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Charge dynamics in half-filled Hubbard chains with finite on-site interaction
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We study the charge dynamic structure factor of the one-dimensional Hubbard model with finite on-site
repulsion U at half-filling. Numerical results from the time-dependent density matrix renormalization group are
analyzed by comparison with the exact spectrum of the model. The evolution of the line shape as a function of
U is explained in terms of a relative transfer of spectral weight between the two-holon continuum that dominates
in the limit U → ∞ and a subset of the two-holon-two-spinon continuum that reconstructs the electron-hole
continuum in the limit U → 0. Power-law singularities along boundary lines of the spectrum are described by
effective impurity models that are explicitly invariant under spin and η-spin SU(2) rotations. The Mott-Hubbard
metal-insulator transition is reflected in a discontinuous change of the exponents of edge singularities at U = 0.
The sharp feature observed in the spectrum for momenta near the zone boundary is attributed to a van Hove
singularity that persists as a consequence of integrability.
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I. INTRODUCTION

Since its proposal,1 the Hubbard model has become a
paradigm in the field of strongly correlated electron systems.
It is the simplest model that accounts for the metal-insulator
transition on a half-filled lattice when the on-site electron-
electron repulsion U is strong enough. It is still debated
whether the model in two spatial dimensions or some variation
of it contains the mechanism for high-temperature supercon-
ductivity at finite doping.

Theoretically, much more is known about the model on a
one-dimensional (1D) lattice.2 In this case, it is possible to cal-
culate the exact spectrum and eigenfunctions by Bethe ansatz
(BA).3 Two remarkable properties revealed by the exact solu-
tion are the existence of fractional excitations that carry sepa-
rate spin and charge quantum numbers and the opening of the
Mott-Hubbard gap at half-filling for arbitrarily small U > 0.

Recently, there has been renewed interest in dynamical
properties of 1D models. One motivation for this is that
questions about features of the excitation spectrum of 1D
systems, such as the persistence of spin-charge separation at
high energies, have become relevant with the improvement
in the resolution of momentum-resolved experiments.4–8 In
addition, ultracold atoms trapped in optical lattices have
emerged as a new means to study coherent dynamics of 1D
models, including integrable ones which are not realizable in
condensed matter systems.9

At the same time, significant progress has been achieved
in developing analytical10–22 and numerical23–25 techniques
to study dynamical correlation functions in the high-energy
regime where conventional Luttinger liquid theory26,27 does
not apply. Analytically, it is possible to compute exponents
of power-law singularities that develop near thresholds of the
spectrum of dynamical correlation functions at arbitrarily high
energies. For the metallic phase of the Hubbard model, i.e.,
away from half-filling, the calculation of finite-energy dynam-
ical correlation functions was pioneered by the pseudofermion

dynamical theory.10 This theory is based on the BA solution
of the model and has been applied to calculate, for instance,
the optical conductivity and the one-electron spectral function
of 1D conductors.28–30 In another approach, exponents of
high-energy singularities can be investigated using effective
field theories that treat high-energy modes as impurities,
defined in momentum space, which can scatter off low-energy
excitations (see Ref. 22 for a review). This approach, combined
with the BA solution, has also been applied to calculate edge
exponents for the spectral function of the Hubbard model away
from half-filling.17

In this work, we are interested in finite energy dynamical
correlation functions for the Hubbard model at half-filling.
Clearly, the edge exponents of the Mott insulating phase should
differ from those of the metallic phase studied in Refs. 10
and 17 due to the finite charge gap. In fact, the result should be
simpler due to the higher symmetry of the model at half-filling.
At half-filling the Hubbard model has a hidden η-spin SU(2)
symmetry that rotates between doubly occupied sites and
empty sites.2 In the same sense that spin SU(2) invariance fixes
the exponents of spin correlation functions at high energies,14

it should be possible to use the continuous symmetry in the
charge sector to constrain the exponents in charge dynamics.

Particularly, we shall focus on the charge dynamic structure
factor (DSF) S(q,ω) at zero temperature. The DSF is known
analytically only in two limits. In the low-energy limit, which
requires that the Mott-Hubbard gap be small, dynamical
correlation functions can be calculated using form factors for
the integrable sine-Gordon model.31 Within this field-theory
approach, a universal square-root cusp is found at the edge
of the relativistic spectrum of massive charge solitons. In
the strong coupling limit, one can take advantage of the
factorization of the wave function into a noninteracting charge
sector and a spin sector described by the 1D Heisenberg
model.32 A square-root cusp is again found at the lower
threshold of the two-holon continuum, stemming from matrix
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elements for noninteracting spinless fermions.33 In both low-
energy and strong coupling limits, no features are predicted
at the branch line of the spin excitations here called spinons.
This is in contrast to the behavior of the one-electron spectral
function, which has sharp features near both charge and spin
branch lines for any value of U > 0.34,35

The DSF has also been studied numerically,36,37 most
recently using the dynamical density matrix renormalization
group (DDMRG).24 Most of the numerical work has focused
on the regime of large U , which is appropriate to describe
strong Mott insulators such as Sr2CuO3.5

We note that the DSF has strikingly different line shapes
in the weak and strong coupling limits. For noninteracting
electrons, U = 0, the DSF can be calculated exactly and
corresponds to the density of states of an electron-hole pair.
For U → ∞, the spectral weight is assigned to a two-holon
continuum, with essentially no contribution from spinons.33

The purpose of this paper is to investigate the charge DSF
for the Hubbard model at half-filling for arbitrary values of
q, ω at finite U . We construct a picture for the intermediate
U regime by combining information about the exact spectrum
from BA, an effective field theory for edge singularities at
high energies and numerical results from the time-dependent
density matrix renormalization group (tDMRG). We start in
Sec. II by discussing the exact support of the DSF in terms
of elementary charge and spin excitations using known results
from the BA solution. Our main results can be found in Secs. III
and IV. In Sec. III, we present the effective field theory that in-
corporates the spin and η-spin SU(2) symmetries explicitly and
allows us to determine the exponents of power-law singulari-
ties at the edges of the exact spectrum of the DSF. In Sec. IV, we
present the tDMRG results for certain values of U and analyze
them by comparison with the field theory combined with the
exact spectrum from BA. In addition, we discuss the U depen-
dence of the line shape, interpolating between weak and strong
coupling limits. Finally, Sec. V contains the conclusions.

Our results are relevant for the charge DSF of fermionic
atoms in a 1D optical lattice with on-site atomic repulsion de-
scribed by the integrable Hubbard model. In the context of cold
atoms, the charge DSF is probed by Bragg spectroscopy.38,39

The results are also useful as an approximation to condensed
matter systems where the integrability-breaking perturbations
to the Hubbard model, such as the nearest neighbor inter-
action in the extended Hubbard model, are small. In this
context, the DSF has served to interpret electron energy loss
spectroscopy4 and inelastic x-ray experiments.5,6 Since the
Shiba transformation40 maps the charge DSF for U > 0 to the
spin DSF for U < 0, our results also apply to the spin DSF of
the spin-gapped phase for the attractive Hubbard model.

II. MODEL, SYMMETRIES AND EXACT SUPPORT OF
THE CHARGE DSF

A. Model

We consider the 1D Hubbard model

H =
L∑

j=1

[
−(c†j cj+1 + H.c.) + U

(
nj,↑ − 1

2

)(
nj,↓ − 1

2

)]
.

(1)

Here, cj = (cj,↑,cj,↓) is a two-component spinor representing
electrons with spin σ = ↑,↓ at site j , nj,σ = c

†
j,σ cj,σ , and L is

the system size. The number of electrons at site j is denoted as
nj = nj,↑ + nj,↓. We focus on half-filling 〈nj 〉 = 1. We have
set the hopping amplitude to 1, not to be confused with the
real time variable t . The 1D Hubbard model is integrable. The
exact spectrum for all values of U , density and magnetization
is provided by the BA solution.3

At half-filling and zero magnetic field, the Hubbard model
has an explicit spin SU(2) symmetry and a less obvious charge
η-spin SU(2) symmetry.2 The generators of spin rotations are
the components of the usual spin operator S = ∑

j c
†
j (τ/2)cj ,

where τ is the vector of Pauli matrices. The generators of
η-spin rotations are

ηz = 1

2

∑
j

(nj,↑ + nj,↓ − 1) ≡
∑

j

ηz
j , (2)

η+ =
∑

j

(−1)j c†j,↑c
†
j,↓ ≡

∑
j

η+
j , (3)

η− =
∑

j

(−1)j cj,↓cj,↑ ≡
∑

j

η−
j , (4)

such that the local operators obey the algebra [ηz
j ,η

±
j ′ ] =

±δjj ′η±
j and [η+

j ,η−
j ′ ] = 2δjj ′ηz

j . Notice that ηz
j is proportional

to the fluctuation of the local charge density operator: nj =
1 + 2ηz

j . The transverse components ηx,y of the η-spin vector
η = (ηx,ηy,ηz) can be defined by η± = ηx ± iηy .

While the spin and η-spin symmetries account for an
SO(4) = [SU(2) × SU(2)]/Z2 symmetry, the global sym-
metry of the Hubbard model was recently found to be
larger and given by [SO(4) × U(1)]/Z2 = [SU(2) × SU(2) ×
U(1)]/Z2

2.41 In addition, the 1D model has an infinite number
of local conserved quantities associated with integrability.

B. Charge structure factor at half-filling

The charge DSF is defined as the Fourier transform of the
density-density correlation function:

S(q,ω) = 2π

L

∑
ν 
=GS

|〈GS|nq |ν〉|2δ(ω − Eν + EGS)

= 4
∑

j

e−iqj

∫ ∞

−∞
dt eiωt 〈ηz

j (t)ηz
0(0)〉, (5)

where nq ≡ ∑
j e−iqj nj , |GS〉 is the ground state and |ν〉 is an

excited state with energy Eν . Since S(q,ω) = S(−q,ω), in the
following, we set q > 0 without loss of generality. The DSF
obeys the sum rule∫ π

−π

dq

2π

∫ ∞

0

dω

2π
S(q,ω) = 2〈nj,↑nj,↓〉 ≡ 2D, (6)

with the density of doubly occupied sites given exactly by42

D =
∫ ∞

0
dω

J0(ω)J1(ω)

1 + cosh(ωU/2)
� 0. (7)

For U → 0, we have D → 1/4, and for U → ∞, the inte-
grated spectral weight vanishes as D → ln 2(2t/U )2.

The η-spin symmetry can be used to relate the DSF at
half-filling to the correlation function for the pairing operators,
which create doubly occupied or empty sites. The ground state
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for an even number of sites is unique and is a singlet of both
spin and η-spin rotations (quantum numbers S = Sz = η =
ηz = 0). Equation (5) can be rewritten as

S(q,ω) = 8πL
∑

ν 
=GS

∣∣〈GS|ηz
0|ν〉∣∣2

δq,Pν
δ(ω − Eν + EGS),

(8)

where Pν is the lattice momentum of the eigenstate |ν〉. By
employing, for instance, the unitary transformation that rotates
the η-spin vector by π/2 about the y axis, U = e−i π

2 ηy

, we can
rewrite the matrix element

〈GS|ηz
0|ν〉 = 〈GS|U †Uηz

0U
†U |ν〉 = 〈GS|ηx

0 |ν ′〉, (9)

where |ν ′〉 = U |ν〉 is also an eigenstate of H with energy
Eν ′ = Eν , but with momentum Pν ′ = Pν + π . The momentum
shift follows from the fact that the lattice translation operator
anticommutes with η±.2 We then have

S(q,ω) = 8πL
∑

ν 
=GS

∣∣〈GS|ηx
0 |ν〉∣∣2

δq,Pν+πδ(ω − Eν + EGS)

= 4
∑

j

e−i(q+π)j
∫ ∞

−∞
dt eiωt

〈
ηx

j (t)ηx
0 (0)

〉
, (10)

and likewise for the correlation function for η
y

j . Thus S(q,ω)
can be viewed as the longitudinal component of the charge
DSF tensor

Sab
c (q,ω) = 4

∑
j

e−iqj

∫ ∞

−∞
dt eiωt

〈
η̃a

j (t)η̃b
0(0)

〉
, (11)

where a,b = x,y,z and η̃z
j = ηz

j , η̃
x,y

j = (−1)j ηx,y

j . In this
notation, S(q,ω) = Szz

c (q,ω). The η-spin SU(2) symmetry
implies

S(q,ω) = S+−
c (q,ω)/2

= 2
∑

j

e−i(q+π)j
∫ ∞

−∞
dt eiωt 〈η+

j (t)η−
0 (0)〉. (12)

Therefore up to the shift of total momentum by π , the line
shape of the charge DSF is identical to that of the correlation
function for pairing operators η±

j . We can also write

S(q,ω) = 4

3

∑
j

e−iqj

∫ ∞

−∞
dt eiωt 〈η̃j (t) · η̃0(0)〉. (13)

For later reference, we mention that for U = 0 the charge
DSF in Eq. (5) reduces to the density of states for excitations
with a single electron-hole pair

S0(q,ω) = 4θ [ω − ω−(q)]θ [ω+(q) − ω]√
ω+(q)2 − ω2

, (14)

where ω−(q) = 2 sin q and ω+(q) = 4 sin(q/2) are the lower
and upper thresholds of the electron-hole continuum, respec-
tively, and θ (ω) is the Heaviside step function. Up to a factor of
2, this is the same result as for spinless fermions at half-filling.
The free-electron DSF has a step discontinuity at the lower
edge and a square-root divergence at the upper edge, which
stems from the van Hove singularity of an electron and a hole
with the same velocity.

