is straightforward to
verify the relations

T x−1
1 T

y

2 PxPy : [x,y,0] → [x,y,0]†,

T x
2 Px : [0,x,0] → [0,x,0]†,

T −1
1 Py : [0,x,0] → [0,x,0],

T x−1
1 Py : [x,0,0] → [x,0,0]†,

Px : [x,0,0] → [x,0,0]

for mean-field amplitudes [x,y,0] = M(x,y,0|0,0,0) between
sites within the same sublattice and

T x
1 T −x

2 Pxy : [x,−x,1] → [x,−x,1]†,

T x
1 T x

2 PxPyPxy : [x,x + 1,1] → [x,x + 1,1]†

for mean-field amplitudes [x,y,1] = M(x,y,1|0,0,0) between
sites from different sublattices. The symmetry condition (12)
now gives us constraints on the mean-field amplitudes [x,y,s].

In the following we list the symmetry conditions on mean-
field amplitudes up to third n.n. For first n.n. uα ≡ [0,0,1],

gPxy
(0)u∗

αg
†
Pxy

(1) = u†
α;

for second n.n. uβx ≡ [1,0,0],

ηx1gx(0)u∗
βxg

†
x(0) = uβx, gy(0)u∗

βxg
†
y(0) = u

†
βx ;

for second n.n. uβy ≡ [0,1,0],

η−1
x1 η−1

12 gy(0)u∗
βyg

†
y(0) = uβy, gx(0)u∗

βyg
†
x(0) = u

†
βy ;

for third n.n. uγ ≡ [1,1,0],

u†
γ = gy(0)g∗

x (0)uγ gT
x (o)g†

y(0). (D15)

APPENDIX E: GROUND-STATE DEGENERACY OF SU(m)1

CHERN-SIMONS THEORY ON A TORUS

In this section we calculate the ground-state degeneracy of
a SU(m)1 Chern-Simons theory,

LSU(m)1 = 1

4π
εμνλTr

(
aμ∂νaλ + i

3
aμaνaλ

)
, aμ ∈ SU(m),

(E1)

on a torus with m being an odd integer. In Ref. 46 the
ground-state degeneracy of SU(3)q parton states on a torus
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is calculated. We follow their strategy45 and generalize it to
the case of SU(m)1.

After choosing a gauge a0 ≡ 0, the classical configuration
of gauge fields aμ are constrained by the following condition
b = εij ∂iaj = 0. The gauge field configuration is fully deter-

mined by Wilson loop operators U1,2 = P[e
i
∮
c1,2

aμdxμ ] for the
two noncontractible loops c1,2 along x1 and x2 directions on
the torus. These two loop operators commute with each other
since U1U2U

†
1U

†
2 = 1 is the Wilson loop operator for a con-

tractible loop. Therefore, by a global SU(m) transformation,
we can see U1,2 lie in the maximal Abelian subgroup of SU(m),
which is generated by the Cartan subalgebra of Lie algebra
SU(m). We choose the generator of its Cartan subalgebra to
be m × m matrices

g1 = Diag(1,−1,0, . . . ,0),

g2 = Diag(1,1,−2,0, . . . ,0),

g3 = Diag(1,1,1,−3,0, . . . ,0), (E2)

· · · · · · · · ·
gm−1 = Diag(1, . . . ,1,−m − 1).

Therefore, the gauge field configuration is given by

a0 = 0, aj =
m−1∑
I=1

aI
j g

I .

Plugging this into Eq. (E1) we have

LSU(m)1 = 1

4π
εμνλ

(
m−1∑
I=1

I (I + 1)aI
μ∂νa

I
λ

)
.

In this way the original Chern-Simons theory of non-Abelian
SU(m) gauge fields is reduced to (m − 1) different Chern-
Simons theory of U(1) gauge fields aI

μ,I = 1, . . . ,m − 1. In
addition to these Abelian U(1) gauge structures, there are dis-
crete SU(m) gauge transformations generated by Wi ∈ SU(m),
which leaves this maximial Abelian subgroup invariant. The
low-energy degrees of freedom are described55,56 by vectors
�u(t) and �v(t), with

aI
1 (x1,x2,t) = 2π

L1
uI (t), aI

2 (x1,x2,t) = 2π

L2
vI (t), (E3)

on a L1 × L2 torus. The effective action becomes

L = 2π

m−1∑
I=1

I (I + 1)vI u̇I . (E4)

This immediately leads to the following canonical commuta-
tion relations:

[uI ,vJ ] = i

2π
· 1

I (I + 1)
δI,J . (E5)

In other words, the conjugate momenta of coordinate uI is
2πI (I + 1)vI . Due to the uncertainty principle, they cannot
be fixed simultaneous in a quantum state.

