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We study the stability of the topological quantum computation proposals involving Majorana fermions against
thermal fluctuations. We use a minimal realistic model of a spinless px + ipy superconductor and consider the
effect of excited midgap states localized in the vortex core as well as of transitions above the bulk superconducting
gap on the quasiparticle braiding, interferometry-based qubit readout schemes, and quantum coherence of the
topological qubits. We find that thermal occupation of the midgap states does not affect adiabatic braiding
operations but leads to a reduction in the visibility of the interferometry measurements. We also consider quantum
decoherence of topological qubits at finite temperatures and calculate their decay rate which is associated with
the change of the fermion parity and, as such, is exponentially suppressed at temperatures well below the
bulk excitation gap. Our conclusion is that the Majorana-based topological quantum computing schemes are
indeed protected by virtue of the quantum nonlocality of the stored information and the presence of the bulk
superconducting gap.
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I. INTRODUCTION

Topological quantum computation, based on the encoding
of quantum information in nonlocal degrees of freedom,
provides a promising route to fight quantum decoherence.1–3

Due to the presence of environmental interactions, decoher-
ence is the foremost challenge in any conventional quantum
computation schemes since quantum error correction proto-
cols typically have very severe constraints on the amount
of error that can be corrected in a fault-tolerant manner.
Topological quantum computation (TQC) utilizes topological
degeneracy of certain low-dimensional systems believed to
host non-Abelian quasiparticles (anyons): fractional quantum
Hall states (e.g., at filling factor ν = 5/2),4–6 certain exotic
lattice spin systems,1 and topological superconductors.7–9 The
latter have received tremendous attention recently10–13 and a
number of possible candidates for topological superconduc-
tivity have been proposed including strontium ruthenate,14

topological insulator-superconductor heterostructures,15,16

semiconductor-superconductor heterostructures,17–21 and non-
centrosymmetric superconductors.22 In all these systems, non-
Abelian Ising anyons are realized as Majorana zero-energy
modes bound to certain topological defects and obey non-
Abelian braiding statistics.4,5,9,23,24 Given that Majorana zero-
energy quasiparticles are described by Hermitian operators
γ = γ †, one can show by constructing a nonlocal Dirac
operator ĉ out of two spatially separated Majorana operators
γ̂i=1,2 (i.e., ĉ = γ̂1 + iγ̂2) that there are 2n−1 degenerate states
for a given overall fermion parity with 2n Majorana zero-
energy modes at fixed positions. The information is encoded
in the occupied or unoccupied states of the nonlocal Dirac
fermion modes. This is a crucial concept for the Majorana-
based TQC proposals. As long as global fermion parity in the
system is preserved, one can design fault-tolerant quantum
computation schemes at sufficiently low temperatures.

In this paper we investigate the effect of finite-temperature
thermal fluctuations on three key aspects of topological
quantum computation: quantum coherence of the topological

qubits, topologically protected quantum gates, and the readout
of qubits. Since the information is encoded in nonlocal degrees
of freedom of the ground state many-body wave function, it
is important to keep the system close to the ground state.
However, any systems realized in the laboratory are operated at
a finite temperature T > 0. To prevent uncontrollable thermal
excitations, it is generally accepted that T has to be way below
the bulk excitation gap. However, complications appear when
there exist various types of single-particle excitations with
different magnitudes of gaps which can change the occupation
of the nonlocal fermionic modes. Note that throughout the
paper we assume that Majorana fermions are sufficiently
far away from each other and neglect exponentially small
energy splitting due to intervortex tunneling. The effect of
these processes on topological quantum computing has been
discussed elsewhere.25,26 Another trivial effect not considered
in this work is a situation where the fermion parity conservation
is explicitly broken by the Majorana mode being in direct
contact with a bath of fermions (electrons and holes) where
obviously the Majorana will decay into the fermion bath, and
consequently decohere. Such situations arise, for example,
in current topological insulators where the existence of the
bulk carriers (invariably present due to the unintentional bulk
doping) would make any surface non-Abelian Majorana mode
disappear rather rapidly. Another situation that has recently
been considered in this context27 is the end Majorana mode
in a one-dimensional nanowire being in contact with the
electrons in the nonsuperconducting part of the semiconductor,
leading to a zero-energy Majorana resonance rather than a
non-Abelian Majorana bound state at zero energy. The fact
that the direct coupling of Majorana modes to an ordinary
fermionic bath will lead to its decoherence is rather obvious
and well known, and does not require a general discussion
since such situations must be discussed on a case by case basis
taking into account the details of the experimental systems.
In particular, the reason the quantum braiding operations in
Majorana-based systems involves interferometry is to preserve
the fermion parity conservation. Our theory in the current work
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considers the general question of how thermal fluctuations at
finite temperatures affect the non-Abelian and the nonlocal
nature of the Majorana mode.