C. Elementary excitations in the Bethe ansatz solution

In this section, we review some BA results for the exact
spectrum, which will be useful for comparison with numerical
results in Sec. IV.

According to the BA solution,3 the eigenstates of the 1D
Hubbard model can be constructed from elementary charge,
η-spin, and spin excitations. In the half-filling case, it suffices
to consider two branches of excitations, one in the charge
sector, which we call holons, and one in the spin sector, which
we call spinons. (For the relation between the holons and
spinons used here and the notation used, e.g., in Refs. 41
and 43, see Appendix A.)

In the thermodynamic limit, holons and spinons have
dispersion relations εc(pc) and εs(ps), respectively, where the
dressed momenta pc,s and dressed energies εc,s are given by
[see Ref. 44 and Appendix A; here, we follow the notation in
Eq. (7.8) of Ref. 2]

pc(k) = π

2
− k − 2

∫ ∞

0
dω

J0(ω) sin(ω sin k)

ω(1 + eωU/2)
, (15)

ps(
) = π

2
−

∫ ∞

0
dω

J0(ω) sin(ω
)

ω cosh(ωU/4)
, (16)

εc(k) = 2 cos k + U/2 + 4
∫ ∞

0
dω

J1(ω) cos(ω sin k)

ω(1 + eωU/2)
, (17)

εs(
) = 2
∫ ∞

0
dω

J1(ω) cos(ω
)

ω cosh(ωU/4)
. (18)

Here, k and 
 are the charge quasimomentum and spin
rapidity, respectively. For any value of U > 0, the spin
dispersion is gapless at the spinon Fermi points ps = 0,π and
the charge dispersion has minimum energy at pc = −π/2,
with a gap given by

� = 16

U

∫ ∞

1
dω

√
ω2 − 1

sinh(2πω/U )
. (19)

Analytic expressions for the holon and spinon dispersions can
be obtained in the limits U → ∞:

εc(pc) ≈ U

2
+ 2 sin pc − 4 ln 2

U
(1 + cos 2pc), (20)

εs(ps) ≈ 4

U
sin ps, (21)

and in the limit U → 0,

εc(pc) ≈ 4

∣∣∣∣cos
2pc − π

4

∣∣∣∣ , (22)

εs(ps) ≈ 2 sin ps, (23)

with an exponentially small charge gap � ≈ (4/π )
√

Ue−2π/U .
We shall also be interested in the velocity of holons and
spinons, defined as

uc(pc) = ∂εc

∂pc

, us(ps) = ∂εs

∂ps

. (24)

The dispersion relations of holons and spinons given by
Eqs. (15)–(18) are illustrated in Fig. 1.

D. Boundary lines in the exact spectrum of S(q,ω)

Even though the exact spectrum and wave functions of
the 1D Hubbard model are known, it has not been possible to
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FIG. 1. (Color online) Exact dispersion relations of elementary
charge and spin excitations for U = 4.9. Here, the excitations are
represented by particles in the empty holon (c) and spinon (s) bands.
The holon band is gapped with minimum energy at pc = −π/2. The
spinon band is gapless at ps = 0,π .

calculate the DSF directly from the BA solution. The difficulty
is in computing the matrix elements in Eq. (5) for significantly
large chains. Unfortunately, unlike the Heisenberg model,
there are so far no determinant formulas45 or vertex operator
approach46 to compute form factors for the Hubbard model.

Nonetheless, we can use the BA equations to compute the
exact support of the DSF. It follows from the Wigner-Eckart
theorem that the excited states that contribute to S(q,ω)
in Eq. (5) must carry quantum numbers S = Sz = 0 (spin
singlets) and η = 1,ηz = 0 (η-spin triplets). This selects states
with 2m holons, m � 1, and 2n spinons, n � 0. Since the
excited states must contain at least two holons and the holon
dispersion is gapped, the DSF vanishes for ω < 2�.

The simplest excited states, in the sense of lowest number of
elementary excitations, that contribute to S(q,ω) are two-holon
states (m = 1, n = 0). For η = 1, ηz = 0, the excitations with
m = 1, n = 0 have total momentum P and energy E given
by2

P = pc,1 + pc,2 + π, E = εc(pc,1) + εc(pc,2), (25)

where pc,1 and pc,2 are the dressed momenta of the individual
holons as in Eq. (15). The next simplest excited states that
contribute to S(q,ω) contain two spinons in addition to the
two holons (m = n = 1). For η = 1, ηz = 0 excitations with
m = n = 1, we have

P = pc,1 + pc,2 + ps,1 + ps,2 + π, (26)

E = εc(pc,1) + εc(pc,2) + εs(ps,1) + εs(ps,2), (27)

where ps,1 and ps,2 are the momenta of the two spinons
as in Eq. (16). We expect these two classes of states to
give the leading contributions to the spectral weight of
S(q,ω) for all values of U , based on the observation that,
analogously, the leading contribution to the half-filling one-
electron excitations stem from one-holon-one-spinon excited
states.47 Indeed, Fig. 2 of Ref. 47 presents the contributions
of different states to the one-electron-addition sum rule for
half-filling. Interestingly, the higher-order contributions are
most important at U ≈ 4, yet they account only for about 0.005
of the one-electron-addition spectral weight. Consistently, it is
expected that the higher-order contributions associated here

0 0.2 0.4 0.6 0.8 1
q/π

0

2

4

6

8

ω
 -

 2
Δ

ω+
2c(q)

ω−
2c(q)

ω−
2c2s(q)

FIG. 2. (Color online) Support of the charge DSF for U = 4.9.
Energies are measured from the Mott-Hubbard gap 2�. Some special
lines of the spectrum are shown. The two-holon continuum is bounded
by ω−

2c(q) and ω+
2c(q), but the spectral weight is nonzero everywhere

above the lower line ω−
2c2s(q) and extends to arbitrarily high energies.

For 0 < q < q, where q is the momentum of the point indicated
by a diamond, the lower edge of the two-holon continuum ω−

2c(q) is
defined by two holons with the same momentum (−π + q)/2. For
q < q < π , the energy of two holons with momentum (−π + q)/2
follows the dashed line, but this is no longer the lower edge of the
two-holon spectrum. Instead, ω−

2c(q) is defined by two holons with
different momenta but equal velocities. For 0 < q < q�, where q� is
the momentum of the point indicated by the left-pointing triangle, the
DSF vanishes below ω−

2c(q). For q� < q < q� ≡ π − q�, the absolute
lower threshold is ω−

2c2s(q), defined by an excitation with two holons
with the same momentum, one spinon at the Fermi surface and another
spinon below the Fermi surface that has the same velocity as the
holons. For q� < q < π , the line ω−

2c2s(q) is defined by two holons
with the same momentum and two spinons at opposite Fermi points.

mainly with m = 1,n = 2 and m = 2,n = 0 states are again
very small and maximum at U ≈ 4. Figure 2 illustrates the
exact support of the DSF. It also indicates special boundary
lines in the m = 1, n = 0, and m = n = 1 continua, which
will be important to construct the effective field theory for
edge singularities in Sec. III as well as to analyze the tDMRG
data in Sec. IV.

We now discuss the most important boundary lines in the
spectrum of S(q,ω) based on simple kinematics. For large
U , we expect the spectral weight of S(q,ω) to be confined
inside the two-holon continuum.33 The upper threshold of
the two-holon continuum ω+

2c(q) is given by two holons with
the same momentum (π + q)/2, 0 � q � π . In the strong
coupling theory for U → ∞,33 in which limit the holons have
a free-fermion cosine dispersion, the lower threshold of the
two-holon continuum is given by two holons with the same
momentum pc,1 = pc,2 = (−π + q)/2 for all 0 � q � π .
However, for any finite U , the holon dispersion deviates from
the cosine function such that the curvature of the dispersion
(absolute value of inverse effective mass) is smaller near the
minimum of the band than near the maximum. As a result, for
values of q near the zone boundary the two-holon excitation
with the lowest energy has holons with different momenta
pc,1 = q − π − pc,2 
= pc,2 (mod 2π ), but such that they
propagate with the same velocity, uc(pc,1) = uc(pc,2). Starting
from pc,1 = pc,2 = −π/2 and increasing the holon momenta,
the values of pc,1 and pc,2 that define ω−

2c(q) split off at the
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inflection point of the exact holon dispersion. Thus there is a
value of q(U ), given by twice the momentum of the inflection
point [plus or minus π as in Eq. (25)], where the nature of
the lower threshold changes. In the limit U → ∞, Eq. (20)
yields q ≈ π − 16 ln 2/U + O(U−2). Using the exact holon
dispersion in Eqs. (15) and (17), we find that q decreases
monotonically with U and q → 0 in the limit U → 0.

The lower edge of the two holon continuum is not the
absolute lower threshold of the support of S(q,ω) for general
q. Starting from q = 0 and moving along the line ω−

2c(q), a
value of q is reached at which the velocity of the holons with
momentum (−π + q)/2 becomes equal to the spin velocity at
the spinon Fermi surface. The value of q = q�(U ) where this
happens is given by the condition uc[(−π + q�)/2] = vs ≡
us(0) and is represented by a left-pointing triangle in Fig. 2. For
q > q�, it is possible to lower the energy by transferring mo-
mentum to a pair of spinons. For q� < q < π − q� ≡ q�, the
lower edge of the two-holon-two-spinon continuum, denoted
ω−

2c2s(q), has two holons with pc,1 = pc,2 < (−π + q)/2, one
spinon at the Fermi point with ps,1 = 0 and another spinon
with momentum ps,2 = q − 2pc,1 such that the velocity of the
latter equals the velocity of the holons, us(ps,2) = uc(pc,1).
For q� < q < π , the lower edge has the two spinons pinned
at opposite Fermi points while the holons carry the same
momentum q/2.

The line ω−
2c2s(q) is actually the absolute lower edge of the

support for q� < q < π . Adding more holons to the excited
state can only increase the energy due to the charge gap.
Furthermore, we find numerically that the spinon band has
no inflection points away from the Fermi surface. In this case,
the minimum energy for 2n spinons at fixed total momentum
is obtained by placing 2n − 1 spinons at the Fermi surface
and one spinon carrying the remaining momentum, giving the
same minimum energy as for two spinons only. Notice that
the ω−

2c2s(q) line is not the same as the spinon mass shell, in
contrast with the lower edge for the metallic phase.17,20

Finally, we note that in the limit U → 0, the line ω−
2c2s(q)

becomes the lower edge of the electron-hole continuum,
ω−

2c2s(q) → 2 sin q, whereas the lower edge of the two-holon
continuum becomes the upper edge of the electron-hole
continuum, ω−

2c(q) → 4 sin(q/2). As U → 0, we expect that
all the spectral weight of S(q,ω) becomes confined between
ω−

2c2s(q) and ω−
2c(q) in order to recover the free electron result.

