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Hubbard model corrections in real-space x-ray spectroscopy theory
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The Hubbard model is implemented in real-space multiple scattering (RSMS) Green’s function calculations
of x-ray spectra based on a rotationally invariant local density approximation (LDA) + U formalism. Values
of the Hubbard parameter U are estimated using the constrained random phase approximation (RPA) method.
Our treatment also includes a model self-energy which incorporates the interaction of the photoelectron with
excitations such as plasmons; this model is based on an electron gas Green’s function and a many-pole model
of the screened Coulomb interaction W . This combined treatment leads to an efficient approach to account for
correlation on localized as well as delocalized electrons, and the effects on x-ray spectra. Moreover, the RSMS
formalism is also applicable to general aperiodic systems including nanoparticles, molecules, and surfaces. Results
are presented for the spin and angular momentum projected densities of states of MnO, NiO, and La2−xSrxCuO4

(LSCO), for the K-edge x-ray spectra of O atoms in MnO and NiO, and the unoccupied electronic states and O
K-edge spectra of undoped LSCO. The method is found to yield reasonable agreement with experiment.
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I. INTRODUCTION

Density functional theory (DFT) together with quasiparticle
corrections has been remarkably successful in describing the
electronic structure and band gaps of weakly interacting s-p
bonded systems. For such systems, quasiparticle corrections
are often well described in terms of Hedin’s GW self-
energy,1,2 where G refers to the one-particle Green’s function
and W the screened Coulomb interaction. Such corrections
are especially important in treatments of excited states, for
example, in various x-ray spectra. However, the GW approach
is generally inadequate to describe the band gap and other
electronic properties in materials with well localized 3d or
4f electrons.3,4 On the other hand, the strong Coulomb
interactions in these systems are often approximated using
a Hubbard model,3 in which the on-site electron-electron
repulsion is represented by the spin- and orbital-occupancy
dependent potential parametrized by “Hubbard parameters” U

and J . Combining the local density approximation (LDA) of
DFT with the Hubbard model leads to the LDA + U method.
In practice, the Hubbard correction is added to the original
Kohn-Sham LDA Hamiltonian while an approximate mean-
field term is subtracted to avoid double counting.5 Formally the
Hubbard interaction can be regarded as a static approximation
to the self-energy of correlated systems.6 In calculations of
excited state properties, however, one also needs dynamic self-
energy effects due to delocalized excitations, that is, plasmons,
etc., which can be approximated by model GW calculations.
A related approach has been proposed by Jiang et al.,6,7

where a GW self-energy is calculated from an LDA + U

starting point and the infamous double counting terms largely
cancel. Their approach also yields good approximations for
the band gap of several d and f electron systems.6,7 In
another prescription, Bansil et al. developed a self-consistent
GW + U scheme based on the tight-binding approximation
and a single-band Hubbard model.8,9 Their method is found to
qualitatively explain several pre-edge spectral features in high
Tc cuprates.10,11

The approach developed here is based on the LDA + U

formalism of Anisimov et al.,5 together with a many-pole

model self-energy that treats all excitations as plasmonic in
nature. This model is not expected to contribute appreciably to
the correlation effects on localized states, so we simply add the
two contributions to form an effective self-energy correction
��U (E). The implementation of our Hubbard-corrected self-
energy into the real-space multiple scattering (RSMS) Green’s
function formalism is relatively straightforward, and yields
an efficient approach which is applicable to both weakly and
strongly correlated materials. Our RSMS/��U approach is
advantageous for calculations of x-ray spectra over a broad
spectrum, especially since it does not rely on structural
symmetry or periodicity requirements.

Using this extension of our RSMS codes, we investigate the
effects of correlation on the angular momentum projected den-
sities of states (l-DOS), the x-ray absorption spectra (XAS),
and the x-ray emission spectra (XES) of several materials.
Other codes which can incorporate Hubbard corrections to
excited state spectra include WIEN2K,12 SPRKKR,13 and
Quantum ESPRESSO.14 Our implementation of the Hubbard
correction is similar to that in SPRKKR, although in that
code U is taken as a parameter.13 We also estimate U using
the constrained RPA method implemented in our RSMS
codes. Calculations of the Hubbard U have also been carried
out by others, using both constrained LDA (cLDA15–20),
and constrained RPA (cRPA21,22) approaches. Both of these
methods have been systematically compared by Aryasetiawan
et al.23