We consider a simple model for a two-dimensional chiral
px + ipy superconductor where Majorana zero-energy states
are hosted by Abrikosov vortices. The quasiparticle excitations
in this system are divided into two categories: (a) Caroli–
de Gennes–Matricon (CdGM) or so-called midgap states
localized in the vortex core with energies below the bulk
superconducting gap29,30 (the gap that separates the zero-
energy state to the lowest CdGM state is called the minigap
�M ), and (b) extended states with energies above the bulk
quasiparticle gap which is denoted by �. The natural question
arising in this context is how these two types of excitations
affect topological quantum computation using the Majorana
zero-energy states at finite temperature. This question is very
relevant in the context of strontium ruthenate as well as
other weak-coupling BCS superconductors where the Fermi
energy EF is much larger than the superconducting gap �

in which case �M ∝ �2/EF � �. We mention in passing
here that the semiconductor-based Majorana proposals in
nanowires17–20 do not have low-lying CdGM states because
the one-dimensionality reduces the phase space for the bound
states and the minigap �M ∼ �32 due to the small Fermi
energy in the semiconductor. If the temperature is substantially
below the minigap, i.e., T � �M , obviously all excited states
can be safely ignored. However, such low temperatures with
T � �M can be hard to achieve in the laboratory since
for typical superconductors �/EF ∼ 10−3 to 10−4. We note
that even in the semiconductor two-dimensional sandwich
structures the energetics of the subgap states31 obey the
inequality �M < � since in general EF > � even in the
semiconductor-based systems in view of the fact that typically
� ∼ 1 K. This makes our consideration in this paper of rel-
evance also to the semiconductor-based topological quantum
computing platforms. In this paper we investigate the nontrivial
intermediate temperature regime �M � T < �. To make this
paper more pedagogical, we will use a simple physical model
that captures the relevant physics. We find that the presence
of the excited midgap states localized in the vortex core does
not effect braiding operations. However, the midgap states do
affect the outcome of the interferometry experiments.

We also study the quantum dynamical evolution and obtain
equations of motion for the reduced density matrix assuming
that the finite temperature is set by a bosonic bath (e.g.,
phonons). We find that the qubit decay rate λ is given by the rate
of changing fermion parity in the system and is exponentially
suppressed [i.e., λ ∝ exp(−�/T )] at low temperatures in a
fully gapped px + ipy superconductor. In this context, we
make some comments about Ref. 34 claiming to obtain
different results regarding the effect of thermal fluctuations.

The paper is organized as follows. In Sec. II we generalize
the notion of non-Abelian braiding to a finite temperature and
show that braiding is not affected by CdGM bound states.
In Sec. III we show that the midgap states are important for
interferometry experiments and generally reduce the visibility
of the signal. In Sec. IV we study the problem of qubit
decoherence and effects of thermal fluctuations. Finally, we
conclude in Sec. V. Some technical details are given in the
appendices.

II. NON-ABELIAN BRAIDING IN THE PRESENCE OF
MIDGAP STATES

In this section we address the question of how the midgap
states affect the non-Abelian statistics at finite temperature.
The usual formulation of the non-Abelian statistics as unitary
transformation of the ground states does not apply, since at
finite temperature the system has to be described as a mixed
state. We need to generalize the notion of the non-Abelian
braiding in terms of physical observables.35 This can be done
as the following: Consider a topological qubit made up by
four vortices labeled by a = 1,2,3,4. Each of them carries a
Majorana zero-energy state, whose corresponding quasiparti-
cle is denoted by γ̂a0 which satisfies γ̂ 2

a0 = 1,γ̂a0 = γ̂
†
a0. There

are other midgap states in the vortex core which are denoted
by d̂ai ,i = 1,2, . . . ,m. (Actually the number of midgap states
is huge and the midgap spectrum eventually merges with the
bulk excitation spectrum. However, since we are interested
in T � �, we can choose an energy cutoff � such that
T � � � � and only include those midgap states that are
below �.) It is convenient to write d̂ai = γ̂a,2i−1 + iγ̂a,2i , so
each vortex core carries an odd number of Majorana fermions
γ̂ai ,i = 0,1, . . . ,2m.

Having the notations set up, we now define a generalized
Majorana operator �̂a = im

∏2m
i=0 γ̂ai . It is straightforward to

check that {�̂a,�̂b} = 2δab. We then define the fermion parity
shared by a pair of vortices 	̂ab = i�̂a�̂b. The topological
qubit can be uniquely specified by a set of measurements of
the expectation value of the following Pauli matrices σ̂ =
(σ̂x,σ̂y,σ̂z):

σ̂x = 	̂32,σ̂y = 	̂13,σ̂z = 	̂21. (1)

The non-Abelian braiding can be represented as the transfor-
mation of 〈σ̂ 〉.