III. SU(2) INVARIANT IMPURITY MODEL FOR EDGE
SINGULARITIES

In this section, we work out the field-theory methods that
allow us to describe power-law singularities of dynamical
correlation functions at high energies. The general method
relies on effective impurity models to treat the high-energy
modes. This approach has been applied to other models and is
explained in detail in Ref. 22. Here, our goal is to extend these
methods to incorporate the spin and η-spin SU(2) symmetries
of the Hubbard model at half-filling explicitly in the effective
impurity models. The main idea is to define vector currents for
the high-energy modes, in analogy with the low-energy SU(2)
currents used in the Sugawara representation of the spin part
of the Luttinger model.48

A. Low-energy theory

Before dealing with high-energy singularities, we review
standard results obtained by bosonization of the Hubbard
model in the low-energy limit.27 The starting point is to
linearize the electron dispersion for U = 0 about the right (R)
and left (L) Fermi points for the two spin channels σ = ↑,↓.
In the continuum limit, the fermionic field is expanded in the
form

cj,σ → σ (x) ∼ eiπx/2ψR,σ (x) + e−iπx/2ψL,σ (x). (28)

Bosonization maps the fermionic fields to

ψα,σ (x) ∼ Fα,σ e−i
√

2πϕα,σ (x), (29)

for α = L,R = +,−, where Fα,σ are Klein factors.
The chiral bosonic fields satisfy [ϕα,ν(x),∂x ′ϕα′,ν ′ (x ′)] =
iαδα,α′δν,ν ′δ(x − x ′). Charge and spin bosons are defined as
the linear combinations

ϕα,c(x) = [ϕα,↑(x) + ϕα,↓(x)]/
√

2, (30)

ϕα,s(x) = [ϕα,↑(x) − ϕα,↓(x)]/
√

2. (31)

The long-wavelength part of the spin and η-spin density
operators can be expressed in terms of the chiral spin and
charge bosons as

Sj → S(x) ∼ JR,s(x) + JL,s(x), (32)

ηj → η(x) ∼ JR,c(x) + JL,c(x), (33)

where Jα,ν with ν = c,s are SU(2) charge and spin currents
with components

J z
α,ν(x) = α∂xϕα,ν(x)/

√
4π, (34)

J±
α,ν(x) = e±i

√
4πϕα,ν (x)/2π. (35)

These SU(2) currents obey the k = 1 Kac-Moody algebra.48

We remark that the long-wavelength parts of S(x) and η(x)
do not mix charge and spin bosons, but the staggered parts
omitted in Eqs. (32) and (33) do.48

In the low-energy limit, spin-charge separation holds in the
strong sense that spin and charge excitations are decoupled.
The bosonized version of the Hubbard model in Eq. (1) yields
the Hamiltonian density H(x) = ∑

ν=c,s[H(0)
ν (x) + δHν(x)]

with

H(0)
ν = 2πvν

3

(
J2

R,ν + J2
L,ν

)
, (36)

δHν = −2πvνλνJR,ν · JL,ν. (37)

The terms H(0)
ν are quadratic in the bosonic fields and can

be recognized as the Luttinger model for charge and spin
collective modes written in manifestly SU(2) × SU(2) invari-
ant form. The parameters vc and vs are the charge and spin
velocities, respectively. For U � 1, we have vc ≈ 2 + U/2π

and vs ≈ 2 − U/2π . The terms δHν are perturbations that mix
R and L currents and are not quadratic in the bosonic fields.
For U � 1, λc ≈ −U/2π and λs ≈ U/2π . Although the bare
coupling constants λν are small for U � 1, these perturbations
flow under the renormalization group with β function

dλν

d�
= −λ2

ν + O
(
λ3

ν

)
, (38)
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where d� = |d
|/
 with 
 the high-energy cutoff. For
U > 0, λs is marginally irrelevant and the spin spectrum is
gapless. On the other hand, λc is marginally relevant and gives
rise to a charge gap. The gap � ∼ e−1/|λc | is exponentially
small at small U , in agreement with the BA solution [c.f.
below Eq. (23)]. The charge sector can then be described
using the sine-Gordon model,31 whose elementary excitations
are solitons with a massive relativistic dispersion ε(q) =√

(vcq)2 + �2. Note the roles of spin and charge bosons are
exchanged if we invert the sign of U , as follows from the Shiba
transformation.40

The critical theory of the spin sector is the k = 1 SU(2)
Wess-Zumino-Witten (WZW) model.49 In the more elegant
notation of non-Abelian bosonization, operators can be written
in terms of the 2 × 2 unitary matrix field g(x) of the WZW
model,

g(x,t) = 1√
2
gL(x+) ⊗ g

†
R(x−), (39)

where x± ≡ vst ± x and the tensor product notation means
gi,j = gL,ig

†
R,j with i,j = 1,2. The chiral spinor fields gL and

gR have conformal dimensions ( 1
4 ,0) and (0, 1

4 ),50 respectively,
and can be represented in Abelian bosonization notation as

gα(x) =
(

e−i
√

πϕα,s (x)

ei
√

πϕα,s (x)

)
, α = L,R. (40)

Under a spin rotation represented by a unitary 2 × 2 matrix
U , the chiral spinors transform as gα,i → g′

α,i = Uijgα,j . Due
to conformal invariance, the spin SU(2) symmetry is enlarged
to a chiral SU(2)L × SU(2)R symmetry. In terms of the matrix
field, the spin currents are given by49

JL,s = i

4π
Tr(∂+gg†τ ), JR,s = − i

4π
Tr(g†∂−gτ ), (41)

where ∂± = ∂/∂x±. The theory for the low-energy sector of
the Hubbard model is equivalent to that of the Heisenberg spin
chain, the only distinction being in the spin velocity vs , which
depends on U .

B. Edge singularities at high energies: imposing spin SU(2)
invariance in spin correlation functions

Although low-energy theories based on the linear disper-
sion approximation yield reliable results for thermodynamic
quantities, in general, they fail to predict the correct edge
singularities of dynamic correlation functions.22 For this
purpose, it is important to take into account formally irrelevant
perturbations that break the Lorentz invariance of the fixed
point Hamiltonian. Nonlinear Luttinger liquid theory makes
progress by refermionizing the elementary excitations.15 For
spin-1/2 models, this means defining spinless fermions asso-
ciated with holon and spinon bands that have a finite curvature
about the Fermi points.18,19

The idea behind the effective impurity models for edge
singularities is the same for all dynamic correlation functions.
Essentially, it involves defining high-energy subbands within
the dispersion of elementary excitations, in addition to the
chiral low-energy modes.11 The single-particle states used to
define the high-energy subbands depend on the momentum and
energy of interest for the dynamic response function. In order

q)b()a(ε

p

ε

p

q

00

FIG. 3. (Color online) (a) “Deep-hole” particle-hole excitation
that gives the lower edge of the longitudinal spin DSF. In the effective
field theory, spinons are interacting spinless fermions with hole states
for −π < p < 0 and particle states for 0 < p < π . (b) Particle-
hole excitation with high-energy particle. Due to spin-inversion
symmetry, the dispersion is particle-hole symmetric and (a) and (b)
are degenerate.

to motivate the application of the SU(2) invariant effective field
theory for edge singularities, let us turn for the moment to the
case of spin correlation functions for which more is known
concerning the implications of SU(2) invariance.13,14 We will
show that the proposed definition of a high-energy impurity
spinor in Eq. (48) below recovers known results.

1. Lower edge of the two-spinon continuum

For the half-filled Hubbard model with U > 0, the spectrum
of spin correlation functions is gapless. The effective theory
for edge singularities of the spin DSF has been worked out
for the XXZ model,13,14 which only has U(1) symmetry
for general anisotropy parameter but includes the SU(2)
symmetric Heisenberg point. In the spinless fermion language,
the spin excitations are described by particles and holes in an
interacting band (see Fig. 3). The longitudinal spin DSF is
defined as

Szz
s (q,ω) =

∑
j

e−iqj

∫ ∞

−∞
dt eiωt

〈
Sz

j (t)Sz
0(0)

〉
. (42)

We can also consider the transverse spin DSF

S+−
s (q,ω) =

∑
j

e−iqj

∫ ∞

−∞
dt eiωt 〈S+

j (t)S−
0 (0)〉. (43)

Spin SU(2) invariance at zero magnetic field implies
Szz

s (q,ω) = S+−
s (q,ω)/2.

The lower edge of the support of Szz
s (q,ω) corresponds

to the lower threshold of the two-spinon continuum and
is described as a “deep-hole” excitation with a hole with
momentum p = −q below the Fermi point and a particle
exactly at the Fermi point. The energy of this excitation is equal
to the spinon mass shell εs(q) > 0. Since at zero magnetic field
the spin band is particle-hole symmetric,13 the excitation with
a hole at the Fermi point and a particle at p = q above the
Fermi point is degenerate with the deep hole excitation.

The edge singularity in this case is described by a q-
dependent effective model which, besides the low-energy
states near the Fermi points, contains impurity subbands
associated with the deep hole or the high-energy particle. The
spin DSF shows a singularity above the spinon mass shell,
Szz

s (q,ω) ∼ δωμ, with δω = ω − εs(q). The lower edge expo-
nent μ is determined by the scaling dimension of the operator
that creates the particle-hole excitations after performing a
unitary transformation that decouples the impurity modes from
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the bosonized Fermi surface modes. For details, see Ref. 22.
After this unitary transformation, up to irrelevant operators,
the effective Hamiltonian density assumes the noninteracting
form H = H(0)

s + H(0)
d , where

H(0)
s = vs

2
[(∂xϕR,s)

2 + (∂xϕL,s)
2], (44)

H(0)
d = d†

s (εs − ius∂x)ds + d̄†
s (εs − ius∂x)d̄s . (45)

Here, ds(x) and d̄s(x) are field operators that annihilate a high-
energy spinon particle and a deep spinon hole, respectively,
and us < vs is the velocity of both impurity subbands. The
high-energy subbands are defined with momenta centered
at ±q and have momentum cutoff 
, with us
 � 1 (see
Fig. 3).The ground state is a vacuum of ds and d̄s . After the
unitary transformation, the spin operator that is applied to the
ground state is of the form

Sz(x) ∝ d†
s (x)e−i

√
2πγRϕR,s (x)e−i

√
2πγLϕL,s (x)

− d̄†
s (x)ei

√
2πγRϕR,s (x)ei

√
2πγLϕL,s (x), (46)

where the relative minus sign between the two terms comes
from ordering the Klein factors of the subbands (recall d̄

†
s

creates a hole). For the U(1) symmetric model, the parameters
γR,L can be related to exact phase shifts.13 In the case of SU(2)
symmetry, these parameters can be fixed by the condition that
longitudinal and transverse spin correlations have the same
exponents.14 This condition implies γR = 1/

√
2 and γL = 0

and the z component of the spin operator reduces to

Sz(x) ∝ d†
s (x)e−i

√
πϕR,s (x) − d̄†

s (x)ei
√

πϕR,s (x). (47)

The dimension-1/4 vertex operators in Eq. (47) can be
recognized as the components of the chiral spinor gR in
Eq. (40). This observation motivates regarding d and d̄ as
the components of a high-energy spin impurity spinor

Ds(x) =
(

ds(x)
d̄s(x)

)
, (48)

which must transform under spin SU(2) rotations as Ds,i →
D′

s,i = UijDs,j . With this definition, the particle-hole degree
of freedom of the impurity is interpreted as an effective
pseudospin 1/2. The operator in Eq. (47) can be rewritten
in the compact form

Sz(x) ∝ D†
s (x)τ zgR(x). (49)

In fact, the equivalence of longitudinal and transverse corre-
lation functions follows from the correlation functions of the
spin SU(2) vector operator

S(x) ∝ D†
s (x)τgR(x). (50)

The transverse components in Eq. (50) also agree with known
results.14,18,21

The free Hamiltonian in Eqs. (44) and (45) can be rewritten
in the SU(2) invariant form