Our RSMS/��U method is tested on several d-electron
systems including MnO, NiO, and the undoped high Tc cuprate
La2−xSrxCuO4 (LSCO). In these materials, the electronic
structure and band gaps are strongly influenced by the Hubbard
interaction. We find that our approach yields reasonable
agreement with bulk-sensitive probes such as XES and XAS,
which are used to measure band gaps between occupied and
unoccupied states.24 We compare our results with related
calculations for MnO and NiO using the GW@LDA + U

treatment of Jiang et al.6 Treatments of Ti oxide compounds
using LDA + U within the multiple scattering formalism have
also been reported by Krüger,25 although, in that work a
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gap in the d states was forced by splitting the occupied and
unoccupied states by an experimental gap correction.

II. THEORY AND METHODOLOGY

In this section we describe our implementation of the
��U (E) method as an extension of the RSMS Green’s
function formalism.26,27 Our implementation generally follows
the strategy used in the FEFF9 code, and thus permits
calculations of both electronic structure and x-ray spectra that
account for atomic correlation effects. Hartree atomic units
(e = h̄ = m = 1) are implicit unless otherwise specified.

A. RSMS method

We begin with a brief outline of the RSMS formalism used
in this work. In this approach physical quantities of interest
are expressed in terms of the quasiparticle Green’s function
G(r,r′,E). For example, the physical quantity measured in
XAS for photons of polarization ε̂ and energy ω is the x-ray
absorption coefficient μ(ω),

μ(ω) ∝ − 2

π
Im 〈φc| ε̂ · r G(r,r′,ω + Ec) ε̂ · r′|φc〉, (1)

where Ec is the core electron energy and |φc〉 is the core state
wave function. The FEFF9 code also calculates closely related
quantities such as the spin and angular momentum projected
density of states (l-DOS) ρ

(n)
lσ (E) at site n,

ρ
(n)
lσ (E) = − 1

π
Im

∑
m

∫ Rn

0
G

σ,σ
L,L(r,r,E) r2 dr, (2)

where Rn is the Norman radius around the nth atom,28 which is
analogous to the Wigner-Seitz radius of neutral spheres. The
coefficients G

σ,σ ′
L,L′ characterize the expansion of the Green’s

function G(r,r′,E) in spherical harmonics,

G(r,r′,E) =
∑

L,L′,σ

YL(r̂) G
σ,σ
L,L′(r,r ′,E) Y ∗

L′(r̂′), (3)

where L = (l,m) denotes both orbital and azimuthal quantum
numbers. In these formulas the quasiparticle Green’s function
for an excited electron at energy E is given formally (matrix
indices suppressed) by

G(E) = [E − H − �(E)]−1, (4)

where H is the Hartree Hamiltonian

H = p2

2
+ V, (5)

and V is the Hartree potential. For convenience in our calcu-
lations, the Hamiltonian is re-expressed in terms of a Kohn-
Sham Hamiltonian H KS = H + Vxc, where Vxc is a ground
state exchange-correlation29 functional, and the self-energy is
replaced by a modified self-energy �(E) − Vxc which is set to
zero at the Fermi-energy E = EF . In this work we use the von
Barth-Hedin LSDA functional Vxc[n(r),m(r)],29 where n(r) =
n↑ + n↓ is the total electron density and m(r) = n↑ − n↓ is the
spin polarization density. In practice, it is useful to decompose
the total Green’s function G(E) as

G(E) = Gc(E) + Gsc(E), (6)

where Gc(E) is the contribution from the central (absorbing)
atom and Gsc(E) is the scattering part. Full multiple scattering
(FMS) calculations can be carried out by matrix inversion, that
is, with G = [1 − G0T ]−1G0, where G0 is the bare propagator
and T is the scattering T matrix, which are represented in
an angular-momentum and site basis: G0 = G0

nL,n′L′(E)[1 −
δn,n′ ] and T = tσnLδL,L′δn,n′δσ,σ ′ . Finally, tσnL is the single site
scattering t matrix, which is related to partial wave phase shifts

tσnL = eiδσ
nL sin

(
δσ
nL

)
. (7)

