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We present an approximation scheme for the treatment of strongly correlated electrons in arbitrary crystal
lattices. The approach extends the well-known dynamical mean-field theory to include nonlocal two-site
correlations of arbitrary spatial extent. We extract the nonlocal correlation functions from two-impurity Anderson
models where the impurity-impurity distance defines the spatial extent of the correlations included. Translational
invariance is fully respected by our approach since correlation functions of any two-impurity cluster are
periodically embedded to k space via a Fourier transform. As a first application, we study the two-dimensional
Hubbard model on a simple-cubic lattice. We demonstrate how pseudogap formation in the many-body resonance
at the Fermi level results from the inclusion of nonlocal correlations. A comparison of the spectral function with
the dynamical-cluster approximation shows qualitative agreement of high- as well as low-energy features.
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I. INTRODUCTION

Compounds with strongly correlated electrons1,2 are in the
focus of modern solid-state research. They usually contain
transition metal ions where part of the valence electrons move
in narrow bands or are nearly localized. Prominent examples
include high-temperature cuprate superconductors,3 frustrated
magnets,4 and heavy-fermion systems.5

Despite a large effort, various fundamental questions are
still open.2,5–7 The model system of a single transition metal ion
immersed into a metallic matrix has essentially been solved by
analytical8,9 and powerful numerical methods.10,11 However,
the more general case of regular crystal lattices with strong
electron correlations in or near a metallic regime is much more
difficult to handle. The large number of relevant electronic
states and the interplay of hybridization and interaction effects
makes it even difficult to identify relevant degrees of freedom
or arrive at low-energy effective models.

An understanding of electronic correlations lies at the heart
of most open problems in this field. Although the metallic
character of many materials lends hope to the hypothesis that
relevant interactions are screened and thus of short range, they
can, in principle, drive correlations over all ranges of spatial
distances.

Modern approaches12 focused on the dominant role of the
local Coulomb repulsion. In particular, dynamical mean-field
theory13 (DMFT) has proven to be very successful. It is capable
of describing lattice versions of the Kondo effect in a regime of
sizable local magnetic moments and provides valuable insights
to the correlation driven Mott-Hubbard metal-to-insulator
transition.14 These approximations have met with considerable
success concerning, for example, one-particle properties,15,16

or susceptibilities.17

However, many phenomena require the inclusion of non-
local correlations. Prominent examples are systems near
a quantum critical point18 or cuprate high-temperature
superconductors.3 In recent years, extensions of DMFT have

been put forward to remedy these shortcomings by the
inclusion of some spatial correlations between electrons.19 In
the cluster approaches, the problem is mapped to an effective
cluster of few lattice sites and, in analogy to DMFT, this
cluster is treated like a complex impurity in a dynamic external
field.

These approaches capture short-range correlations quite
accurately and have contributed considerably to the under-
standing of pseudogaps and shadow bands6,20–22 as well as to
the possible occurrence of quantum critical points.23,24

However, some problems remain in these theories. In cluster
DMFT25 (CDMFT), for example, the translational invariance
of the crystal lattice is not fully respected. The dynamical
cluster approximation26 (DCA) remedies this shortcoming, but
the question remains which choice for the size and geometry
of the cluster is advantageous.27 But the most fundamental
limitation is the restriction to rather short-ranged correlations.

In this paper we present a novel kind of self-consistent
approach to correlated lattice systems which is, in principle,
capable of including nonlocal correlations of arbitrary dis-
tance. It extends the well-known DMFT by the inclusion of
two-site correlations of all length-scales and is thus termed
nonlocal DMFT (NLD). These correlations are incorporated
by a mapping of the lattice model onto a multitude of
two-impurity Anderson models (TIAM), where the impurity-
impurity distance is varied. The translational invariance and
crystal symmetries are fully respected by this scheme.

The details of the mapping between lattice and two-
impurity models is presented in Sec. II. As a first application,
we study in Sec. III the two-dimensional Hubbard model
on a square lattice, a model which is usually considered
in connection with cuprate superconductors. We utilize
the recently developed two-impurity enhanced noncrossing
approximation28 as the two-impurity solver and analyze the
results obtained with respect to the quality of our novel lattice
approach and to their physical implications. A short conclusion
and outlook is given in Sec. IV.
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FIG. 1. Diagrammatic representation of Eq. (2).