There are large gauge transformations {UI
i =

exp(i2πxig
I /Li),i = 1,2} acting on the partons, which

leaves both the electron operators and the physical electron
states invariant. The conjugate variables transform in the

following way under the large gauge transformations:

uI ∼ uI + 1, vI ∼ vI + 1.

Therefore, they live on a torus of size 1 × 1. As a result, the
wave functions can be written as

ψ(�u) =
∑

�n
c�ne2π i�n·�u, (E6)

where �n is a (m − 1)-dimensional vector of integers. Since the
conjugate momentum of uI is 2πI (I + 1)vI , we have

ψ(�u) ∼
∑

�n
c�n

m−1∏
I=1

δI (I+1)vI ,nI
. (E7)

The large gauge transformation vI ∼ vI + 1 enforces the
periodic condition c�n = c�n+δ�n, where δ�nI = I (I + 1)ZI ,

ZI ∈ Z.
Aside from the large gauge transformations UI

i , there are
other large gauge transformations under which

�u ≡

⎛
⎜⎝

u1

u2

· · ·
um−1

⎞
⎟⎠

∼ �u +

⎡
⎢⎢⎢⎣

−1 1 1 · · · 1
0 −2 1 · · · 1
0 0 −3 · · · 1

· · · · · · · · · · · · · · ·
0 0 0 · · · −m − 1

⎤
⎥⎥⎥⎦

−1⎛
⎜⎝

d2

d3

· · ·
dm

⎞
⎟⎠ (E8)

and similar relations hold for �v. Here {dI ,I = 2, . . . ,m} are
arbitrary integers and d1 = −∑m

I=2 dI . The partons transform
as fα(x1,x2) → exp(i2πx1dα/L1)fα(x1,x2). As mentioned
earlier, in addition to the large gauge transformations, there are
discrete SU(m) gauge transformations essentially generated by
permutation between the m species of partons. For example,
the permutation P12 transforms the partons as f1 ↔ f2 and
thus we have

P12 : �u = (u1,u2, . . .)
T ∼ (−u1,u2, . . .)

T ,

�v = (v1,v2, . . .)
T ∼ (−v1,v2, . . .)

T .

There are in total m(m − 1)/2 permutations {Pαβ |α < β} that
leave the maximal Abelian subgroup of SU(m) invariant.
All these gauge transformations give us further equivalence
conditions on �u,�v and thus on coefficients c�n. In the end, the
number of independent coefficients c�n equals the ground-state
degeneracy of SU(m)1 Chern-Simons theory on a torus. With
the help of computer programming it is easy to check the
ground-state degeneracy of SU(m)1 Chern-Simons theory on
a torus is m, and they correspond to the following (gauge-
inequivalent) gauge field configurations:

vI = 0, (I = 1,2, . . . ,m − 2);
(E9)

vm−1 = k

m
, k = 1,2, . . . ,m.

Physically, they correspond to inserting 2πk/m flux through
the hole along the x1 direction. An explicit example of SU(3)1

Chern-Simons theory is given in Ref. 46.
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APPENDIX F: SYMMETRY ANALYSIS OF
TIME-REVERSAL-INVARIANT FTI STATES

In this section we use PSG to analyze symmetric mean-field
ansatz realized in a TRI lattice model in SU(m) parton
construction. We require the corresponding electron state
to preserve both time-reversal symmetry T and all lattice
symmetries.

In the following we use the TRI checkerboard lattice
model11,16 as an example. The discussion is completely general
and can be applied to any lattice model. The SG is generated by
lattice symmetry (C1) together with time-reversal symmetry:

T : (x,y,s,σ ) → (x,y,s,1 − σ ), (F1)

where σ = 0/1 represent the electron spin ↑ / ↓. Note that
here Px , Py , and Pxy are the combination of spatial π

rotations (along x̂, ŷ, and x̂ + ŷ axis) and spin rotations.
So all these three generators flip spin: σ → 1 − σ . They
are not accompanied with time-reversal operation anymore
and they are now unitary symmetries. Time reversal itself is
still an antiunitary symmetry realized by complex conjugation
operation C. The algebra structure of this SG is determined by
Eq. (C2) together with

T 2 = e; g−1T−1gT = e, g = T1,2,Px,Py,Pxy. (F2)