H = 2πvs

3

(
J2

R,s + J2
L,s

) + D†
s (εs − ius∂x)Ds. (51)

In this effective model for the lower edge singularity, the
states in the Hilbert space are constrained to have either
zero (ground state) or one impurity (excited states), Nd,s =∫

dx D
†
s (x)Ds(x) = 0,1. There is no essential distinction

between the two high-energy subbands since the transverse
components of the total spin vector

S =
∫

dx [JR,s(x) + JL,s(x) + D†
s (x)(τ/2)Ds(x)] (52)

generates rotations of deep holes into high-energy particles.
The time-ordered propagator for the free Ds field reads

〈T Ds,i(x,t)D†
s,j (0,0)〉 = δi,j θ (t)e−iεs t δ(x − ust), (53)

where Ds,1 = ds and Ds,2 = d̄s . The correlation functions for
the chiral spinors are given by the standard conformal field
theory result

〈g†
L,i(x,t)gL,j (0,0)〉 ∝ δi,j (x+)−1/2, (54)

〈g†
R,i(x,t)gR,j (0,0)〉 ∝ δi,j (x−)−1/2. (55)

Using these expressions, we can calculate the edge expo-
nent μ from Szz

s (q,ω) ∼ ∫
dx

∫
dt eiωt 〈B(x,t)B†(0,0)〉 with

Bz†(x) ∝ D
†
s (x)τ zgR(x). This gives μ = −1/2, the same as

the result for the Heisenberg model.13

In order to connect with the methods developed for U(1)
symmetric models, Hamiltonian (44) must be interpreted as the
effective model after the unitary transformation that decouples
the mobile impurity. However, a different approach could be to
write down Eq. (51) directly based only on SU(2) symmetry.
In this case, in addition to the terms in Eq. (51), we would be
led to write down the marginal operator

δHRLD = −2πvs(κRJR,s + κLJL,s) · D†
sτDs, (56)

where κR,L are dimensionless coupling constants. The lon-
gitudinal part of this operator amounts to a density-density
interaction between the impurity and the Fermi surface modes.
The full operator δHRLD is equivalent to a two-channel
Kondo coupling, which appears naturally in the problem of
a mobile spin-1/2 impurity coupled to a 1D electron gas.51 In
Appendix B, we show that the κR,L operators are marginally
irrelevant for κR,L > 0 (equivalent to ferromagnetic Kondo
coupling). Although we are not able to derive the bare coupling
constants starting from the Hubbard model for general U ,
we shall assume that κR,L are positive for U > 0 because
otherwise we would not recover the known results for the
Heisenberg model. Moreover, it is known that the finite size
spectrum for excited states of the Hubbard model that contain
high-energy holes in the spin band fits the “shifted” conformal
field theory form,17 suggesting that the marginal operator
should be irrelevant for any finite U . With the asymptotic
decoupling of the impurity spinon, the symmetry of the
effective model (51) becomes SU(2)L × SU(2)R × SU(2)D .

2. Upper edge of the two-spinon continuum

The SU(2) invariant effective theory can also be applied
to the upper edge of the two-spinon continuum, where it
is known that the spin DSF for the Heisenberg model has
another power-law singularity.13 In this case the threshold,
is given by a particle with momentum q/2 and a hole with
momentum −q/2, as shown in Fig. 4(a). In this case, the
excited state has two impurities. The particle and hole states
form the components of a single impurity spinor Ds as given
by Eq. (48). Thus Nd,s = ∫

dx D
†
s (x)Ds(x) = 2 for excited
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FIG. 4. (Color online) (a) Particle-hole excitation that gives the
upper edge of the two-spinon continuum in the longitudinal spin DSF.
(b) Sz = +1 excitation corresponding to the creation of two spinons
above the Fermi points. Due to spin-inversion symmetry, the latter is
degenerate with the Sz = 0 excitation in (a).

states. We introduce the time reversal conjugated spinor

D∗
s (x) =

(
−d̄

†
s (x)

d
†
s (x)

)
, (57)

which transforms like Ds under spin rotations. The excited
state that describes the upper threshold of the two-spinon
continuum is created by acting on the ground state with
the operator Bz†(x) ∝ D

†
s (x)τ zD∗

s (x), where the high-energy
particle and high-energy hole in the final state must be treated
as distinguishable particles, as in a two-body problem.13 SU(2)
symmetry dictates that the effective impurity model is of the
form

H = D†
s

(
εs − ius∂x − ∂2

x

2ms

)
Ds + Vs(D

†
sDs)

2

+ 2πvν

3

(
J2

R,s + J2
L,s

)
. (58)

Here, we have included the parabolic term in the dispersion of
the impurities, with effective mass ms < 0.

The marginal part of the Vs operator in Eq. (58) acts on
the excited state as a density-density interaction between the
two impurities. For U > 0, we expect Vs < 0 as obtained
for the Heisenberg model,13 implying an attractive interaction
between particle and hole. The Vs interaction turns out to be
crucial for the upper edge singularity Szz

s (q,ω) ∼ δωμ, with
δω = 2εs(q/2) − ω. For Vs = 0, the density of states diverges
as δω → 0 due to the van Hove singularity for particle and hole
with equal velocities. However, for any Vs 
= 0, the solution
of the two-body problem shows that the matrix elements are
strongly affected by resonant scattering and turn the divergence
into a square-root cusp with μ = +1/2. The effect is analogous
to a 1D exciton problem for particles with negative mass, hence
no particle-hole bound state above the continuum for Vs < 0.

But what we have described is the interpretation of the
singularity in the longitudinal spin DSF. An alternative route
to determine the edge exponent would be to rely on the spin
SU(2) symmetry and consider the transverse spin DSF. In
this case, instead of a particle-hole pair, the excited state has
either two particles with momentum q/2 [for S−+

s (q,ω)] or two
holes with momentum −q/2 [for S+−

s (q,ω)] [see Fig. 4(b)].
The excited state with Sz = +1 is created by the operator
B+†(x) ∝ D

†
s (x + ε

2 )τ+D∗
s (x − ε

2 ) ∼ d
†
s ∂xd

†
s . In the case of

the transverse components B±†, we need to introduce the point
splitting because the operator creates two spinless fermions
with approximately the same momentum. Thus the leading
term has higher scaling dimension than the longitudinal

component Bz†. On the other hand, for spinless fermions the
Vs interaction is irrelevant—the s-wave scattering amplitude
vanishes—and can be neglected in the effective Hamiltonian.
Remarkably, we encounter the same exponent μ = 1/2 due
to matrix elements for free spinless fermions with vanishing
relative momentum.33 This can be verified by calculating the
propagator for the pairing field d

†
s ∂xd

†
s .16 Therefore SU(2)

symmetry tells us that the upper edge exponent can be
interpreted as due to either strong interactions in the excitonic
pair or statistics of free spinless fermions.

C. Edge singularities at high energies: imposing η-spin SU(2)
invariance in the charge DSF at half-filling

We now turn to edge singularities in S(q,ω), which involve
the creation of high-energy holons. Within the field theory
approach, we represent the charge excitations as holes in a
completely filled band or particles in an empty band, with
Mott-Hubbard gap 2�. We will borrow the nomenclature often
adopted in the literature and refer to these bands as the lower
Hubbard band and the upper Hubbard band, respectively. Since
there are no Fermi points in this case, the holon band only
contributes with impurity subbands to the effective model. By
analogy with Ds in Eq. (48), we define the charge impurity
spinor for given high-energy holon subbands as

Dc(x) =
(

dc(x)

d̄c(x)

)
, (59)

such that d
†
c creates a particle in the upper Hubbard band and

d̄
†
c creates a hole in the lower Hubbard band. The ground state

is a vacuum of Dc. Due to η-spin SU(2) symmetry, explicit in
Eq. (13), the effective Hamiltonians as well as the operators
that create high-energy excitations in the field theory must be
written in terms of the charge impurity spinor. The generator
of η-spin rotations is represented by

η =
∫

dx D†
c(x)(τ/2)Dc(x). (60)

We are now in a position to compute the exponents for the
thresholds of the charge DSF in Fig. 2.

1. Boundary line ω−
2c(q) for q < q�

Consider first the lower edge of the two-holon con-
tinuum for momentum in the range q < q, such that
ω−

2c(q) = 2εc(−π/2 + q/2). The effective model in this case
has two charge impurities in the excited state, Nd,c =∫

dx D
†
c(x)Dc(x) = 2. The ηz = 0 state corresponds to a hole

in the lower Hubbard band and a particle in the upper Hubbard
band, as illustrated in Fig. 5(a). The particle and hole are
the components of the same Dc spinor and the situation is
analogous to the upper edge of the two-spinon continuum in
the spin DSF. Due to the η-spin SU(2) symmetry in Eq. (13),
the edge exponent can also be calculated from the excited state
of two particles created in the same subband [see Fig. 5(b)].
The vector operator that creates these η-spin triplet excitations
is B†(x) ∝ D

†
c(x + ε

2 )τD∗
c (x − ε

2 ). The effective Hamiltonian
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FIG. 5. (Color online) (a) Particle-hole excitation that gives the
lower edge of the two-holon continuum in the charge DSF for q < q.
In the effective field theory, holons are spinless fermions with a gap
between the lower Hubbard band and the upper Hubbard band. (b)
ηz = +1 excitation that adds two particles to the upper Hubbard
band. Due to particle-hole symmetry, the latter is degenerate with the
ηz = 0 excitation in (a).

density consistent with SU(2) × SU(2) symmetry reads

H = D†
c

(
εc − iuc∂x − ∂2

x

2mc

)
Dc + Vc(D†

cDc)2. (61)

Due to symmetry, there is no coupling between holons and
low-energy spinons at the level of marginal operators. Since
mc > 0, we expect Vc > 0 for absence of a particle-hole bound
state below the threshold. It follows that the edge singularity
is of the form S(q,ω) ∼ δωμ with δω = ω − ω−

2c(q) and μ =
1/2. A similar conclusion can be reached for the singularity
at the upper edge of the two-holon continuum ω+

2c(q) for all
values of q. We note that η-spin rotations mix states with ηz =
0, ± 1, but the total momentum of the ηz = 0 state differs from
the momentum of the ηz = ±1 states by π . This is consistent
with the spectrum from the BA.2

2. Boundary line ω−
2c2s(q) for q� < q < q�

For q� < q < q� = π − q�, the lower edge of the support
of S(q,ω) has one low-energy spinon and one impurity spinon
in addition to the two holons. The operator that creates
this two-holon-two-spinon excitation must be constructed
using one low-energy chiral spinor, one Ds spinor and two
Dc spinors. Furthermore, selection rules impose that the
operator is a vector of η-spin rotation and a scalar of spin
rotation. These conditions naturally lead to B†(x) ∝ D

†
c(x +

ε
2 )τD∗

c (x − ε
2 )D†

s (x)gR(x) as the operator with the lowest
scaling dimension. Besides the sum of Eqs. (51) and (61) with
uc = us = u, the effective Hamiltonian contains the symmetry
allowed interaction between the spin impurity and the charge
impurities

δHcs = VcsD
†
cDcD

†
sDs. (62)

The parameter Vcs could in principle be related to the exact
phase shift in the nontrivial S matrix between a high-energy
holon and a high-energy spinon. We then need to compute
the propagator for three impurities that move with the same
velocity, interact among themselves but are decoupled from
the low-energy modes. It is easiest to discuss the ηz = +1
excitation instead of the ηz = 0 one, trading the interactions
between distinguishable charge hole and charge particle by the
problem of noninteracting holons which are indistinguishable
fermions. Simple power counting in the correlation function
for B†(x) (the calculation is detailed in Appendix C) yields the

edge singularity S(q,ω) ∼ δωμ with δω = ω − ω−
2c2s(q) and

μ = 3/2.

3. Boundary line ω−
2c2s(q) for q� < q < π

For q� < q < π , the lower edge of the support has two
spinons at opposite Fermi points. Thus we are looking for a
spin scalar operator that involves the low-energy modes only.
The momentum π scalar operator of the WZW model is the
trace of the matrix field Tr[g(x)], which has scaling dimension
1/2. The operator that creates the excitation in this case is
then B†(x) ∝ D

†
c(x + ε

2 )τDc(x − ε
2 )Tr[g(x)]. Again, we find

the edge exponent μ = 3/2.