Within the spherical muffin-tin approximation, Gc(E) can
be expanded in terms of the regular RL(r,E) and irregular
HL(r,E) solutions of the single site Schrödinger equation.30 In
the FEFF code a typical calculation of the electronic structure
(ground or excited state) starts with a self-consistent calcu-
lation of the electron density and Kohn-Sham potentials.28

Once the self-consistent potential is obtained, the Green’s
function is constructed and used to calculate XAS and other
quantities of interest. Of particular interest in this paper is the
spin-dependent density matrix for the nth site

nσσ ′
nlm,nlm′ = − 1

π

∫ EF

dE

∫
cell

Im Gσσ ′
nlm,nlm′ (r,r,E) d3r, (8)

where the n denotes the cell defined by the Norman sphere
centered about the nth atom, r is relative to the center of the
cell Rn, and σ is the spin index, and we explicitly designate
the azimuthal quantum numbers m and m′. For a more detailed
description of the multiple scattering RSMS method see
Refs. 30 and 31.

B. GW many-pole self-energy

Quasiparticle effects are key to an accurate treatment
of excited state spectra,26 and hence require a good ap-
proximation for the electron self-energy for extended states.
Current approximations for the self-energy typically begin
with Hedin’s GW approximation (GWA),2 which is formally
given by

�GW = iGW, (9)

where G is the one electron Green’s function, W = ε−1v is
the screened-Coulomb interaction, and v is the bare-Coulomb
interaction. The FEFF9 code uses several approximations for
the self-energy with the aim of providing efficient calculations
of the energy dependent shift and broadening of spectral
features over a wide energy range. The default, which is
appropriate at high energies, is the Hedin-Lundqvist plasmon-
pole model,2,32 based on the homogeneous electron gas and a
single-pole approximation to the dielectric function, which
works well at energies above the plasmon energy ωp. An
extension which improves the self-energy at lower energies
is a many-pole model (MPSE), where the dielectric function is
represented as a weighted sum of poles matched to calculations
of the loss function in the long wavelength limit.33 Efficiency is
retained by assuming a simple plasmon dispersion relation for
all poles in the representation of the dielectric function, and
by using an electron gas Green’s function. Thus our MPSE
calculations are performed in a two step process: (i) The first
step is to obtain a suitable approximation to the energy loss
function L(ω) = −Im[ε(q = 0,ω)−1]; and (ii) the second is
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to extend the q = 0 result to finite momentum transfer by
representing it as a weighted sum of poles, which together
conserve the overall oscillator strength,

L(q,ω)−1 = −Im[ε(q,ω)−1] = π
∑

i

giω
2
i δ[ω2 − ωi(q)2].

(10)

Using this representation, and the electron gas approximation
for the Green’s function, the self-energy is a simple weighted
sum of dynamic electron gas plasmon-pole self-energies, and
a Hartree-Fock exchange term

�MP(k,E) = �d (k,E) + �HF(k),
(11)

�d (k,E) =
∑

i

gi�d (k,E; ωi).

The above formula is used to calculate an average quasiparticle
correction ��MP[k(E),E; ρint], where the density used in the
model is averaged over the interstitial (outside the muffin tins).
More details of the MPSE model can be found in Ref. 33.

Although these models significantly improve quasiparticle
calculations of unoccupied states at intermediate energies,
they do not necessarily yield accurate band-gap corrections,
and they do not have an appreciable effect on the localized
states near the Fermi energy. Formally the two effects can be
added by assuming that the Hubbard corrections are equivalent
to the static Coulomb-hole/screened exchange (COHSEX)
approximation for the localized states,6 and then treating only
the dynamic self-energy corrections to the localized states with
the model self-energy, that is,

� ≈ �COHSEX + [
�MPSE − �MPSE

COHSEX

]
. (12)

Here the first term is approximated using the Hubbard model
while the second is calculated using our many-pole model.
Delocalized states are treated with the many-pole model
alone. However, since our many-pole model gives only small
quasiparticle corrections to the localized states, we have
neglected the last term �MPSE

COHSEX in our calculations. Thus in
our implementation of the Hubbard corrected self-energy, an
effective spin and orbital dependent total correction ��U (E)
is constructed as a simple addition of the plasmon-pole or
many-pole self-energy correction ��(E) and a Hubbard cor-
rection V U

lm with calculated U , in order to correct the localized
states near the Fermi level. Although such a construction can
be done using self-consistent methods,34 here we use only a
single-step calculation. Thus we define our total self-energy
correction ��U as

V (r,E) = V LDA
σ (r) + ��U (E), (13)

��U
lmσ (E) = V U

lmσ + ��MP(E), (14)

where each term has double counting subtracted. The orbital
and spin-dependent Hubbard contribution to the potential V U

lmσ

is calculated as described in the next section. We stress that the
above prescription is an approximation; formally7 one might
expect some double counting between the Hubbard terms and
the many-pole self-energy. However, the effect of �MP(E) is
most important at energies comparable to plasmon excitations
while the behavior near the band gaps is dominated by the
Hubbard terms.