Now we list the key assumptions to establish the non-
Abelian properties of the vortices:

(1) The fermion parity 	̂ab is a physical observable that can
be measured by suitable interferometry experiments, even at
finite temperature.

(2) All the bound states remain localized together with the
zero-energy state when the vortices are transported. Therefore
they can be considered as one composite system.

(3) The tunneling processes of fermions between differ-
ent vortices and transitions to the gapped continuum are
exponentially suppressed due to the presence of the bulk
superconducting gap. This condition needs to be satisfied in
the first place to ensure the existence of (nearly) zero modes
in the topological phase.

Under these conditions, the only local dynamical pro-
cesses are the transitions of fermions between the localized
bound states, e.g., scattering by collective excitations such as
phonons. However, such processes necessarily conserve �̂a ,
therefore also the parities 	̂ab.

To see this explicitly, the state of the qubit is described
by the density matrix ρ̂(t). Because we are truncating the
whole Hilbert space to include only those below our cutoff
�, it is necessary to use the time-dependent instantaneous
basis.36 At low energies, the occupations of the various subgap
states can be changed due electron-electron or electron-phonon
interactions. To be specific, we write down the Hamiltonian of
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the system:

Ĥ = Ĥ0 + Ĥint. (2)

Here Ĥ0 is the Hamiltonian of the BCS superconductor
with vortices, whose positions Ri are time dependent. At
each moment of time Ĥ0 can be diagonalized, yielding a
set of complete eigenbases which are represented by the
time-dependent generalization of the aforementioned Bogoli-
ubov quasiparticles γ̂a0(t),d̂ai(t). Ĥint describes all kinds of
perturbations that are allowed under the assumptions.

Without going into the details of microscopic calculations,
we write down the general Lindblad form of the master
equation37 governing the time-evolution of the density matrix:

dρ̂

dt
= ∂ρ̂

∂t
− i[Ĥt (t),ρ̂] + Ŝρ̂Ŝ† − 1

2
{Ŝ†Ŝ,ρ̂}. (3)

The ∂ρ̂

∂t
denotes the change of ρ̂ solely due to the change

of basis states. Here Ĥt describes the (effective) unitary
evolution of the density matrix due to transitions between
different fermionic states and the Lindblad superoperators Ŝ

corresponds to the nonunitary evolution induced by system-
environment coupling. Our assumption on the locality of the
interactions in the system implies that

[Ĥt ,	̂ab] = 0,[Ŝ,	̂ab] = 0. (4)

The time evolution of the expectation values of σ (t) is given
by

d〈σ 〉
dt

= d

dt
Tr σ ρ̂ = Tr

∂σ

∂t
ρ̂(t) + Tr σ

dρ̂

dt
. (5)

With (4), it is straightforward to check that

Tr σ [Ĥ ,ρ̂] = 0,Tr σ
(
Ŝρ̂Ŝ† − 1

2 {Ŝ†Ŝ,ρ̂}) = 0. (6)

Therefore we have
d〈σ (t)〉

dt
= Tr

∂σ (t)

∂t
ρ̂(t) + Tr σ (t)

∂ρ̂(t)

∂t
= ∂tTr [σ (t)ρ̂(t)].

(7)

As we have defined, ∂t means that all changes come from the
change in the basis {γ̂ai(t)}. Since after the braiding the system
returns to its initial configuration, the operators γ̂ia undergo
unitary transformations. So if the braiding starts at t = ti and
ends at t = tf , we have the simple result 〈σ (ti)〉 = 〈σ (tf )〉.
However, the operators �̂(tf ) are different from �̂(ti). One
can easily verify that the operators �̂a satisfy Ivanov’s rule9,35

under braiding of vortices a and b:

�̂a → �̂b,�̂b → −�̂a. (8)

And the transformation of 〈σ̂ 〉 is identical to the case without
any midgap states. In conclusion, in terms of physically mea-
surable quantities, the non-Abelian statistics is well defined in
the presence of excited midgap states localized in the vortex
core.

This result is not obvious because it may appear on first
sight that arbitrary thermal occupancies of the midgap excited
states would completely suppress the non-Abelian nature of
the system since the Majorana mode resides entirely at zero
energy and not in the excited midgap states.