4. Boundary line ω−
2c(q) for q� < q < π

Finally, let us discuss the lower edge of the two-holon
continuum for q < q < π . In this case, the ηz = 0 excited
state has a hole in lower Hubbard band and a particle in the
upper Hubbard band that move with the same velocity, but are
not associated with the same charge impurity spinor. We denote
the spinor for the holon with momentum below the inflection
point of the holon dispersion (see Fig. 1) by Dc and the spinor
for the holon above the inflection point by D̃c. The occupation
of the impurity subbands in the excited state is Nd,c =∫

dx D
†
c(x)Dc(x) = 1 and Ñd,c = ∫

dx D̃
†
c(x)D̃c(x) = 1. The

vector operator in this case reads B†(x) ∝ D
†
c(x)τ D̃∗

c (x). The
effective Hamiltonian density with marginal operators allowed
by symmetry is

H = D†
c

(
εc − iuc∂x − ∂2

x

2mc

)
Dc

+ D̃†
c

(
ε̃c − iuc∂x − ∂2

x

2m̃c

)
D̃c (63)

+V C
c D†

cDcD̃
†
cD̃c + V E

c D†
cτDc · D̃†

cτ D̃c,

where V C
c and V E

c are the Coulomb and exchange interactions
between the distinguishable impurities. [For models (58)
and (61) with a single impurity spinor, these two interactions
are equivalent.]

The model in Eq. (63) is again similar to a 1D exciton
problem. There is a van Hove singularity in the density of
states when the relative momentum between Dc and D̃c holons
approaches zero. We expect this divergence to be removed for
arbitrarily weak final-state interactions. There is a priori no
reason why V C

c and V E
c should be zero or even small at finite

U . Depending on the sign of the effective scattering amplitude,
a bound state can be formed below the continuum, which is in
fact observed numerically for the extended Hubbard model.24

However, in Appendix D, we show that the existence of
nontrivial conservation laws in the Hubbard model requires
V C

c = V E
c = 0 exactly. Remarkably, the integrability of the

model implies that impurity holons associated with different
Dc spinors do not scatter off each other. We stress that the
vanishing of V C

c and V E
c does not follow from η-spin SU(2)

symmetry alone. This is reasonable because it is possible to
generate infinitely many models with the same symmetry that
are not integrable, for instance, by adding finite range η-spin
exchange interactions

∑
j,j ′ Jj,j ′ηj · ηj ′ to the Hubbard model.

For nonintegrable models, we generically expect the formation
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TABLE I. Predictions of the SU(2) invariant effective impurity
models for the charge DSF of the Hubbard model. The boundary
lines considered here are illustrated in Fig. 2. As the frequency
approaches the boundary lines, δω → 0, the DSF behaves like
S(q,ω) ∝ ∫

dx
∫

dt eiωt 〈B(x,t) · B†(0,0)〉 ∼ δωμ.

Boundary line Vector operator B† Edge exponent μ

ω−
2c(q < q) D†

cτD∗
c 1/2

ω−
2c(q > q) D†

cτ D̃∗
c −1/2

ω+
2c(q) D†

cτD∗
c 1/2

ω−
2c2s(q� < q < q�) D†

cτD∗
c D

†
s gR 3/2

ω−
2c2s(q > q�) D†

cτD∗
c Tr[g] 3/2

of two-holon bound states33 below ω−
2c(q > q)—as well as the

broadening of any power-law singularity that is not protected
by kinematics.

When we set V C
c = V E

c = 0, the propagator of B†(x) ∝
D

†
c(x)τ D̃∗

c (x) factorizes into free propagators for Dc and D̃c

impurities. The van Hove singularity of the density of states
persists in the DSF as S(q,ω) ∼ δωμ with δω = ω − εc − ε̃c

and μ = −1/2. This is the only divergent edge singularity
in the charge DSF and only appears at finite energies and
finite U .

The results for the boundary lines discussed in this section
are summarized in Table I. The exponents for the lines
ω−

2c(q < q) and ω+
2c(q) are consistent with the large-U results

of Ref. 33. The exponent for the line ω−
2c2s(q� < q < π )

agrees with the low-energy result obtained assuming vc = vs

in Ref. 31. Our results show that these exponents hold at finite
U and away from the low-energy limit. The exponents for
the lines ω−

2c(q < q < π ) and ω−
2c2s(q� < q < q�) could not

be obtained by either large-U or low-energy approximations.
Notice that the exponents predicted by the SU(2) invariant
impurity models are all half integers, in contrast with the
continuously varying exponents of the metallic phase.10,17

IV. NUMERICAL RESULTS

A. Methods

We have used the tDMRG method to compute the real time
density-density correlation function G(j,t) = 〈nj (t)n0(0)〉 for
Hubbard chains with open boundary conditions and lengths
up to 200 sites. The method starts with a traditional DMRG
calculation,52,53 obtaining the ground state |GS〉 of the finite
chain. The single site operator ηz

0 for a central site 0 is applied
to the ground state, and then this state is evolved in real
time, obtaining |ψ(t)〉. The original ground state is retained
in matrix product state (MPS) form, so that the tDMRG need
only target |ψ(t)〉. At each time step we measure 〈ηz

j (t)ηz
0(0)〉

by measuring the off-diagonal MPS overlaps 〈GS|ηz
j |ψ(t)〉

for all sites j . A single run provides results for all frequency
and momenta by Fourier transforming over time and space
(i.e., j ).

The time evolution operator is written as a product of
exact nearest-neighbor bond exponentials, as in a familiar
Suzuki-Trotter breakup. Recently Kirino, Fujii, and Ueda have
reported excellent performance with a particular fourth-order
breakup, in which every bond operator is applied in every half

sweep, but in reverse order for every other half sweep.54 We
have also found that this method gives very small finite-time-
step error and appears to be superior to other breakups for
high-accuracy calculations.

The main limitation of the tDMRG method is on the
maximum time reached by the simulation, due to the growth of
entanglement with running time. Typically, we have reached
tmax ∼ 20 in units of inverse hopping, keeping a maximum of
m = 2500–4000 states. We find that the entanglement grows
more rapidly for smaller values of U and this prevents us
from studying U < 1. The spatial Fourier transform is done
first, and no windowing is required since within the maximum
time reached, the signal which is propagating within |ψ(t)〉
has not yet hit the edges of the system. Thus the resolution
in momentum is not limited by the system size. Windowing
is necessary in the time Fourier transform, but the frequency
resolution would be poor if we fit the window within tmax.
Instead, we extrapolate the time signal using linear prediction,
allowing the use of a larger window.55 The resulting line
shapes for the charge DSF do not have any analytic input.
A conservative estimate for the frequency resolution of these
line shapes is given by 1/tmax. This resolution could be
substantially improved by using analytic results for the edge
singularities of the DSF to help extrapolate the DMRG data to
much longer times.

B. tDMRG results for S(q,ω)

We now analyze tDMRG results for U = 1, U = 2, and
U = 4.9, obtained without any analytic input, by comparing
with the predictions of the field theory in Sec. III combined
with the exact spectrum from the BA.

First we discuss the result for S(q,ω) for U = 4.9 shown in
Fig. 6. The exact support of the DSF in this case is illustrated
in Fig. 2; notice, however, that the energies in Fig. 2 are shifted
by the Mott-Hubbard 2�, while the energies in Fig. 6 are not.
The spectral weight distribution in Fig. 6 is consistent with the
strong coupling picture33 in the sense that the spectral weight
is rather small below the lower threshold of the two-holon
continuum. However, for values of q near the zone boundary,

ω

q/π

ln[S
(q,ω

)×
10

2]

U = 4.9

FIG. 6. (Color online) Charge DSF of the Hubbard model at half-
filling calculated by tDMRG as function of momentum q and energy
ω for U = 4.9.
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FIG. 7. (Color online) Line shapes of S(q,ω) calculated by
tDMRG for U = 4.9 and two values of q. The arrows indicate
the exact edges of the spectrum predicted by BA. The field theory
predicts a square-root cusp at ω = ω−

2c for q = 0.3π , but a square-root
divergence at ω = ω−

2c for q = 0.6π .

it is already visible that the onset of the spectral weight
occurs below the lower edge of the two-holon continuum.
As discussed in Sec. II, the main contribution to this weight is
due to excitations with two spinons in addition to two holons
and the support of S(q,ω) extends down to the line ω−

2c2s(q).
Another featured observed in the tDMRG results for U =

4.9 is a sharp asymmetric peak above the lower edge of the
two-holon continuum for q near the zone boundary. This effect
is predicted by the theory in Sec. III as a change in the exponent
of the edge singularity from μ = 1/2 for ω−

2c(q < q) to μ =
−1/2 for ω−

2c(q > q). Using the exact holon dispersion for
U = 4.9, we obtain q ≈ 0.44π . Figure 7 shows constant-q
cuts of S(q,ω) for q = 0.3π < q and q = 0.6π > q. The
arrows indicate the threshold energies predicted by the BA.

In order to confirm the existence of two regimes for the
ω−

2c(q) edge exponent, we have analyzed the time decay
of the momentum dependent correlation function G(q,t) =∑

j e−iqjG(j,t). We assume an asymptotic power-law decay of
G(q,t) and fit the real part G(q,t) in the time range 7 < t < 20
to the formula

Re G(q,t) = Aq cos(Wqt + φq)t−ηq , (64)

with Aq,Wq,φq,ηq as free parameters. Since S(q,ω) is given
by a time-frequency Fourier transform of G(q,t), the exponent
ηq in G(q,t) is related to the exponent μ in S(q,ω) ∼ δωμ by
ηq = 1 + μ for the smallest μ among the boundary lines. The
fitting to Eq. (64) should work best in the range q < q < π

in which we predict a square-root divergence in S(q,ω) that
strongly dominates the long-time behavior of G(q,t).

The time decay of Re G(q,t) is illustrated in Fig. 8. The
energies and exponents obtained by fitting the numerical
results to Eq. (64) are shown in Fig. 9. We first note that the
frequencies extracted from the tDMRG data are in excellent
agreement with the exact result from the BA. In fact, the
tDMRG are slightly shifted to higher energies as expected
from the error due to the finite Trotter step.

Furthermore, the results for the exponent in Fig. 9 clearly
show ηq ≈ 1/2 for q near the zone boundary. This supports
the existence of a square-root divergence in S(q,ω) which

5 10 15 20
time

-0.2

-0.1

0

0.1

0.2

R
e 

G
(q

,t)

q = π/4 (×10)
q = π

U = 4.9

FIG. 8. (Color online) Real part of the density-density correla-
tion function G(q,t) = ∑

j e−iqj 〈nj (t)n0(0)〉 for U = 4.9. Symbols
represent tDMRG data and solid lines are fits to the power-law decay
form in Eq. (64) for 7 < t < 20. The data for q = π/4 has been
rescaled by a factor of 10.

corresponds to the van Hove singularity predicted by the
theory in Sec. III as due to the absence of scattering between
distinguishable impurities in the integrable model. We note
that the existence of a bound-state below the continuum
would lead to a non-decaying contribution to G(q,t), which is
not observed. On the other hand, the error in the numerical
value of the exponent increases with decreasing q, as the
energy window of validity of the square-root divergence in
S(q,ω) decreases, which implies that longer times would be
needed in order to observe the asymptotic behavior of G(q,t).
Nonetheless, Fig. 9 suggests that the exponent is significantly
larger below q = q ≈ 0.44π . Recall that the prediction of the
effective impurity model is μ = 1/2 for q < q, which gives
ηq = 3/2.

Let us now discuss the result for U = 2 shown in Fig. 10.
For this smaller value of U , we see that a larger fraction of the
spectral weight is located below the two-holon continuum. The
lower edge of the support agrees with the exact line ω−

2c2s (q) for

0 0.2 0.4 0.6 0.8 10

1

2

3

4

5

6

7

Fr
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q/π

0.5

1

1.5

Ex
po

ne
nt

U = 4.9

FIG. 9. (Color online) Frequencies (circles) and exponents (dia-
monds) obtained by fitting the tDMRG results for G(q,t) for U = 4.9
to Eq. (64). The dashed line represents the exact lower edge of the
two-holon continuum.
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ω

q/π

ln[S
( q,ω

)×
10

2]

U = 2

FIG. 10. (Color online) Charge DSF for U = 2.