II. SELF-CONSISTENT LATTICE THEORY

In order to introduce the ideas underlying our self-
consistent scheme, we restrict the following discussion to the
example of a single-band Hubbard model

Ĥ =
∑
k,σ

(ε + tk)ĉ†k,σ ĉk,σ + U
∑

j

n̂j,↑n̂j,↓. (1)

We use a mixed representation, where the kinetic energy is ex-
pressed in terms of band states with momentum k and spin σ =
{+,−} = {↑, ↓}, which are created (annihilated) by the oper-
ators ĉ

†
k,σ (ĉk,σ ). ε denotes the local single-particle energy, and

the dispersion tk is the Fourier transformation of the hopping
matrix elements tij between lattice sites i and j with lattice
vectors Ri and Rj , respectively. The lattice structure, i.e., the
type of lattice and topology of the hopping matrix elements, is
completely encoded into the dispersion relation tk . The interac-
tion energy characterized by the Coulomb matrix element U is
conveniently written in terms of local occupation number oper-
ators n̂j,σ = ĉ

†
j,σ ĉj,σ , which measure an electron on site j with

spin σ . The lattice constant a = 1 will serve as the fundamental
length scale and the spin index σ will be dropped whenever
possible without ambiguities. The extension of the approach
presented here to more general systems with multiple bands
and/or more complicated interactions can be readily obtained.

The fundamental quantity of interest is the one-particle
Green function, which obeys the Dyson equation,

Gk(z) = gk(z) + gk(z)tk(z)Gk(z), (2)

which is represented graphically in Fig. 1. The formal solution
is given by

Gk(z) = [gk(z)−1 − tk]−1. (3)

The correlated part

gk(z) = [z − ε − �k(z)]−1 (4)

incorporates the irreducible self-energy �k(z) and accounts
for the correction to the noninteracting system due to the
interaction term proportional to U in the Hamiltonian (1).
It describes the interaction-induced, i.e., correlated, part of
the propagation process, in which single-particle transfers via
elementary hoppings are excluded.

It is useful to rewrite the Dyson equation (2) in terms of the
lattice T -matrix Tk ,

Gk(z) = gk(z) + gk(z)Tk(z)gk(z), (5)

which is commonly defined via

Tk(z) = tk + tkGk(z)tk (6)

= tk

1 − gk(z)tk
. (7)

In the last equality, the explicit form of Eq. (3) is used.

Processes contributing to the irreducible self-energy �k(z)
can be grouped together according to the nature and degree of
correlations they contain. One contribution represents the exact
solution of an isolated interacting local site, which is repre-
sented by the “atomic” self-energy29 �̃(0)(z) = U

(z−ε)(1−〈n̂σ 〉)
z−ε−U〈n̂σ 〉 .

All other terms incorporate genuine lattice processes. Some of
these are captured by the well-known self-energy of the DMFT
approximation, which furnishes a k independent but dynamic
contribution �̃(1)(z). It incorporates loops through the lattice
attached at one site at which all local (dynamic) correlations are
fully respected. Beyond DMFT, correlations between two or
more of these loops are generated by interaction events at dif-
ferent sites and thus constitute nonlocal cumulant corrections.

Organizing these cumulant corrections according to the
number of different lattice sites they correlate, the correlation
function of Eq. (4) can be expanded as

g−1
k (z) = z − ε − �̃(0)(z) − �̃(1)(z)

− �̃
(2)
k (z) − �̃

(3)
k (z) − · · · . (8)

It is the aim of the present investigation to identify and calculate
the self-energy contribution �̃

(2)
k (z), which contains all nonlo-

cal correlations between any two sites of the lattice. While two-
site correlations are thus explicitly included in this scheme,
three-site and higher-order nonlocal cumulant corrections
�̃

(n)
k (z) with n � 3 are neglected. The function incorporating

these correlations, gk(z), will be extracted from solutions
of various two-impurity models where the impurity-impurity
distance is varied. Then, the Dyson equation (2), respectively
its solution, Eq. (3), is used to obtain the lattice Green function.