We now briefly discuss how the condition of fermion
parity conservation is satisfied in realistic systems. The basic

idea is that fully gapped superconductors provide shield-
ing that protects fermion parity in the active system, i.e.,
the qubit. The presence of the superconducting gap leads
to the suppression of the single-particle excitations and leads
to the even-odd effect (this effect is used, for example, to build
superconducting charge qubits28). Therefore, the probability
of unpaired-electron propagation in the superconductor over
distance L is exponentially small ∝ exp(−L/ξ ). Thus, in
a topological p + ip superconductor the fermion parity is
indeed well defined in equilibrium and there are no parity-
violation processes intrinsic to the superconductor modulo
these exponentially small corrections. On the other hand, if
a topological qubit is in contact with the gapless-fermion
bath, the fermion parity is not a good quantum number (see
Ref. 27 for a detailed discussion of related issues and possible
resolutions) and the qubit will decohere.

III. INTERFEROMETRY IN THE PRESENCE OF
MIDGAP STATES

We now discuss the effect of the midgap states in the
interferometry experiments designed for the qubit readout.38–41

There are a number of recent proposals for interferometry
experiments in topological superconductors.42–44 In this paper,
we use an example of the Mach-Zehnder interferometer pro-
posed by Grosfeld and Stern45 based on the Aharonov-Casher
(AC) effect. In this proposal, a Josephson vortex (fluxon) is
driven by supercurrent Js to circumvent a superconducting
island with charge Q and flux �; see Fig. 1. The fluxon
appearing at the interface between two topological px + ipy

superconductors (represented by the shaded region in Fig. 1)
carries a zero-energy Majorana mode and behaves as a
non-Abelian anyon. Therefore, the vortex current around the
central superconductor is sensitive to the topological content
of the enclosed superfluid. (We refer the reader to Ref. 45 for
more details.) Indeed, vortex current is proportional to the total

Φ, Q

Js

SC

Jv

FIG. 1. (Color online) Mach-Zehnder interferometer proposed in
Ref. 45 for topological qubit detection. Due to the Aharonov-Casher
effect, the vortex current is sensitive to the charge enclosed. The
long Josephson junction between two topological superconductors
allows for Josephson vortices (fluxons) that carry Majorana zero-
energy modes.
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tunneling amplitude:

Jv ∝ |(tLÛL + tLÛR)|�0〉|2
= |tL|2 + |tR|2 + 2Re

{
t∗LtR〈�0|Û−1

L ÛR|�0〉
}

= |tL|2 + |tR|2 + 2Re
{
t∗LtReiϕAC〈�0|M̂|�0〉

}
. (9)

Here |�0〉 is the initial state of the system and ÛL and
ÛR are the unitary evolution operators for the fluxon taking
the two respective paths. ϕAC is the Aharonov-Casher phase
accumulated by the fluxon: ϕAC = πQ/e. Here Q is the total
charge enclosed by the trajectory of the fluxon, including the
offset charge Qext set by external gate and the fermion parity
np of the low-energy fermionic states:

Q = Qext + enp. (10)

M̂ encodes the transformation solely due to the braiding
statistics of the non-Abelian fluxon around n enclosed non-
Abelian anyons. If the superconducting island contains no
vortices, then M̂ = 1 and the interference term is solely
determined by the AC phase. The magnitude of the vortex
current shows an oscillation:

Jv = Jv0

[
1 + ζ cos

(
πQ

e

)]
. (11)

Here ζ is the visibility of the interference.
When n is odd, there is no interference because M̂|�0〉 and

|�0〉 have different fermion parity, implying 〈�0|M̂|�0〉 = 0.
To see this explicitly, let us consider n = 1 and denote the
Majorana zero mode in the vortex by γ̂1. When the Majorana
fermion γ̂0 in the fluxon is taken around γ̂1, the corre-
sponding unitary transformation acting on the ground states
is M̂ = exp(±i π

2 γ̂1γ̂0) = ±iγ̂1γ̂0. Thus, the matrix element
〈�0|M̂|�0〉 is zero. Therefore, the vortex current becomes
independent of the charge encircled, and the disappearance of
the interference can be used as a signature of the non-Abelian
statistics of the vortices.

We now consider a situation where the non-Abelian fluxon
has midgap states other than the Majorana bound state. The
internal state of the fluxon then also depends on the occupation
of these midgap states. As we have argued in the previous
section, as far as braiding is concerned the non-Abelian
character is not affected at all by the presence of midgap states.
So the interference still vanishes when there are odd numbers
of non-Abelian vortices in the island. On the other hand, when
there are no vortices in the island, transitions to the midgap
states can significantly reduce the visibility of the interference
term ζ .

To understand quantitatively how the visibility of the
interference pattern is affected by the midgap state, let us
consider the following model of the fluxon. Since we are
interested in the effect of midgap states, we assume there
is only one midgap state and model the probe vortex by a
two-level system, or spin 1/2, with the Hilbert space {|0〉,|1〉}.
Here |1〉 denotes the state with the midgap state occupied.
We also assume that the charge enclosed by the interference
trajectory Q = 0 so we can neglect the AC phase. The
Hamiltonian is then given by

Ĥ = |L〉〈L| ⊗ ĤL + |R〉〈R| ⊗ ĤR, (12)

where ĤL,R is given by

Ĥη = �

2
σz + σx

∑
k

gk(â†
η,k + âη,k) +

∑
k

ωη,kâ
†
η,kâη,k.