U = 2. We can quantify the distribution of spectral weight by
computing an average frequency ω(q) from the first-moment
sum rule as

ω(q) =
∫ ∞

0 dω ωS(q,ω)∫ ∞
0 dω S(q,ω)

= i∂tG(q,t = 0)

G(q,t = 0)
. (65)

The expression on the right hand side of Eq. (65) is directly
provided by the tDMRG from the short time behavior of
G(q,t). For U = 4.9, the average frequency ω(q) is always
above ω−

2c(q). In contrast, for U = 2, we find that ω(q) <

ω−
2c(q) for q � 0.64π . The difference ω−

2c(q) − ω(q) increases
as q → π . Therefore it appears that the small U behavior,
characterized by all the spectral weight lying below the
two-holon continuum, is approached more rapidly for larger
values of q.

The transfer of spectral weight to below the two-holon
continuum as U decreases is confirmed by the result for U = 1
shown in Fig. 11. In this case, the lines ω−

2c2s(q) and ω−
2c(q)

are already very close to the lower and upper thresholds of the
electron-hole continuum for U = 0, respectively. However,
there is still significant spectral weight in the two-holon
continuum.

The results in Figs. 10 and 11 reveal that S(q,ω) has
a rounded peak below the lower edge of the two-holon

ω

q/π

ln[S
(q,ω

)×
10

2]

U = 1

FIG. 11. (Color online) Charge DSF for U = 1.
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FIG. 12. (Color online) Line shape of S(q,ω) calculated by
tDMRG for q = π and U = 1,2. The exact free electron result for
U = 0 is also shown for comparison.

continuum. The peak is more clearly seen in Fig. 12, which
shows the line shape for q = π for U = 1 and U = 2.
Particularly in the case U = 1, the peak is very narrow and
the spectral weight is rapidly suppressed below the onset of
the two-holon contribution. We can also see that, although
a large fraction of the total spectral weight is associated
with two-holon-two-spinon states, the singularity above ω−

2c(q)
persists.

C. General picture for the DSF at finite U

In light of the analytic results in Sec. III, the line shapes in
Fig. 12 suggest a scenario for the U dependence of S(q,ω).
When combined with the exact spectrum from the BA, the
SU(2) invariant effective field theory does not predict any
divergence below the lower edge of the two-holon continuum.
However, the free electron result in Eq. (14) exhibits a van
Hove singularity from below the upper threshold of the
electron-hole continuum. We interpret Fig. 12 as indication
that the free electron line shape is recovered as the peak below
ω−

2c(q), which is rounded for any finite U , becomes narrower
as U → 0. Only at U = 0 does the van Hove singularity
develop at what is then the upper threshold of the electron-hole
continuum.

Moreover, for any finite U and fixed q > q (recall
that q → 0 for U → 0), the square-root divergence above
ω−

2c(q) is always present. However, the spectral weight in
the two-holon continuum vanishes for U → 0. The total
spectral weight of S(q,ω) is not conserved as U varies [see
Eq. (6)], but in relative terms the weight is transferred from
the two-holon continuum for U → ∞ to the subset of the
two-holon-two-spinon continuum that lies below the lower
edge of the two-holon continuum for U → 0.

The subset of the two-holon-two-spinon continuum that
dominates S(q,ω) and reconstructs the electron-hole contin-
uum in the limit U → 0 can be obtained from the heuristic
rule that the holons are constrained to the minimum of the
holon band (momentum pc = −π/2 in Fig. 1) where the
Mott-Hubbard gap closes for U = 0, while the spinons are
free to move along the spinon band. We conjecture that for
U → 0, the matrix elements for the charge density operator in
Eq. (5), which are not known except for small chains, select
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FIG. 13. (Color online) Spectral weight for states that contribute
to S(q,ω) for a ten-site Hubbard ring for q = π [(a) and (b)] and
q = 4π/5 [(c) and (d)]. The center of each line represents the energy
of an excited state |ν〉 as a function of 1/U or U . The intensity is
proportional to the matrix element |〈GS|nq |ν〉|. In (a) and (c), the
open triangles on the left-hand side mark the energies corresponding
to free spinless fermions in the large U limit. In (b) and (d), the open
triangles mark the energies of one-particle-hole excitations in the U =
0 case and the filled triangles are the energies of the two-particle-hole
excitations.

excited states with two holons and two spinons according to
this rule.

D. Lanczos results for small systems

In order to provide further evidence for the above scenario,
we have calculated S(q,ω) for a ten-site half-filled chain with
periodic boundary conditions by exact diagonalization based
on the Lanczos method. Figures 13(a) and 13(b) illustrate
the energies and matrix element for all eigenstates of the
Hamiltonian with total momentum q = π . The important point
is that for this small system there is only one state that gives
a large contribution to S(q = π,ω) in both limits of large
and small U ’s. This is the state that has energy equal to 4
at U = 0, which corresponds to the maximum energy for an
electron-hole excitation with q = π .

By solving the Lieb-Wu equations2 for system size L = 10,
we have computed the exact energies of two-holon states and
identified that the state that evolves into the upper edge of
the electron-hole continuum at U = 0 is the lowest energy
two-holon excitation.56 All states with energy lower than the
latter involve excitations in the spinon band. This observation is
consistent with the proposed scenario for the U dependence of
S(q,ω) since it shows that the state that defines the lower edge
of the two-holon continuum and carries a large spectral weight
splits off from the continuum below it for arbitrarily small

U . In the thermodynamic limit, we expect that this behavior
corresponds to the disappearing of the van Hove singularity
below the upper edge of the electron-hole continuum and
the formation of another van Hove singularity above the
lower edge of the two-holon continuum once we turn on the
interaction.

We have also calculated the matrix elements for excitations
with momentum q = 4π/5 for the chain with L = 10 [see
Figs. 13(c) and 13(d)]. Interestingly, for 0 < q < π , there is
a level crossing as a function of U where the spectral weight
associated with the lowest energy two-holon state changes
abruptly. This is a manifestation in the small system of the
change in the nature of the lower edge of the two-holon
continuum from μ = 1/2 to μ = −1/2. The value of U

where the level crossing happens is given by the condition
q(U ) = q at fixed q where q(U ) is twice the value of
the momentum at the inflection point of the single holon
dispersion. Indeed, in Fig. 13(c), we see that the weight in
the lowest-energy two-holon state is larger on the small U

side of the level crossing (1/U � 1/8), which corresponds to
the regime where we expect a square-root divergence above
ω−

2c(q) in the thermodynamic limit.

V. CONCLUSION

In summary, we have studied the charge dynamic structure
factor S(q,ω) of the Mott insulating phase of the 1D Hubbard
model at finite U , based on a combination of Bethe ansatz,
field theory and tDMRG. We used the BA solution to discuss
the exact spectrum of excitations that contribute to S(q,ω),
without low-energy or strong coupling approximations. Unlike
the metallic phase, the lower edge of the support of S(q,ω) is
not given by the spinon mass shell, but by either the lower
edge of the two-holon continuum or the lower edge of the
two-holon-two-spinon continuum that has three particles (two
holons and one spinon) at finite energies with the same velocity.
In addition, an important difference from the strong coupling
theory is that at finite U there is a range of momentum q in
which the lower edge of the two-holon continuum is described
by two holons with the same velocity but different momenta.

In order to investigate the behavior of the spectral weight of
S(q,ω) near the edges of the spectrum, we relied on effective
quantum impurity models. We have explicitly incorporated
the SO(4) symmetry of the Hubbard model at half-filling by
introducing SU(2) spinors for the high-energy charge and spin
modes. The internal degree of freedom in these spinors stems
from degenerate particle and hole subbands. Once we have
these objects, we write down effective Hamiltonians with
marginal operators that are allowed by the spin and η-spin
SU(2) symmetries. In the effective impurity models, the charge
impurities are always decoupled from the low-energy spin
excitations due to symmetry. On the other hand, the spin
impurities are coupled to the low-energy spin excitations,
but the coupling is marginally irrelevant due to Kondo-type
physics.

The operators that are associated with each threshold are
also identified using symmetry. These operators must have the
lowest scaling dimension that is allowed by the conditions
that the excited state has the correct number of impurities and
that the operator has the correct quantum numbers for spin
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and η-spin rotations. In the case of S(q,ω), the operators are
vectors of η-spin and scalars of spin rotations. Due to the
decoupling between low-energy and high-energy modes, the
problem of edge singularities reduces to computing few-body
propagators for the high-energy part, which can be affected
by final-state interactions, and combining them with the
correlation functions for the low-energy part, which are known
from conformal field theory. Simple power counting in the
time decay of the total correlation function then determines
the edge exponent μ for a given threshold. We have focused
on S(q,ω), but the method can be readily applied to other
dynamic response functions, such as the one-electron spectral
function and the dynamic spin structure factor.

The results of the effective quantum impurity models extend
the validity of the low-energy exponents31 μ = 1/2 for q ≈ 0
and μ = 3/2 for q ≈ π to the regime of finite U , even though
the spectrum is not relativistic as in the sine-Gordon model.
The impurity models combined with the exact spectrum from
the BA also provide the range of q over which these exponents
hold. Remarkably, we found that the exponent μ = 1/2 at
the lower edge of the two-holon continuum is verified only
for q < q(U ), where q(U ) is determined by the inflection
point of the holon dispersion relation. For q > q(U ), there
is a van Hove-type square-root divergence along the lower
edge of the two-holon continuum, due to the two holons that
propagate with the same velocity but different momenta and do
not scatter off each other in the integrable model. The existence
of this divergent edge at finite U , near the zone boundary and
at finite energies, is confirmed by the tDMRG results. Within
the precision of the numerical results, we found no evidence
for rounding of this singularity due to coupling to continuum
below it, which would be apparent in the form of an exponential
decay of the real-time correlation function.

The agreement between the analytical predictions and the
numerical line shapes obtained by tDMRG allowed us to
explain how the line shape of S(q,ω) changes as a function
of U , interpolating between the strong coupling and the weak
coupling limits. Starting from strong coupling and decreasing
U , we observed that the spectral weight inside the two-holon
continuum decreases while the spectral weight below the lower
edge of the two-holon continuum increases. The U → 0 limit
is nonperturbative, as expected from spin-charge separation
and the Mott transition, and this is manifested in the dynamic
response function through a discontinuous change in the edge
exponents. For instance, while at U = 0, S(q,ω) has a square-
root divergence below the upper threshold of the electron-hole
continuum, for arbitrarily small U , this singularity is removed
and a square-root divergence forms above the lower threshold
of the two-holon continuum.

We end by commenting on the connection with experiments
that show a sharp feature observed in the RIXS spectrum of
1D Mott insulators for momentum near the zone boundary.4,6

This feature was interpreted as an exciton in Ref. 4, expected
from the strong coupling theory for the extended Hubbard
model, but as a broad two-holon resonance in Ref. 6. Our
results for S(q,ω) of the integrable Hubbard model do not
have any excitonic bound states, but show a sharp feature near
the zone boundary, which is actually a square-root divergence
at the lower edge of the two-holon continuum at finite U .
Therefore a possible interpretation of the experiments is that

the sharp feature is the result of a slight rounding of this van
Hove singularity in a system where the integrability breaking
interactions (primarily the nearest neighbor interaction in
the extended Hubbard model) are fairly weak. However, the
nearest neighbor interaction is not guaranteed to be negligible
since screening is typically rather weak in insulators such as
Sr2CuO3.
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APPENDIX A: SYMMETRY AND ELEMENTARY
EXCITATIONS IN THE BETHE ANSATZ SOLUTION

Here, we briefly discuss the relation of the operational
representation of Ref. 43 to the excitations considered in this
paper.