C. Calculation of U from cRPA

In our cRPA formulation23 of the Hubbard parameter U

we start with the standard expression of the RPA screened
Coulomb interaction given by

W = εRPA(r,r′,ω)−1v, (15)

where the RPA dielectric constant is

εRPA(r,r′,ω) = 1 − vχ0(r,r′,ω). (16)

and the noninteracting response function is

χ0(r,r′,ω) =
occ∑
i

unocc∑
j

ψi(r)ψ∗
i (r′)ψ∗

j (r)ψj (r′)

×
[

1

ω − εj + εi + i0+ − 1

ω + εj − εi − i0+

]
.

(17)

For correlated materials with narrow 3d or 4f bands, the
response function can be divided into χ0 = χ0

d + χ0
r . Here

χ0
d contains only 3d-3d interactions, and can be obtained by

limiting the summation to i,j ∈ ψd , and χ0
r is the response

due to the remainder of the states. The effective Coulomb
interaction in the narrow 3d bands can thus be identified22

with the Hubbard parameter U :

U (r,r′,ω) = [
1 − vχ0

r (r,r′,ω)
]−1

v. (18)

In the static limit (ω = 0) we retain only the components of
the effective interaction on the same atomic site by

U =
∫ Rn

0
d3rd3r ′|φ3d (r)|2U (r,r′)|φ3d (r′)|2, (19)

where φ3d is the localized 3d orbital of the embedded nth atom
with muffin-tin radius Rn. Following Stott and Zaremba,35 we
write the χ0(r,r′,ω = 0) in terms of the retarded single-particle
Green’s function, that is,

χ0(r,r′,ω = 0) = −2 Im
∫ EF

−∞

dω

π
G+(r,r′,ω)G+(r′,r,ω).

(20)

This allows us to use our RSMS framework to calculate the
response functions and thus the Hubbard interaction. Since the
interactions in question are limited in spacial extent around
a single atomic site, we make the approximation that the
Coulomb interaction may be replaced by its spherical average
about that site, that is, v(r − r′) = 1/r>, where r,r ′ are relative
to the center of the atomic site. In addition, we neglect
the angular momentum off-diagonal elements of the Green’s
function. This gives the following simple expression for the
spherically averaged noninteracting response function:

χ0(r,r ′,ω = 0) = −2 Im
∫ EF

−∞

dω

π

×
∑
L

G+
LL(r,r ′,ω)G+

LL(r ′,r,ω). (21)

We then find the RPA response function by inverting in real
space. Within these same approximations, we may calculate
the response function χ0

r defined above by omitting the angular
momentum states of interest (d or f states) from the sum in
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FIG. 1. (Color online) Results of our cRPA calculations of U (red
squares) for the 3d transition metals compared with the cRPA (blue
circles) and cLDA (green triangles) calculations of Aryasetiawan.23

the above equation within a cutoff radius Rc. For example to
find U for the d states, we use the response function

χ0
r (r,r ′,ω = 0)

= −2 Im
∫ EF

−∞

dω

π

[∑
L �=d

G+
LL(r,r ′,ω)G+

LL(r ′,r,ω)

+G+
dd (r,r ′,ω)G+

dd (r ′,r,ω)�(r − Rc)�(r ′ − Rc)

]
,

(22)

where �(r) is a smooth cutoff function which goes to zero
at r = Rc. Finally, U is found according to Eqs. (18) and
(19). These RSMS calculations have been used to find the
RPA screened core-hole potential in calculations of XAS, and
give reasonable results when compared to other theories (i.e.,
final state rule or Bethe Salpeter) and experiment.36 We find
that a cutoff radius Rc = 1.5Rn gives reasonable values of U

when compared to other calculations, and consistent band gaps
when compared to experiment. Figure 1 shows a comparison
of our cRPA results for U with the cRPA and cLDA results of
Ref. 23. Overall, the values are in reasonable agreement, and
differences can be attributed to the choice of localized states
and the approximations in the treatment of screening in our
method.