(13)

Here η = L,R. Here âk are annihilation operators for a bosonic
bath labeled by k.

The form of the coupling between the internal degree of
freedom and the bosonic bath is motivated on very general
grounds. In fact, Hermiticity requires that coupling between
Majorana mode and any other fermionic modes have to take
the following form:

Hcoupling = iγ̂0(zd̂ + z∗d̂†). (14)

Here in this context γ̂0 is the zero-energy Majorana oper-
ator in the fluxon and d̂ is the annihilation operator for
the midgap fermion; z is a bosonic degree of freedom.
We then use the mapping between Majorana operators
and spin operators—σz = 2d̂†d̂ − 1,σx = iγ̂0(d̂ + d̂†),σy =
γ̂0(d̂† − d̂)—to rewrite the above coupling term as

Hcoupling = Re(z)σx + Im(z)σy. (15)

If we take z ∼ â + â†, we recover the coupling term in (13).
Equation (14) can arise from, e.g., electron-phonon interaction.

We also assume the bath couples to the fluxon locally so
we introduce two independent baths for L and R paths. The
unitary evolution at time t is then factorizable:

Û (t) = |L〉〈L| ⊗ ÛL(t) + |R〉〈R| ⊗ ÛR(t). (16)

Given initial state ρ̂(0) = ρ̂path ⊗ ρ̂s ⊗ ρ̂bath, we can find
the off-diagonal component of the final state ρ̂(t) =
Û (t)ρ̂(0)Û †(t), corresponding to the interference, as

λLR = Tr [ÛL(t)Û †
R(t)ρ̂s ⊗ ρ̂bath]

= Tr[ρsTrL[ρ̂bath,LÛL(t)]TrR[ρ̂bath,RÛR(t)]]. (17)

Now we evaluate Ŵη(t) = Trη[ρ̂bath,ηÛη(t)] (notice Ŵη is
still an operator in the spin Hilbert space). We drop the η index
in this calculation. First we switch to interaction picture and
the evolution operator Û (t) can be represented formally as
Û (t) = T exp{−i

∫ t

0 dt ′ Ĥ1(t ′)} where

Ĥ1(t) =
∑

k

gk(σ+ei�t/2 + σ−e−i�t/2)(â†
ke

iωkt + âke
−iωkt ).

(18)

Following the derivation of the master equation for the density
matrix, we can derive a “master equation” for Ŵ (t) under the
Born-Markovian approximation:

dŴ

dt
= −γ (n̄ + 1/2 + σz/2)Ŵ , (19)

where γ = π
∑

k g2
k δ(ωk − �),n̄ = γ −1 ∑

k g2
k n̄kδ(ωk − �).

Therefore, the visibility of the interference, proportional to
the trace of Ŵ , is given by

ζ ∝ Tr[Ŵ (t)ρs] ∝ e−γ n̄t = e−γ n̄L/v. (20)

Here L is the length of the inteferometer and v is the average
velocity of the fluxon.
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We notice that the model we have used is, of course, an
oversimplification of the real fluxon. We only focus on the
decoherence due to the midgap states and assume that only one
such state is present. In reality, there could be many midgap
states which in principle lead to a stronger suppression of
visibility. The approach taken here can be easily generalized
to the case where there are more than one midgap state.

The above interferometor is able to detect the existence of
non-Abelian vortices which requires that the Josephson vortex
(i.e., fluxon) also have Majorana midgap states. To fully read
out a topological qubit, one needs to measure the fermion
parity of the qubit. This can also be done using interferometry
experiments with flux qubits, essentially making use of the AC
effect of Josephson vortices.46,47

Another relevant question is whether the thermal excita-
tions of the (non-Majorana) midgap states localized in the
vortex core have any effects on the interferometry. Since the
interferometry is based on the AC effect where vortex acquires
a geometric phase after circling around some charges, one
might naively expect that the interferometric current might
depend on the occupation of the midgap states due to the
charge associated with the midgap states [i.e., for a midgap
state whose Bogoliubov wave functions are (u,v), its charge
is given by Q = e

∫
dr (|u|2 − |v|2)]. The situation is more

subtle, however, once one takes into account the screening
effect due to the superfluid condensate. The kinetics of the
screening process is beyond the scope of this paper. However,
in the case when charge relaxation happens very fast relative
to the fluxon dynamics, one can assume equilibrium situation.
Under these conditions, we show in Appendix B that geometric
phases acquired by the Josephson vortices only depend on the
total fermion parity in the low-energy midgap states (even
if they are not Majorana zero-energy modes) and the offset
charge set by the external gate voltage.