Consider an IGG = Z
↑
m × Z

↓
m mean-field ansatz and we have

the following algebraic conditions for the gauge transforma-
tions GU (x,y,s,σ ) associated with U = T ,T1,2

G−1
T1

(x,y,s,σ )GT (x,y,s,σ )G∗
T1

(x,y,s,1 − σ )

×G−1
T (x − 1,y,s,σ ) = ηT1, (F3)

G−1
T2

(x,y,s,σ )GT (x,y,s,σ )G∗
T2

(x,y,s,1 − σ )

×G−1
T (x,y − 1,s,σ ) = ηT2, (F4)

since T −1
1,2 TT1,2T−1 = e. Here ηT1,ηT2 are all Zm quantum

numbers {ei 2πa
m |a = 1, . . . ,m}. As shown in Appendix D, one

can always choose a certain gauge so that

GT2 (x,y,s,σ ) = Im×m, GT1 (x,y,s,σ ) = η12(σ )Im×m,

where η12(σ ),σ = 0/1 are also Z3 quantum numbers. From
Eqs. (F3) and (F4) one can solve out

GT (x,y,s,σ ) = ηx
T1η

y

T2gT (s,σ ), η12(↑)η12(↓) = 1. (F5)

Therefore, when IGG = Z
↑
m × Z

↓
m for the parton mean-field

state, we can simply choose η12(↓) = η−1
12 (↑) to preserve the

time-reversal symmetry. However, when there are spin mixing
terms in the mean-field parton Hamiltonian, the gauge sym-
metry is broken further down to IGG = Zm and we must have
η12(↑) = η12(↓). From Eq. (F5) we know in order to preserve
time-reversal symmetry, we must have η12(↑) = η12(↓) = 1
in the case IGG = Zm. As a result there is no way to insert
2π/m flux into each unit cell in the parton mean-field ansatz
if we require time-reversal symmetry and lattice translation
symmetry. Therefore, the technique of enlarging unit cell by m

times in order to construct a gapped state with filling fraction
ν = 1/m failed. This suggests that a gapped FTI state with
gauge structure IGG = Zm at filling fraction 1/m would break
either time-reversal or lattice symmetries.

FIG. 9. (Color online) Mean-field ansatz of the parent SU(3)
parton states associated with FCI states HC1 and HC3 on honeycomb
lattice. The solid line for NN bonds represents real hopping amplitude
α. NNN bonds represents complex hopping amplitude β along
direction of the arrow. The triple arrow means the original hopping
amplitude along its direction should be multiplied by a phase factor
η12. Note in the mean-field ansatz that the lattice translation along the
�a2 direction is explicitly broken by flux insertion and the unit cell is
tripled. However, the lattice translation symmetry is preserved in the
corresponding electron states after projection (8).

APPENDIX G: THE HONEYCOMB LATTICE MODEL:
FOUR DIFFERENT EXAMPLES OF SPIN-POLARIZED

FCI STATES AT ν = 1/3

Haldane’s model on honeycomb lattice9 has been shown
to support nearly flat bands with non-Zero Chern numbers.12

Its SG is shown in Appendix A and Fig. 2. We label a lattice
site by coordinate (x,y,s) as explained in Appendix A. By
SU(3) parton construction, we use PSG to classify different
spin-polarized Z3 mean-field ansatz as shown in Appendix B.
In the following we show two mean-field states belonging to
different universality classes. They correspond to two gauge-
inequivalent solutions to Eq. (B11). Their two SU(3) parent
states also have different PSGs and thus are distinct. We show
mean-field amplitudes up to NNN in Fig. 9.

1. FCI state HC1 with σx y = 1/3: The Z3 state
and its parent SU(3) state

In spin-polarized Z3 FCI state HC1 the gauge transforma-
tions GU (x,y,s) associated with lattice symmetry U are

GT1 (x,y,s) = I3×3, GT2 (x,y,s) = ηx
12I3×3,

Gσ (x,y,s) = η
−x−y(y+1)/2
12 I3×3,

GC6 (x,y,s) = η
xy+x(x−1)/2
12 I3×3,

where η12 = exp(i2π/3). As shown in Appendix B the
symmetry-allowed mean-field amplitudes are as follows.
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FIG. 10. (Color online) The parton band structure of the parent
SU(3) ansatz (25) of HC1 state. Each band is threefold degenerate,
corresponding to three parton flavors f1,2,3. We plot the dispersion
along � → K → M → �, as shown in Fig. 3(a). Hopping parame-
ters are chosen as α = −1 for NN, β = −0.22 exp[0.2i] for NNN.
The Chern numbers of the six bands are {1,−2,−2,1,1,1} in a
bottom-up order.