D. Rotationally invariant LDA + U formalism

Our construction of V U
lmσ (E) is adapted from the LDA + U

approach of Anisimov et al.5 In their approach one starts
with the total energy functional of the system and adds a
Hubbard correction to account for the Coulomb interaction
between localized, strongly correlated electrons. It is generally
assumed37 that a similar mean-field term should exist in LDA
or other DFT approaches which must be subtracted from the
energy functional to avoid double counting,

EU [nσ (r),nσ ] = ELDA[nσ (r)] + EU [nσ ] − Edc[nσ ], (23)

where nσ (r) is the charge density, nσ the density matrix, EU

the Hubbard interaction, and Edc the double counting term.
The Hubbard term depends on the density matrix nσσ ′

ilm,ilm′ , and
on-site Coulomb interactions between the localized electrons.

TABLE I. Mn d-state parameters (U = 5.4 eV; J = 0.9 eV).

l α nlα n
↑
lα n

↓
lα V

↑
lα (eV) V

↓
lα (eV)

2 α1 0.94 0.85 0.09 −0.32 3.11
2 α2 0.90 0.81 0.09 −0.29 3.11
2 α3 0.93 0.83 0.10 −0.30 3.12
2 α4 1.10 0.99 0.11 −1.00 3.12
2 α5 1.09 0.98 0.11 −1.00 3.15

For systems where the localized electrons are atomic-like,
the density matrix can sometimes be approximated38 as

nσ
mm′ = nσ

mδmm′ . (24)

This spherical approximation is often not reasonable for many
systems including TMOs, and good agreement for the band
gap is found only when the nonsphericity of d-d interactions as
well as the off-diagonal terms of nmm′ are taken into account.38

In order to implement a basis independent formalism of
LDA + U , we diagonalize the density matrix nσ by a unitary
transformation from the |lm〉 to |lα〉 basis for 3d states,

τ ∗ {
nσ

lmm′
} ∗ τ−1 = {

nσ
lα

}
. (25)

The total energy functional can then be written as

E = ELDA + 1

2

∑
α,α′,σ

U
(
nσ

α − no
)(

n−σ
α′ − no

)

+ 1

2

∑
α,α′ �=α,σ

(U − J )
(
nσ

α − no
)(

nσ
α′ − no

)
. (26)

Here the double counting term Edc is represented by no where
no = nd/10, and nd = ∑

ασ nσ
α . Using V (r) = δE/δnσ (r), a

simplified expression for the total LDA + U potential is finally
obtained,38 that is,

V LDA+U (r) = V LDA(r) + V U
lασ , (27)

where

V U
lασ = U

∑
α′

(
n−σ

lα′ − no
)+(U − J )

∑
α′ �=α

(
nσ

lα′ − no
)
. (28)

In a single-step spin-dependent calculation using the von
Barth-Hedin LSDA functional, we first obtain nσ

lα . In this
prescription, a prior knowledge of spin polarization of ith atom
mi = n

↑
i − n

↓
i is required. For Mn, Ni, and Cu we used m = 5,

2, and 1, respectively using Hund’s multiplicity rule39,40 for
free atoms which is often a good approximation for such
systems.

The occupancy of the spin-up and spin-down states within
the d orbitals are thus determined in this single-step LSDA
approach. Our calculations of spin-orbital occupancies of Mn
and Ni d states using this scheme are listed in Tables I and II.
Thus we essentially start with a spin dependent ground state
calculation and introduce spin and orbital dependence using
Anisimov’s prescription of Hubbard model. This LDA + U

prescription is found to provide good agreement between the
theory and experiment for the XAS of the TM compounds
investigated here, although the self-consistent LDA + U treat-
ment may be more desirable in other cases. The exchange
parameter J is typically much smaller than U and variations
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TABLE II. Ni d-state parameters (U = 8.0 eV; J = 0.9 eV).

l α nlα n
↑
lα n

↓
lα V

↑
lα (eV) V

↓
lα (eV)

2 α1 1.21 0.91 0.30 −0.72 3.95
2 α2 1.30 0.95 0.35 −1.40 4.02
2 α3 1.86 0.95 0.91 −1.40 −0.52
2 α4 1.86 0.95 0.91 −1.40 −0.52
2 α5 1.88 0.96 0.92 −1.43 −0.53

were found3 to be small over the transition metals; thus we
have used J = 0.9 eV for all cases. Using Eqs. (12), (17),
(18), and (21), we then correct our self-consistent potential
and obtain a new potential V (r,E).