IV. DEPOLARIZATION OF QUBITS AT FINITE
TEMPERATURE

We now study the coherence of the topological qubit itself.
From our discussion on the effect of bound states in the vortex
core, it is clear that decoherence only occurs when the qubit is
interacting with a macroscopically large number of fermionic
degrees of freedom, a fermionic bath. An example of such a
bath is provided by the continuum of the gapped quasiparticles,
which are unavoidably present in any real superconductors.
Once the Majorana fermion is coupled to the bath via a
tunneling Hamiltonian, the fermion occupation in the qubit
can leak into the environment, resulting in the depolarization of
the qubit. It is then crucial to have a fully gapped quasiparticle
spectrum to ensure that such decoherence is exponentially
small, as will be shown below.

To study the decay of a Majorana zero mode, we consider
two such modes, γ̂1 and γ̂2, forming an ordinary fermion
ĉ = γ̂1 + iγ̂2. The gapped fermions are coupled locally to γ̂1,
without any loss of generality. The coupling is mediated by a
bosonic bath. The Hamiltonian then reads

Ĥ = iεγ̂1γ̂2 +
∑

k

εkd̂
†
k d̂k +

∑
l

ωl â
†
l âl

+ i
∑
kl

gkl γ̂1(d̂†
k + d̂k)(â†

l + âl). (21)

Here d̂k is the annihilation operator of the gapped fermions
with quantum number k and energy εk . âl is the annihilation
operators of the bosonic bath. The last term in the model
Hamiltonian, representing the coupling between the Majorana
zero mode and the gapped fermions mediated by the bosonic
bath, has been justified in the previous section.

The density matrix of the system evolves according to the
equation of motion ˙̂ρ = −i[Ĥ ,ρ̂]. Since we are interested in
the qubit only, we will derive the master equation for the
reduced density matrix ρ̂r, tracing out the bosonic bath and the
gapped fermions:

dρ̂r

dt
= −λ[ρ̂r − γ̂1(−1)n̂ρ̂r(−1)n̂γ̂1], (22)

where

λ = 2
∑
kl

g2
kl

[(
1 − n

f

k

)
nb

l + n
f

k

(
nb

l + 1
)]

δ(εk − ωl). (23)

Here n
f

k = 1/(eεk/T + 1),nb
l = 1/(eωl/T − 1) are the Fermi

and Bose distribution functions. The derivation of (22) is
presented in Appendix A. Notice that at low temperatures
T � �, due to energy conservation, both nb

l and n
f

k are
suppressed by the Gibbs factor e−�/T . Therefore, the rate
λ ∼ e−�/T .

Thus, the polarization of the qubit 〈σz〉 = Tr[σzρ̂r] satisfies
dt 〈σz〉 = −2λ〈σz〉, and consequently, the lifetime of the topo-
logical qubit is given by T1 ∼ λ−1. Physically, this is reason-
able since we introduce a tunneling term between the Majorana
fermion and the gapped fermionic environment so the fermion
parity of the qubit is no longer conserved. It is expected
that λ is determined by the exponential factor e−�/T when
T � �. Therefore, this provides a quantitative calibration of
the protection of the topological qubit at finite temperature.
A similar result has been obtained in the context of Abelian
topologically ordered phases.33 In the high-temperature limit
T � �, the distribution function scales linearly with T so the
decay rate is proportional to T . This is quite expected since
T � �, the gap does not play a role. We note that a recent
work by Goldstein and Chamon34 studying the decay rate of
Majorana zero modes coupled to classical noise essentially
corresponds to the high-temperature limit of our calculation
T � � and, as such, does not apply to any realistic system
where the temperature is assumed to be low, i.e., T � �. In
fact, in the trivial limit of � � T , the Majorana decoherence is
large and weakly temperature dependent because the fermion
parity is no longer preserved and the fermions can simply
leak into the fermionic bath.48 By definition, this classical
limit of T � � is of no interest for the topological quantum
computation schemes since the topological superconductivity
itself (or for that matter, any kind of superconductivity) will
be completely absent in this regime. Our result makes sense
from the qualitative considerations: Quantum information is
encoded in nonlocal fermionic modes and changing fermion
parity requires having large thermal fluctuations or external
noise sources with finite spectral weight at frequencies ω ∼ �.
Furthermore, it is important to notice that such relaxation
can only occur when the qubit is coupled to a continuum
of fermionic states which renders the fermion parity of the
qubit undefined. Intuitively, the fermion staying in the qubit
can tunnel to the continuum irreversibly, which is accounted
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for by the procedure of “tracing out the bath” in our derivation
of the master equation. It is instructive to compare this result
to a different scenario, where the zero-energy fermionic state
is coupled to a fermionic state (or a finite number of them)
instead of a continuum. In that case, due to hybridization
between the states the fermion number oscillates between the
two levels with a period (recurrence time) determined by the
energy difference �E between them. The expectation value
of the fermion number (or spectral weight) in the zero-energy
state is depleted and oscillatory in time, but will not decay to
zero.