(I) For NN amplitude uα ≡ M(0,0,1|0,0,0),

uα = uT
α = u∗

α; (G1)

in other words, uα can be any real symmetric 3 × 3 matrix. All
other NN amplitudes can be generated from uα by symmetry
operations through Eq. (12).

(II) For NNN amplitude uβ ≡ M(0,1,0|0,0,0),

uβ = uT
β ; (G2)

that is, uβ can be any symmetric 3 × 3 matrix. All other NNN
mean-field amplitudes can be generated from uα by symmetry
operations through Eq. (12).

Its parent SU(3) mean-field state includes both NN and
NNN hopping terms uα = αI3×3,uβ = βI3×3, as shown in
Fig. 9. With hopping parameters chosen as α = −1, β =
−0.22 exp[0.2i], the parton band structure is shown in
Fig. 10. In the bottom-up order the Chern numbers are
{1,−2,−2,1,1,1} for the six bands (each is threefold degen-
erate) and these band structures persist in a large parameter
range. As we add small terms mixing different species of
partons to break the gauge symmetry down to Z3, we have
18 nondegenerate parton bands and the Chern number for the
lowest three bands are all +1. The lowest three parton bands
are well separated from the other 15 bands by a large gap. As a
result the Z3 FCI state we obtained by filling the lowest three
bands has a Hall conductance 3 · (1/3)2 = 1/3 in the unit of
e2/h since each parton carries electric charge e/3.

2. FCI state HC2 with σx y = 1/3: The Z3 state
and its parent SU(3) state

In Z3 FCI state HC2 the gauge transformations GU (x,y,s)
associated with lattice symmetry U are

GT1 (x,y,s) = I3×3, GT2 (x,y,s) = ηx
12I3×3,

Gσ (x,y,s) = η
−x−y(y+1)/2
12 I3×3,

GC6 (x,y,0) = η
xy+x(x−1)/2
12 I3×3,

GC6 (x,y,1) = η
xy+x(x−1)/2
12 Diag{ei2π/9,ei2π/9,e−i4π/9},

where η12 = exp(i2π/3).
As shown in Appendix B, the symmetry-allowed mean-field

amplitudes are as follows.
(I) For NN amplitude uα ≡ M(0,0,1|0,0,0),

uα =

⎡
⎢⎣

eiπ/9α11 eiπ/9α12 e−iπ/18α13

eiπ/9α12 eiπ/9α22 e−iπ/18α23

e−iπ/18α13 e−iπ/18α23 e−i2π/9α33

⎤
⎥⎦, (G3)

where all αij are real parameters. All other NN amplitudes
can be generated from uβ by symmetry operations through
Eq. (12).

(II) For NNN amplitude uβ ≡ M(0,1,0|0,0,0),

uβ =

⎡
⎢⎣

β11 β12 β13e
iπ/3

β12 β22 β23e
iπ/3

β13e
−iπ/3 β23e

−iπ/3 β33

⎤
⎥⎦, (G4)

where all βij are complex parameters. All other NNN mean-
field amplitudes can be generated from uβ by symmetry
operations through Eq. (12).

Its parent SU(3) mean-field state includes only NNN
hopping terms, that is, uα = 0 and uβ = βI3×3. It is demon-
strated by the NNN bonds shown in Fig. 9. Apparently
this mean-field ansatz is very different from HC1 state
since its parent SU(3) state does not allow NN hop-
ping terms. We choose the following hopping parameters:
α11 = α22 = α33 = 2, α12 = 0.07,α13 = 0.04,α23 = 0.05 and
β11 = β22 = β33 = 0.1 exp[0.2i], β12 = 0.03 exp[i0.7],β13 =
0.07 exp[i0.2],β23 = 0.06 exp[i1.9]. We find that in a very
large parameter range the Chern number of the lowest three
parton bands remains to be +1 and they are separated from the
other bands by a large gap, as shown in Fig. 11. By filling these
three lowest bands we obtain the Z3 FCI state HC2 which also
has Hall conductivity 1/3 in the unit of e2/h.
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FIG. 11. (Color online) The parton band structure of a Z3 mean-
field ansatz: HC2 state. There are 18 non-degenerate parton bands. We
plot the dispersion along � → K → M → � as shown in FIG. 3(a).
The Chern numbers of the lowest 6 bands are {1,1,1,−2,−2,−2} in
a bottom-up order.
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FIG. 12. (Color online) The parton band structure of HC3 state,
a non-Abelian SU(3) FCI state on honeycomb lattice. Each band is
threefold degenerate, corresponding to three parton flavors f1,2,3.
We plot the dispersion along � → K → M → � as shown in
Fig. 3(a). Its mean-field ansatz is shown in Fig. 9, with η12 =
exp(−i2π/3). Hopping parameters are chosen as α = −1 for NN
and β = −0.22 exp[0.2i] for NNN. The Chern numbers of the six
bands are {2,2,−1,−4,2,−1} in a bottom-up order.