Then using the above Hubbard corrected Hamiltonian, the
wave functions Rlα(r,E) and Hlα(r,E) are recalculated as
solutions of the Schrödinger equation inside the muffin-tin
spheres. The orbital dependent phase shifts δσ

lα(E) are obtained
by matching to the free solutions (spherical Bessel functions)
at the muffin-tin, and the scattering t matrices are found,

tσlα = eiδσ
lα sin

(
δσ
lα

)
. (29)

Finally the multiple-scattering equations are resolved with
these t matrices yielding the the total Green’s function G =
Gc + Gsc, which now includes the Hubbard-U correction.
With the addition of the state dependent Hubbard correction,
the potential of Eq. (12) can correctly account for the well
known discontinuity38,41 in exact DFT exchange-correlation
potentials. However, such a term is absent from the conven-
tional LDA and GGA approaches, rendering them incapable
of including such band-gap corrections.

III. RESULTS AND DISCUSSION

A. Transition metal oxides

Transition metal oxides (TMOs) such as MnO and NiO are
considered to be prototypes of strongly correlated Mott type
insulators, with localized and partially filled d electrons at
the metal sites. These TMOs have NaCl like crystal structures
(cubic O5

h symmetry, and f m3m space group). Below their
respective Nèel temperatures, they all exhibit a rhombohedral
distortion due to antiferromagnetic (AF) ordering, which is
also known as exchange anisotropy.42 We also examined the
effects of such crystal distortions but they had negligible
influence on the spectral features of interest here. In the
following subsections we present results for the total and
angular momentum projected DOS of MnO and NiO for a few
values of U . For both compounds, the O K-edge XAS and XES
are also calculated and compared with experimental results.

1. MnO

In order to compare with room temperature experiment,24

we used an undistorted MnO crystal with a = b = c =
4.4316 Å and α = β = 90.624◦.43 In this paper we do not
consider periodic magnetic effects; however, the single site
moments are implicitly taken into account in our �U (E)
implementation. Our calculated cRPA U for MnO was found
to be 5.4 eV. In our FMS RSMS calculations for MnO
we used a cluster of 250 atoms, which was adequate to
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FIG. 2. (Color online) U dependence on total DOS of MnO with
spin up (solid red) and spin down (dashed blue) for different values
of U : (a) LDA (U = 0), (b) U = 2.1 eV, (c) U = 5.4 eV (cRPA), and
(d) U = 6.1 eV; the vertical dashed line is at the Fermi energy.

converge the spectrum, and a smaller cluster of 60 atoms
for the self-consistent muffin-tin potentials. For this system
we calculated the O K-edge XES and XAS and the spin
and angular momentum projected DOS about the Mn and O
sites with and without Hubbard corrections. Figure 2 shows a
comparison of our calculated total ground state spin-resolved
DOS of MnO to that calculated with different values of U