The pseudofermion dynamical theory10 employs a unitary
transformation originally devised to work in the strong
coupling limit58 that rotates electron operators to a basis
where double occupancy is a good quantum number. The
rotated-electron configurations are then naturally expressed
in terms of pseudoparticles whose discrete momentum values
are BA exact quantum numbers. The occupancy configurations
of the spin-1/2 spinons, η-spin-1/2 η spinons, and spin-less
and η-spin-less c fermions of that representation generate
both the representations of the spin SU(2) symmetry, η-spin
SU(2) symmetry, and charge hidden U(1) symmetry algebras,
respectively, and the model 4L energy eigenstates. The spin-
1/2 spinons are the spins carried by the rotated electrons of the
singly occupied sites. The η-spin-1/2 η spinons of projection
−1/2 and +1/2 refer to the η-spin degrees of freedom of
the rotated-electron doubly occupied and unoccupied sites,
respectively. The c fermions describe the charge hidden U(1)
symmetry degrees of freedom of the rotated electrons of the
singly occupied sites. The c fermion holes describe the hidden
U(1) symmetry degrees of freedom of the rotated-electron
doubly occupied and unoccupied sites.

The occupancy configurations of the spin-neutral composite
sν fermions, each containing 2ν bound spinons, considered in
Ref. 43, were called distributions of magnon bound states by
M. Takahashi.57 Furthermore, the occupancy configurations
of the η-spin neutral composite ην fermions of Ref. 43, each
containing 2ν antibound η spinons, correspond to his distri-
butions of bound states of pairs. Specifically, the momentum
occupancy configurations of the c fermions, η-spin-neutral 2ν-
η spinon composite ην fermions, and spin-neutral 2ν-spinon
composite s1 fermions, where ν = 1, . . . ,∞, generate excita-
tions described by the BA thermodynamic equations (2.12a),
(2.12b), and (2.12c) of Ref. 57, respectively. In units of 2π/Na ,
the momentum values of those objects are the BA quantum
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numbers Ij , J ′
α

n, and J n
α in such equations, respectively. Here,

within the Ref. 43 notation, the index n = ν = 1, . . . ,∞ in J ′
α

n

and J n
α refers to the number of antibound-η-spinon pairs and

bound-spinon pairs, respectively, and α = j is the momentum
value index.

Note that the two sets of BA thermodynamic equations
given in Eqs. (2.12b) and (2.12c) of Ref. 57, which are
associated with η-spin-singlet and spin-singlet excitations,
respectively, have exactly the same structure. This is consistent
with the excitations described by the BA thermodynamic equa-
tion (2.12a) of that reference referring to a degree of freedom
other than η spin and spin. Consistently, in Ref. 43 it is con-
firmed that the latter excitations generate representations of the
hidden U(1) symmetry in the model extended global [SO(4) ×
U(1)]/Z2 = [SU(2) × SU(2) × U(1)]/Z2

2 symmetry.
For the problem studied in this paper, only excitations

generated by c momentum band and spin-neutral ν = 1
two-spinon s1 fermion band occupancy configurations play
an active role. Those excitations also contain two η spinons,
whose occupancies generate the three η-spin-triplet states.
The spin-singlet excitations generated by the two-spinon s1
fermion momentum occupancy configurations are described
by the BA thermodynamic equations (2.12b) of Ref. 57 for
n = 1 spinon pairs.

In this paper, we call holons and spinons the holes of the c

fermion and s1 fermion momentum bands, respectively. Hence
the spinons considered here are spin-neutral objects. This is in
contrast to those of Ref. 43, which carry spin 1/2.

In the thermodynamic limit, holons and spinons have
dispersion relations εc(pc) and εs(ps), respectively, where the
dressed momenta pc,s and dressed energies εc,s are given by

εc(pc) = U

2
− ε0

c (q)|q= π
2 −pc

, εs(ps) = −ε0
s (p)|p= π

2 −ps
.

(A1)

The energy bands ε0
c (q) and ε0

s (p) and corresponding momenta
q and p are given in Eqs. (A1)–(A4) of Ref. 44. For the present
half-filling case, the relation to Bessel functions provided in
Eq. (A8) of that reference applies.

APPENDIX B: MARGINAL COUPLING BETWEEN
CHIRAL SPIN CURRENTS AND SPIN IMPURITY

Consider the marginal operator in Eq. (56). In this appendix,
we derive the renormalization group (RG) equations for this
perturbation to the free Hamiltonian in Eq. (51). The RG with
high-energy impurity modes is not standard, but the meaning is
to investigate the effects of the perturbation when we approach
the threshold where Hamiltonian (51) predicts a power-law
singularity. The intuitive picture is that, as we approach the
threshold, the energy of particle-hole excitations that the
mobile impurity is allowed to scatter is reduced. Therefore we
shall consider the renormalization of the coupling constants
κR,L when we integrate out an energy shell in the subbands
near the Fermi surface. For consistency, the band width of the
impurity modes must be reduced as well, but this effect will
not be crucial for our conclusions.

Let us focus on κL (the calculation for κR is completely
analogous). We apply the perturbative RG.59 The partition

function has the form

Z = Tr exp

[
−

∫
d2x (H + δHRLD)

]
. (B1)

Expanding for small κL (and omitting normal ordering signs),
we obtain

Z ≈ Z0

[
1 + 2πvsκL

∫
d2x JL(x) · D†

s (x)τDs(x)

+ (2πvsκL)2

2

∫
d2x

∫
d2x ′ (τ a)i,j (τ b)l,m

× J a
L(x)J b

L(x ′)D†
s,i(x)Ds,j (x)D†

s,l(x
′)Ds,m(x ′)

]
, (B2)

where Z0 is the free part associated with Hamiltonian (51). The
O(κ2

L) term can generate corrections to κL when we integrate
out “fast” modes. We use the operator product expansion of
the spin currents48

J a
L(z)J b

L(z′) ∼ δab

8π2z2
+ i

2πz
εabcJ c

L(z′) + · · · , (B3)

where z = vsτ + ix is the complex argument of holomorphic
functions. In Eq. (B2), we must also take contraction of Ds

fields. For this purpose, we need the impurity propagator in
imaginary time

〈TτDs,i(x,τ )D†
s,j (0,0)〉 = δi,j θ (τ )e−εsτ

∫ K

−K

dp

2π
e−p(usτ−ix)

≡ δi,j θ (τ )G(x,τ ), (B4)

where K is the momentum cutoff of the impurity subband. We
obtain

G(x,τ ) = e−εsτ
sinh[K(usτ − ix)]

π (usτ − ix)
. (B5)

Note that we cannot take the limit K → ∞ in Eq. (B5) yet.
[For the propagator in real time, this is possible and yields the
delta function in Eq. (53).]

Using Eqs. (B3) and (B5) in Eq. (B2), we find (keeping
only corrections to κL)

Z ≈ Z0

[
1 + 2πvsκL

∫
d2x JL · D†

sτDs

−π (vsκL)2
∫

d2x JL · D†
sτDs

×
∫

d2x̃
sign(τ̃ )

vs τ̃ + ix̃
G(x̃,τ̃ )

]
, (B6)

where (τ̃ ,x̃) = (τ − τ ′,x − x ′) are the relative coordinates
of the two points in Euclidean space time. Importantly, the
impurity propagates with a different velocity than the bosonic
modes, thus the problem is not Lorentz invariant. Physically,
this is more like a boundary problem, with a “mobile
boundary” represented by the impurity that the bosonic modes
have to track. Therefore instead of a rotationally symmetric
energy-momentum shell, we integrate out the “fast” modes
contained in the strip −∞ < x̃ < ∞, 1/
 < |τ̃ | < 1/
′, with

 and 
′ = 
 − d
 being the original and reduced energy
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cutoffs, respectively. The integration over x̃ gives∫ ∞

−∞
dx̃

G(x̃,τ̃ )

vs τ̃ + ix̃
= e−εs τ̃

1 − e−K(vs+us )|τ̃ |

(vs + us)τ̃
. (B7)

We can take the limit K → ∞ in Eq. (B7). Moreover, we are
integrating out short-time differences τ̃ � 1/
 ∼ 1/εs , thus
we can approximate e−εs τ̃ ≈ 1. We are left with the imaginary
time integral

2

vs + us

∫ 1/
′

1/


dτ̃

τ̃
= 2d�

vs + us

, (B8)

where d� = d
/
.
Finally, substituting the result in Eq. (B6) and reexponenti-

ating, we find the RG equation for κL:

dκL

d�
= − vs

vs + us

κ2
L. (B9)

The RG equation for κR is obtained from Eq. (B9) by the
substitution κL → κR,us → −us . Since us < vs , we conclude
that κL > 0 and κR > 0 are marginally irrelevant. We believe
this to be the correct sign for the coupling constants of
the Hubbard model. Furthermore, we expect the marginally
irrelevant κL,R operators to give rise to logarithmic corrections
to edge singularities for SU(2) symmetric models, similarly to
the effect in equal-time correlation functions.60 Logarithmic
corrections are known to exist at the lower edge of the
two-spinon contribution to the spin DSF for the Heisenberg
model,61 but we do not pursue that calculation here.

APPENDIX C: EXPONENT FOR THRESHOLD WITH TWO
CHARGE IMPURITIES AND ONE SPIN IMPURITY

In this appendix, we detail the calculation of the exponent
for the threshold ω2c2s(q� < q < q�) in S(q,ω), which is
described by two high-energy holons and one high-energy
spinon, all moving with the same velocity. Other exponents
can be obtained by similar methods.

We find it convenient to calculate the exponent of S(q,ω)
using the analytical continuation of imaginary time propaga-
tors to real time prescribed as follows. The zero temperature
limit of the imaginary time propagator of the density operator
is

〈nq(τ )n−q(0)〉 =
∑

ν

|〈GS|nq |ν〉|2e−(Eν−EGS)τ . (C1)

Using the analytic continuation with the prescription iτ →
−(t − iη), we obtain

〈nq(t − iη)n−q(0)〉 =
∑

ν

|〈GS|nq |ν〉|2e−i(Eν−EGS)(t−iη),

(C2)

where η → 0+ at the end guarantees the convergence of the
sum. Taking the Fourier transform, we get∫ +∞

−∞
dt eiωt 〈nq(t − iη)n−q(0)〉

= 2π
∑

ν

|〈GS|nq |ν〉|2δ(ω − Eν + EGS), (C3)

which is the correct expression for S(q,ω).

As argued in Sec. III, due to η-spin SU(2) symmetry the
exponent for ηz = 0 excitation is the same as the exponent
for the ηz = +1 excitation. In the latter case, we can treat
the two holons as identical spinless fermions that do not
interact via s-wave scattering. The only interaction in this
three-body problem is between the holons and the spinon. In
first quantization, we write down the effective Hamiltonian
(for energies measured from the threshold)

H3b = p2
1 + p2

2

2mc

+ p2
3

2ms

+ u(p1 + p2 + p3)

+Vcs[δ(x1 − x3) + δ(x2 − x3)], (C4)

where particles 1 and 2 are the two holons and particle 3 is the
spinon, with canonically conjugated variables [xn,pm] = iδnm.
For a generic spinon-holon interaction potential, the parameter
Vcs is related to the s-wave scattering length. The wave
functions in the physical Hilbert space must be anti-symmetric
with respect to exchanging 1 and 2. The three-body propagator
in imaginary time can be calculated from

G3b(x,τ ) = 〈�|eiPxe−H3bτ |�〉, (C5)

where P = p1 + p2 + p3 is the total momentum operator and

|�〉 = 1√
2

(∣∣∣∣x1 = ε

2
,x2 = −ε

2

〉
−

∣∣∣∣x1 = −ε

2
,x2 = ε

2

〉)
⊗|x3 = 0〉 (C6)

is the initial state created by applying d
†
c (x + ε

2 )d†
c (x − ε

2 )d†
s (0)

on the ground state.
We perform a change of variables from x1,x2,x3

to X = [mc(x1 + x2) + msx3]/(2mc + ms),xr = x1 − x2,z =
x1 + x2 − 2x3, and the associated conjugate momenta. The
Hamiltonian becomes

H3b = P 2

2(2mc + ms)
+ uP + p2

r

2mr

+ p2
z

2mz

+2Vcs[δ(xr − z) + δ(xr + z)], (C7)

where mr = mc/2 and mz = mcms (ms+2mc)
2(2ms+mc)2 . In terms of these

new variables, the initial state has X = z = 0, xr = ε. The x

dependence of G3b(x) is entirely in the free center-of-mass
“particle”. We note that mr 
= mz ∀mc,ms ∈ R. While mr > 0
for holons below the inflection point, we assume mz > 0 as
well, which is easily verified in the strong coupling limit.