APPENDIX H: TWO EXAMPLES OF NON-ABELIAN
SPIN-POLARIZED SU(3) FCI STATES

As discussed in Sec. IV, by partially filling a topological
flat band with Chern number C > 1, it might be possible to
realize non-Abelian FCI states. Here we show two examples of
spin-polarized SU(3) FCI states with ν = 1/3, one (labeled as
HC3) on honeycomb lattice and the other (labeled as CB3) on
checkerboard lattice. In particular, these states are likely to be
non-Abelian FCI states associated with SU(3)2 Chern-Simons
theory46 since the each parton species fills a lowest band with
Chern number +2. Their Hall conductance is σxy = 2

3 in the
unit of e2/h. By braiding non-Abelian quasiparticles in these
FCIs one can carry out universal quantum computations.29,40

1. Honeycomb lattice: SU(3) FCI state HC3
with σx y = 2/3 and ν = 1/3

The SU(3) FCI state HC3 is an example of non-Abelian
states on the honeycomb lattice. It includes both NN and
NNN hopping terms uα = αI3×3,uβ = βI3×3 in its mean-field
ansatz, as shown in Fig. 9 with η12 = exp(−i2π/3). It is
different from the parent SU(3) state of HC1, since in HC1 we
insert −2π/3 flux per unit cell and here we insert 2π/3 flux
in HC3 state to enlarge the unit cell. With hopping parameters
chosen as α = 1, β = 0.35 exp[0.2i], its parton band structure
is shown in Fig. 12. In the bottom-up order the Chern numbers
are {2,2,−1,−4,2,−1} for the six bands (each is threefold
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FIG. 13. (Color online) The parton band structure of CB3 state,
a non-Abelian SU(3) FCI state on checkerboard lattice. Each band is
threefold degenerate, corresponding to three parton flavors f1,2,3. We
plot the dispersion along � → K → M → �, as shown in Fig. 3(b).
Its mean-field ansatz is shown in Fig. 7, with η12 = exp(i2π/3).
Hopping parameters are chosen as α = eiπ/12 for NN, βx = 0.6 = βy

for NNN, and γ = 0.5 for NNNN. The Chern numbers of the six
bands are {2,2,−1,−4,2,−1} in a bottom-up order.

degenerate) and these band structures persist in a large param-
eter range. The lowest parton band is separated from the other
five bands by a sizable gap. As a result, the SU(3) FCI state
HC3 we obtained by filling the lowest threefold-degenerate
band has a Hall conductance σxy = 3 · 2 · (1/3)2 = 2/3 in the
unit of e2/h, since each parton carries electric charge e/3.

2. Checkerboard lattice: SU(3) FCI state CB3
with σx y = 2/3 and ν = 1/3

The SU(3) FCI state CB3 is an example of non-Abelian FCI
states on checkerboard lattice. It includes NN hopping uα =
αI3×3, NNN hopping uαx = e−iπ/3βxI3×3,uαy = βyI3×3, and
NNNN hopping uγ = γ I3×3 in its mean-field ansatz, as shown
in Fig. 7, with η12 = exp(i2π/3). It is different from the parent
SU(3) state of CB2, since in CB2 2π/3 flux is inserted into each
unit cell while here we insert −2π/3 flux for CB3. Choosing
parameters α = eiπ/12, βx = 0.6 = βy , and γ = 0.5 we have
the Chern numbers of the six bands for each parton species as
{2,2,−1,−4,2,−1} and the lowest band is well separated from
other bands, as shown in Fig. 13. This qualitative band structure
persists for a large parameter range. Each band of a SU(3)
parton ansatz is threefold degenerate, corresponding to the
three parton flavors f1,2,3. By filling the threefold-degenerate
lowest band (with Chern number +2), we obtain a SU(3) FCI
state CB3 whose Hall conductivity is σxy = 2/3 in the unit of
e2/h.
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