including its cRPA value. While a calculation with a MPSE
underestimates an insulating gap (dashed blue line in Fig. 2), a
gap close to that observed in experiment is obtained using our
calculated Hubbard correction with U = 5.4 eV. When this
Hubbard correction is applied to Mn d states, the unoccupied
spin-down states are shifted by + 1.6 eV, as seen in Fig. 3(a).
The O p states [Fig. 3(b)] near EF are strongly hybridized with
Mn d states [Fig. 3(a)]; thus a gap is also seen in the O p-DOS.
However, the O p states around 6–8 eV only hybridize with
Mn s-p states (not shown) and are not affected by the Hubbard
correction. In Table I we present the spin-orbital occupancies
of the localized Mn d states and the corresponding Hubbard
correction for U = 5.4 and J = 0.9 eV.
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FIG. 3. (Color online) Angular momentum projected l-DOS for
Mn and O in MnO with U = 0.0 eV (dashed lines) and cRPA U =
5.4 eV (solid lines). Spin up and spin down DOS are above and
below the horizontal axis correspondingly: (a) Mn d-DOS and (b) O
p-DOS; the vertical dashed line is at the Fermi energy.
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Bulk sensitive XES and XAS for TM oxides often provide
a good assessment of the band gap in insulators.24 In Fig. 4
we compare our �U calculation of the O K-edge XAS and
XES with experiment.24 Figure 4 shows the result of our spin
resolved FMS calculation obtained with both Hubbard and
MPSE corrections [Fig. 4(b)], compared to results with no
Hubbard correction [Fig. 4(a)], and experiment [Fig. 4(c)]. The
XAS calculation was done in the presence of a screened core-
hole at the absorbing O atom, while for XES no core-hole was
included; these approximations are consistent with the final-
state and initial-state rules for XAS and XES, respectively. Our
Hubbard corrected self-energy blue shifts the first excitation
at around 534 eV, while the rest of the unoccupied states,
including the main peak at 540 eV, are unchanged. In XES,
the highest occupied state moves down by 3 eV which is now
on the other side of the second vertical dashed line in Fig. 4.
These distinct, opposite shifts of the highest occupied and
first unoccupied states are due to the strong hybridization of
O p states with the localized Mn d states. This can also be
identified in Fig. 3(b) as the lower (LHB) and upper Hubbard
bands (UHB) at around −2 and 2 eV.
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2. NiO

In order to compare with room-temperature experiments24

we have accounted for the rhombohedral distortion of NiO
crystal along the [111] direction.44,45 Our methods for cal-
culating electronic structures of NiO are similar to those for
MnO, except for the input NiO crystal structure, where we
have used a slightly distorted crystal with a = b = 4.168 Å,
c = 4.166 Å, and α = β = 90.055◦,γ = 90.082◦. With the
Hubbard correction, the best agreement with the experimental
XAS was again obtained with our calculated U = 8.0 eV.
Figure 5 shows the gap opening in the spin projected total DOS
of NiO for other values of U beside cRPA U . The O p states in
NiO are also strongly hybridized with localized Ni d states as in
MnO (Fig. 6). The spin-orbital occupancies and corresponding
Hubbard potential for the Ni d states are listed in Table II.

Our GW plasmon-pole calculation in Fig. 7(a) exhibits
considerable overlap between the O K-edge XAS and XES
spectra, due to the underestimated insulating gap. However,
the introduction of the Hubbard interaction (U = 8.0 eV)
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FIG. 7. (Color online) NiO O K-edge XAS (black) and XES (red)
experiment vs theory: (a) LDA + U calculation46 for O 1s EELS
using WIEN2K; (b) FEFF GW plasmon-pole (PP) self-energy; (c)
FEFF �U (E) with ab initio Hubbard correction with cRPA U =
8.0 eV; and (d) experiment.24 The vertical dashed lines are a guide to
the eye.
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TABLE III. Calculated Hubbard parameter U and gap � of MnO,
NiO, and LSCO.

Materials MnO NiO LSCO

U (this work) 5.4 8.0 10.0
U (Ref. 6) 4.7 5.2
U (Ref. 3) 6.9 8.0
� (this work) 3.9 4.4 1.4
� (Ref. 6) 2.6 3.8
� (Expt.24,49) 4.1 4.3 1.8

increases the gap, causing the prepeaks of both the XAS
and XES to split further apart, as shown in Fig. 7(c). For
comparison, we also show a WIEN2K LDA + U calculation
in Fig. 7(a) for the O K-edge EELS in NiO.46

Aligning the first peak of this calculation with experiment
[Fig. 7(d)], we observe an underestimation of the high energy
peaks at around 544 eV. These peaks can be attributed to
O p states which are strongly hybridized with Ni s and
p states. Similar behavior has been found in NiO,6,47 and
other TM compounds.46,48 We attempted to improve these
results by using a GW MPSE33 for NiO, while applying the
Hubbard correction to the Ni d states. This MPSE model
includes a more realistic treatment of inelastic losses than
the plasmon-pole model, and yields improved agreement with
experiment, as seen in Fig. 7(c). These results demonstrate
that an accurate treatment of the delocalized s-p states can
also be important in such systems. Thus in order to achieve
good agreement between theoretical and experimental spectral
features, a systematic consideration of excited state properties
including both localized and delocalized states is important.