First, consider the simpler case Vcs = 0. In this case, all
three particles are free and the propagator factorizes

G3b(x,τ ) = Gcm(x,τ )Gr (τ )Gz(τ ). (C8)

For the propagator of the center of mass particle, which moves
with velocity u, we shall use as in Eq. (B5)

Gcm(x,τ ) = sinh[K(uτ − ix)]

π (uτ − ix)
(C9)

with cutoff K � |(2mc + ms)u|. For the other “particles,” we
have

Gr (τ ) ∼
∫ ∞

−∞
dkr sin2(krε)e−k2

r τ/2mr ∼ ε2

(
mr

τ

)3/2

(C10)
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for τ � |mr |ε2 and

Gz(τ ) ∼
∫ ∞

−∞
dkz e−k2

z τ/2mz ∼
(

mz

τ

)1/2

. (C11)

Notice that Gr (τ ) decays faster because of fermionic statistics,
which imposes that the wave function is an odd function
of xr . This is equivalent to the vanishing matrix element in
Ref. 33.

At the threshold ω2c2s(q� < q < q�), the three body prop-
agator has to be combined with the low-energy propagator
of the chiral spinor, which has scaling dimension 1/4. The
integral over x gives (for vs > u, there are two separate
contributions from a pole and a branch cut in the lower half
plane)

∫ ∞

−∞
dx

Gcm(x,τ )

(vsτ − ix)1/2
∼ 1

[(vs − u)τ ]1/2
(C12)

in which we took the limit K → ∞ after the integration.
Combining with Gr (τ ) and Gz(τ ) and switching to real
time iτ → −(t − iη) as explained above, the remaining time
integral gives

S(q,ω) ∼
∫ ∞

−∞
dt

eiδωt

(t − iη)5/2
∼ θ (δω)δω3/2. (C13)

Now consider Vcs 
= 0. In this case, the xr and z particles are
scattered by the potentials in Eq. (C7). Nonetheless, we argue
that the edge exponent is the same as for Vcs = 0. First, we
note that the exponent depends on the long-time behavior of
G3b(x,t), which in turn depends on the behavior of low-energy
eigenfunctions for z = 0, xr = ε → 0. The extra power of 1/τ

in Eq. (C10) is a result of the wave function vanishing as ∼ krε

for krε → 0. Then we must ask whether Vcs 
= 0 modifies the
behavior of the wave function in the long-wavelength limit.

Rescaling z → z tan α, pz → pz cot α with tan α =√
mr/mz 
= 1 in Eq. (C7), the xr and z part of the Hamiltonian

becomes

H2b = p2
r + p2

z

2mr

+ 2Vcsδ(xr ± z tan α). (C14)

We then introduce polar coordinates z = ρ cos φ,xr = ρ sin φ.
The two-dimensional Schrödinger equation for the wave
function �(xr,z) = �(ρ,φ) reads

1

ρ

∂

∂ρ

(
ρ

∂�

∂ρ

)
+ 1

ρ2

∂2�

∂φ2
+ k2�

= 2mrVcs cos α

ρ
[δ(φ ± α) + δ(φ ± α + π )], (C15)

where k is related to the energy by E = k2/2mr .
Equation (C15) describes the motion of a particle in two

dimensions that is scattered by δ-function potentials located
along the lines xr = ±z cot α. We can solve the wave functions
in the four regions of the (z,xr ) plane separated by these
lines and then match the wave functions with a discontinuity
in ∂�/∂φ at the boundaries. The solutions are of the form

�(ρ,φ) = ∑∞
n=0[Ane

inφ + Bne
−inφ]Jn(kρ), where Jn denotes

the Bessel function of the first kind. Imposing that the wave
function is continuous everywhere and is antisymmetric with
respect to exchanging the two holons implies that �(ρ =
0,φ) = 0, hence A0 = B0 = 0 in all regions.

In the long-wavelength limit, k → 0, the δ-function po-
tentials become impenetrable and the wave function vanishes
along the lines xr = ±z cot α. Importantly, these lines do not
coincide with the z,xr axis (in which the kinetic energy is
diagonal) since mr 
= mz. But we are interested in the behavior
of the wave function for z = 0, xr = ε → 0, i.e., approaching
the origin along the xr axis. The wave function already
vanishes at ρ = 0 due to the antisymmetrization, therefore it
is not affected by the δ-function potential at xr = z = 0. As a
result, for kε → 0 the eigenfunctions vanish as �(ρ = ε,φ =
π/2) ∼ J1(kε) ∼ kε. This is the same behavior as obtained
for Vcs = 0 and leads to the exponent μ = 3/2 in S(q,ω) as in
Eq. (C13).

APPENDIX D: ABSENCE OF SCATTERING BETWEEN
DISTINGUISHABLE CHARGE IMPURITIES IN THE

INTEGRABLE MODEL

In this appendix, we show that the coupling constants V C
c

and V E
c in Eq. (63) are fine tuned to zero as a result of

the integrability of the Hubbard model. Here, integrability
is understood as the existence of an infinite number of local
conserved quantities in the thermodynamic limit. The simplest
nontrivial conserved quantity of the Hubbard model was
discovered by Shastry62 and can be written as63

Q3 =
∑
j,σ

[
(ic†j+1,σ cj−1,σ + H.c.)

−U (Jj−1,σ + Jj,σ )

(
nj,−σ − 1

2

)]
, (D1)

where Jj,σ = ic
†
j+1,σ cj,σ + H.c. is the current density oper-

ator for electrons with spin σ . The conserved quantity Q3

is almost equal to the energy current operator, differing only
by a factor of 2 in front of U .63 The energy current operator
J E = ∑

j J E
j is defined from the continuity equation of the

Hamiltonian density. Writing H = ∑
j hj with

hj = −(c†j cj+1 + H.c.) + U
(
nj,↑ − 1

2

)(
nj,↓ − 1

2

)
, (D2)

we obtain J E
j by taking the commutator of hj with H , which

has the form of a discretized divergence

i[hj ,H ] = J E
j+1 − J E

j . (D3)

The operator Q3 can be written as

Q3 = 2J E + Y, (D4)

where Y = ∑
j Yj = ∑

j (−ic
†
j+1cj−1 + H.c.). Interestingly,

Y is independent of U and its density appears in the the
commutator of the charge current density Jj = ∑

σ Jj,σ with
the total charge current J = ∑

j Jj :

−i[Jj ,J ] = Yj+1 − Yj . (D5)
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We want to impose the conservation of Q3 in the effective
model Eq. (63). A similar idea has been applied to the XXZ

model64 in which case it was shown that conservation laws
lead to constraints on irrelevant operators at low energies, with
consequences for dynamic correlation functions. Since the
impurity model is phenomenological, we need a prescription
to construct the conserved quantity directly in the field theory.
The key is to use the continuity equations and relations (D4)
and (D5) since currents can be easily identified in the field
theory. A caveat in applying Eq. (D5) in the field theory is that
the dimensions of the density of Y and J E differ by a factor
of lattice spacing squared. This entails that when combining
Y from Eq. (D5) with J E from Eq. (D3) we must restore
nonuniversal factors of short distance cutoff for dimensional
analysis.

The calculation of J E and Y in the field theory can
be simplified using the local SU(2) algebra of D

†
cτDc and

D̃
†
cτ D̃c. The charge current density obtained from the conti-

nuity equation for the charge density n(x) ∼ D
†
c(x)τ zDc(x) +

D̃
†
c(x)τ zD̃c(x) is

J (x) = D†
c(x)τ z

(
uc − i

mc

∂x

)
Dc(x)

+ D̃†
c(x)τ z

(
uc − i

m̃c

∂x

)
D̃c(x). (D6)

The commutator of the charge current density with the
integrated charge current J = ∫

dx ′J (x ′) gives

i[J (x),J ] = ∂x

[
D†

c(x)

(
uc

mc

− i

m2
c

∂x

)
Dc(x)

+ D̃†
c(x)

(
uc

m̃c

− i

m̃2
c

∂x

)
D̃c(x)

]
. (D7)

Comparing with Eq. (D5), we conclude that the continuum
version of Y is Y = ∫

dx Y (x) with density

Y (x) = −D†
c(x)

(
uc

mc

− i

m2
c

∂x

)
Dc(x)

− D̃†
c(x)

(
uc

m̃c

− i

m̃2
c

∂x

)
D̃c(x). (D8)

The energy current operator is obtained from the commu-
tator i[H(x),

∫
dx ′ H(x ′)] = ∂xJ E(x). We find

J E(x) = εcD
†
c

(
uc − i

mc

∂x

)
Dc + ε̃cD̃

†
c

(
uc − i

m̃c

∂x

)
D̃c

+ 2ucV
C
c D†

cDcD̃
†
cD̃c + 2ucV

E
c D†

cτDc · D̃†
cτ D̃c,

(D9)

where we neglect operators with dimension higher than
two.

Using Eq. (D4), we construct the density of the conserved
quantity

Q3(x) = 2EcD
†
c

(
uc − i

mc

∂x

)
Dc + 2ẼcD̃

†
c

(
uc − i

m̃c

∂x

)
D̃c

+ 4ucV
C
c D†

cDcD̃
†
cD̃c + 4ucV

E
c D†

cτDc · D̃†
cτD̃c,

(D10)

where Ec = εc − 1/(2mcα
2), Ẽc = ε̃c − 1/(2m̃cα

2), with α

the short distance cutoff. The density of Q3 in Eq. (D10)
contains all the operators up to dimension 2 that are invariant
under η-spin rotation but with different coefficients than the
Hamiltonian (63). In fact, Q3 has the same symmetries as the
Hamiltonian except for the signature under parity transfor-
mation (parity symmetry is broken by hand in the effective
impurity model by the definition of the impurity subbands).

Finally, taking the commutator of Q3 = ∫
dx Q3(x) with

H = ∫
dx H(x), we are left with two dimension-three opera-

tors that do not not vanish in general:

[Q3,H ] = 2i

(
Ec

mc

− Ẽc

m̃c

) [
V C

c

∫
dx ∂x(D†

cDc)D̃†
cD̃c

+ V E
c

∫
dx ∂x(D†

cτDc) · D̃†
cτD̃c

]
. (D11)

We note that other terms cancel because the two subbands
have the same velocity uc. Recall that along the boundary
line ω−

2c(q > q), we have mc > 0 and m̃c < 0 since the Dc

subband is below the inflection point of the holon dispersion
and the D̃c subband is above it. Moreover, mc > |m̃c| because
the curvature of the holon dispersion is smaller close to the
band minimum. Thus we have

E

mc

− Ẽc

m̃c

= εc

mc

+ ε̃c

|m̃c| + 1

2|m̃c|α2
− 1

2mcα2
> 0. (D12)

The only way to ensure that the commutator in Eq. (D11)
vanishes is to set V C

c = V E
c = 0. Therefore the existence of

a conserved quantity represented in the field theory by an
operator of the form in Eq. (D10) requires that there is no
scattering between Dc and D̃c holons. Importantly, integrabil-
ity does not have any implications for the interaction between
two impurities within the same spinor [Vs in Eq. (58) and Vc

in Eq. (61)]. This follows from taking ε̃c = εc and m̃c = mc in
Eq. (D11) in which case the commutator vanishes identically.

We also remark that the effective model in principle also
contains irrelevant interactions that have the same dimension
(three) as the parabolic dispersion term. These irrelevant
interactions, which were omitted in Eq. (63), can contribute to
the coefficient of the last two terms in the conserved quantity
in Eq. (D10). However, such terms do not contribute to the
commutator in Eq. (D11) (at the level of dimension-three
operators), thus our conclusion is not affected by irrelevant
interactions.
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