The above derivation can be straightforwardly generalized
to N > 2 Majorana fermions, each coupled locally to gapped
fermions and bosonic bath:

dρ̂r

dt
= −

N∑
i=1

λi[ρ̂r − γ̂i(−1)n̂i ρ̂r(−1)n̂i γ̂i]. (24)

The depolarization of the qubit can be calculated in the same
fashion.

V. CONCLUSION AND DISCUSSION

We study quantum coherence of the Majorana-based
topological qubits. We analyze the non-Abelian braiding in
the presence of midgap states, and demonstrate that when
formulating in terms of the physical observable (fermion
parity of the qubit), the braiding statistics is insensitive to
the thermal occupation of the midgap states. We also clarify
here the conditions for such topological protection to hold.
Our conclusion applies to the case of localized midgap states
in the vortex core which are transported along with the
Majorana zero states during the braiding operations. If there
are spurious (e.g., impurity-induced49–51) midgap bound states
spatially located near the Majorana zero-energy states but
not transported together with them, they could strongly affect
braiding operations. For example, during braiding the fermion
in the qubit has some probability (roughly determined by the
nonadiabaticity of the braiding operation) to hybridize with
the other bound states near its path leading to an error. If
the disorder is weak and short-ranged, such low-energy states
are unlikely to occur unless the bulk superconducting gap is
significantly suppressed at some spatial points (e.g., vortices)
as it is well-known that for a single short-range impurity the
energy of such a bound state is close to the bulk excitation
gap.52,53 Thus, well-separated impurity-induced bound states
are typically close to the gap edge and would not affect braiding
operations. If the concentration of impurities is increased, then
it is meaningful to discuss the probability distribution of the
lowest excited bound state in the system.54 The distribution
of the first excited states determining the minigaps depends
on many microscopic details (e.g., system size, concentration
of the disorder). Since the magnitude of the minigaps is
system specific, one should evaluate the minigap for a given
sample. As a general guiding principle, it is important to
reduce the effect of the disorder which limits the speed of
braiding operations. However, we note here that physically
moving anyons for braiding operations might not be necessary
and there are alternative measurement-only approaches to

topological quantum computation55 where the issue of the
low-lying localized bound states is not relevant.

In this paper we also consider the readout of topological
qubits via interferometry experiments. We study the Mach-
Zehnder interferometer based on the Aharonov-Casher effect
and show that the main effect of midgap states in the Josephson
vortices is the reduction of the visibility of the readout signal.
We also consider the effect of thermal excitations involving
midgap states of Abrikosov vortices localized in the bulk on
the interferometry and find that such processes do not effect
the signal provided the system reaches equilibrium fast enough
compared to the tunneling time of the Josephson vortices.

Finally, we address the issue of the quantum coherence
of the topological qubit itself coupled to a gapped fermionic
bath via quantum fluctuations. We derive the master equation
governing the time evolution of the reduced density matrix of
the topological qubit using a simple physical model Hamil-
tonian. The decoherence rate of the qubit is exponentially
suppressed at low temperatures T � �. Since topological
protection assumes that fermion parity in the superconductor
is preserved, our result is very intuitive.

We conclude that the Majorana-based qubits are indeed
topologically well protected at low temperatures as long
as the experimental temperature regime is well below the
superconducting gap energy. We add also that if the fermion
parity is not conserved in a particular situation (e.g., through
explicit coupling to ordinary fermionic modes in reservoirs in
contact with the localized Majorana mode), then the Majorana
will decohere by definition since fermion parity conservation is
the key to the existence of the Majorana fermions. An explicit
nontrivial situation has recently been discussed in Ref. 27.
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APPENDIX A: DERIVATION OF THE MASTER EQUATION

In this Appendix we derive the master equation for the
reduced density matrix. The density matrix of the whole system
evolves according to the equation of motion:

dρ̂

dt
= i[ĤI ,ρ̂]. (A1)

Notice that we will be working in the interaction picture in the
following. Here the coupling Hamiltonian

ĤI (t) = i
∑
kl

gkl γ̂ η̂k(t)φ̂l(t), (A2)

where

η̂k(t) = d̂ke
iεk t + d̂ke

−iεk t ,

φ̂l(t) = âle
iωl t + âe−iωl t .