In Table III we compare our cRPA calculated U and
estimated XAS-XES gap � with gap values reported by
others. Our values of U for MnO and NiO are in reasonable
accord with experiment and roughly comparable to those
of Refs. 3 and 6. Likewise our calculated values of � are
in good agreement with experiment for MnO and NiO, but
underestimated by 0.5 eV for LSCO. We have also compared
in Fig. 8 our total DOS for MnO calculated with our cRPA
U = 5.4 and J = 0.9 eV, with that of Ref. 6 calculated with
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U = 5.4 and J = 0.0. Despite differences in methodology and
the fact that the gap � can only be determined approximately
with a finite cluster RSMS approach, both methods are in
reasonable agreement.

B. LSCO

Understanding the doping dependence of high Tc cuprates
has become an interesting challenge in recent years. LSCO
(La2−xSrxCuO4), which is a prototype of hole-doped cuprates,
exhibits metallic and paramagnetic behavior at high doping,11

and becomes an AF insulator when undoped. Between these
limits, the system goes through a superconducting phase at the
doping concentration of about x = 0.15. A good description
of the electronic structure in its insulating phase is important to
understand the exotic doping dependent phase transformations
in such systems.

In the overdoped region with x > 0.2, LSCO becomes
paramagnetic, and is well described by a self-energy approx-
imation constructed from a single band Hubbard model.11

A Fermi-liquid description thus becomes more appropriate
for such systems. As doping is reduced, correlation effects
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FIG. 10. (Color online) (a) O spin up (solid red) and spin down
(solid blue) p-DOS of LSCO with cRPA U = 10.0 and (b) O spin
up (dashed red) and spin down (dashed blue) p-DOS with U = 0.0.
The vertical dashed line is at the Fermi energy.
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due to localized states become more important, and the
implementation of Hubbard U to the d electrons on the Cu
sites is seen to open a gap. A gap correction using �U (E)
on the partial d-DOS of Cu and p-DOS of O are shown in
Figs. 9 and 10. Our O K-edge XAS for �MP(E) and �U

with U = 10.0 eV are compared with experimental results
in Fig. 11. Our result with cRPA calculated U agrees well
with the undoped LSCO experiment, while the overdoped
LSCO system is reasonably reproduced by a GW MPSE
calculation alone (U = 0). This result is not surprising since
in the absence of the Hubbard term, the LDA does not predict
a correlation gap. As a result the system is predicted to be
metallic, mimicking the overdoped (x ≈ 0.3) paramagnetic
phase of La1−xSrxCuO4. A complete description of the doping
dependence of spectral features from overdoped (x = 0.3) to
undoped (x = 0.0) requires a dynamical self-energy correction
that incorporates pseudogap, superconducting, and Fermi-
liquid physics.50

IV. SUMMARY AND CONCLUSIONS

We have implemented Hubbard model corrections within an
LDA + U approach, using a rotationally invariant formalism

and an extension of the RSMS Green’s function method for
calculations of excited state electronic structure and x-ray
spectra of correlated materials. Our approach also builds in
a model GW self-energy. Both Hubbard model and dynamic
self-energy effects are incorporated in an effective self-energy
correction ��U . The Hubbard parameter U is estimated using
the cRPA method, again within the RSMS formalism. The
additional GW self-energy is approximated by a many-pole
model based on the electron gas Green’s function and the loss
function in the long-wavelength limit. These considerations
lead to a RSMS/��U approach which provides an efficient
way to account for correlation effects on x-ray spectra of
complex materials. The approach is advantageous for aperiodic
systems since it does not rely on symmetry or periodicity. The
method was tested on several correlated materials and found
to yield reasonable agreement for the observed experimental
band gap as well as the XAS and XES of MnO and NiO.
However, the agreement with experiment is less accurate for
more complex systems such as LSCO. This suggests the need
in such systems for a more comprehensive treatment of super-
conducting and pseudogap physics that incorporates doping
dependence in the underdoped regime.8,50 Overall, however,
our method explains the key features of the excited state
electronic structure and spectra of many strongly correlated
systems, and in particular the correlation gap. Finally we note
that our approach is limited to the quasiparticle approximation
and Hubbard model corrections, while inelastic many-body
effects such as satellites and charge-transfer excitations are
currently neglected.
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