(A3)
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Assume the coupling between the qubit and the bath is weak;
we integrate the equation of motion for a time interval �t :

�ρ̂r

�t
= − 1

�t

∫ t+�t

t

dt1

∫ t1

t

dt2 TrB[ĤI (t1),[ĤI (t2),ρ̂(t2)]].

(A4)

The first-order term vanishes due to the fact that 〈φ̂(t)〉 =
〈η̂(t)〉 = 0. Now we make the Born approximation for the bath:
Assume that the bath is so large that it relaxes very quickly to
thermal equilibrium. The density matrix of the whole system
can be factorized as ρ̂(t) = ρ̂r(t) ⊗ ρ̂B . Here the bath includes
the gapped fermionic bath and the bosonic bath.

The commutator on the right-hand side of (A4) can be
evaluated:

TrB[ĤI (t1),[ĤI (t2),ρ̂(t2)]] ≈ [ρ̂r(t) − γ̂ (−1)n̂ρ̂r(t)(−1)n̂γ̂ ]

×{〈η̂k(t1)η̂k(t2)〉〈φ̂l(t1)φ̂l(t2)〉
+ 〈η̂k(t2)η̂k(t1)〉〈φ̂l(t2)φ̂l(t1)〉}.

(A5)

The factor (−1)n̂ appears because of the anticommutation
relation between fermionic operators. The correlators of the
bath are easily calculated:

〈η̂k(t1)η̂k(t2)〉 = n
f

k eiεk (t1−t2) + (
1 − n

f

k

)
e−iεk (t1−t2),

(A6)
〈φ̂l(t1)φ̂l(t2)〉 = nb

l e
iωl (t1−t2) + (

nb
l + 1

)
e−iωl (t1−t2).

Performing the integral over t1 and t2, we finally arrive at

dρ̂r

dt
= −λ[ρ̂r − γ̂1(−1)n̂ρ̂r(t)(−1)n̂γ̂1]. (A7)

Here λ is given by

λ = 2
∑
kl

g2
kl

[(
1 − n

f

k

)
nb

l + n
f

k (nb
l + 1

)]
δ(εk − ωl). (A8)

APPENDIX B: GEOMETRIC PHASES GENERATED BY
MIDGAP FERMIONS

In this Appendix we derive the geometric phase generated
by the midgap fermions, relevant to the interferometry experi-
ments involving Josephson vortices (fluxons). We follow here

the formalism developed in the context of AC effect for flux
qubits.46

We assume that a superconducting island with several
midgap fermionic states, labeled by d̂

†
m, is coupled to a

flux qubit. In the low-energy regime well below the bulk
superconducting gap and the plasma frequency, the only
degrees of freedom of this system are the superconducting
phase φ and the midgap fermions. We also assume that the
phase varies slowly so the fermionic part of the system follows
the BCS mean-field Hamiltonian with superconducting phase
φ.

We want to know the geometric phase associated with
vortex tunneling in the presence of midgap fermions. It can be
derived by calculating the transition amplitude Af i associated
with a time-depedent phase φ = φ(t):

Af i = 〈φf |Q̂f Û (tf ,ti)Q̂
†
i |φi〉, (B1)

where |φ〉 denotes the BCS ground state with superconducting
phase φ and φf − φi = 2wπ . Q̂† = ∏

m(d̂†
m)nm denotes the

occupation of the midgap fermionic states with nm = 0,1.
The midgap fermionic operators d̂

†
m are explicity expressed

in terms of Bogoliubov wave functions um and vm:

d̂†
m(t) = e−iεmt

∫
dr [um(r)ψ̂†(r)eiφ/2 + vm(r)ψ̂(r)e−iφ/2].

(B2)

Therefore,

Û (tf ,ti)d̂
†
m(ti)Û

†(tf ,ti) = d̂†
m(tf )eiπwnm. (B3)

So the transition amplitude is evaluated as

Af i = 〈φf |Q̂f Û (tf ,ti)Q̂
†
i Û

†(tf ,ti)Û (tf ,ti)|φi〉
= eiπwne−i

∑
m nmεm(tf −ti )〈φf |Q̂f Q̂

†
f Û (tf ,ti)|φi〉

= eiπwne−i
∑

m nmεm(tf −ti )〈φf |Û (tf ,ti)|φi〉. (B4)

We conclude that the geometric phase is precisely πwn =
n
2 (φf − φi) Physically this reflects the fact that one fermion
is “half” of a Cooper pair. The vortex tunneling causes the
phase of the Cooper pair condensate to change by 2π and
correspondingly the fermionic states obtain π phases. Notice
that the phase

∑
m εm(tf − ti) is simply the overall dynamical

phase of the whole system due to its finite energy and does not
contribute to the interference at all.
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