A. Mapping between the lattice and a set of two-impurity
models

In order to extract the function gk(z), which includes
two-site correlations, we consider a two-impurity Anderson
model30 (TIAM). The two magnetic impurities are immersed
with finite distance into a host with a noninteracting conduction
band. The Hamiltonian of one such general TIAM with a fixed
distance vector a is given by

Ĥ (2imp,a) =
∑

j={1,2},σ
εj ĉ

†
j,σ ĉj,σ +

∑
j,l,σ,σ ′

U
(a)
j l n̂j,σ n̂l,σ ′

+
∑
j,σ

t
(a)
j l ĉ

†
j,σ ĉl,σ +

∑
j,l

Ŵ
(a)
j l +

∑
k,σ

εkâ
†
k,σ âk,σ

+ 1√
N

∑
k,j,σ

(Vke
−ik Rj â

†
k,σ ĉj,σ + H.c.). (9)

The ĉ operators (â operators) describe local interacting
electrons on the impurities at positions Rj ∈ {R1,R2} (the
noninteracting conduction band electrons with momentum k)
with spin σ . The spatial distance between the two impurities is
fixed and given by a = R1 − R2. εj is the local single-particle

energy on each impurity site and U
(a)
lj are the Coulomb matrix

elements of the local (j = l) and nonlocal (j 	= l) density-
density interactions. The term proportional to t

(a)
j l is a possible

direct single-particle hopping inside the two-impurity cluster
and Ŵ

(a)
lj collects additional interactions as, for example,

exchange, pair hopping, or correlated hopping. The last term
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represents the hybridization between interacting electrons of
the two-site cluster and noninteracting band electrons.

The scheme proposed is capable of properly treating all
such terms in the Hamiltonian so that nonlocal Coulomb
interaction or long-ranged single-particle hopping matrix
elements can, in principle, be considered. For the present case
of the single-band Hubbard model, nonlocal Coulomb matrix
elements are not included and the single-particle hopping
coincides with that of the underlying lattice as specified in
the Hamiltonian of Eq. (1).

Since we are only interested in properties of the interacting
c electrons neither the hybridization matrix elements nor the
dispersion εk of the band electrons are directly of interest. Only
the effective medium for the two-impurity cluster is relevant
and is expressed in terms of these parameters as

T̃ (2imp,a)
a (z) = 1

N

∑
k

e−ik a
|Vk|2
z − εk

. (10)

It represents propagation processes via the noninteracting
conduction band in form of irreducible loops starting and
ending at the two-site cluster. In our truly self-consistent theory
for a lattice model, a corresponding effective medium T̃

(2imp,a)
a

has to be determined by an appropriate mapping between
the lattice and the two-impurity model. Therefore it becomes
dressed and takes into account repeated interactions on local
shells of other lattice sites.

A Dyson equation for the local two-impurity Green func-
tions is set up as follows:

G(2imp,a)

= g(2imp,a) + g(2imp,a)(t (a) + T̃
(2imp,a)

)G(2imp,a), (11)

where we used a matrix notation for the spatial components

A(2imp,a) =
(

A
(2imp,a)
0 A

(2imp,a)
a

A
(2imp,a)
−a A

(2imp,a)
0

)
. (12)

The correlated part g(2imp,a) represents the cluster cumulant

Green function and takes the interaction matrix elements into
account. The direct ∼t (a) and indirect hopping events via the

effective medium ∼T̃
(2imp,a)

are explicitly incorporated in
Eq. (11).

The Dyson equation (11) can be formally solved to yield

G(2imp,a)(z) = [
g(2imp,a)(z)−1 − t (a) − T̃

(2imp,a)
(z)

]−1
,

(13)

which apart from the matrix structure and the occurrence of the
hopping matrix t (a) has the same form as in the single-impurity

case.9

It is instructive to formulate the above equations in terms
of the full T matrix of the TIAM, thereby establishing an
equivalence to the lattice equations (5) to (7). The local Green
function can be expressed as

G(2imp,a) = g(2imp,a) + g(2imp,a)T (2imp,a)g(2imp,a). (14)

In contrast to the irreducible medium T̃
(2imp,a)

, the T matrix
incorporates repeated visits of the two-impurity cluster. The T

matrix is thus built up from irreducible loops, accounted for
by the inclusion of t (a) + T̃

(2imp,a)
for steps inside and outside

the cluster, and repeated dwellings inside the cluster, where
each visit contributes a factor g(2imp,a). It can be expressed as

T (2imp,a) = [(
t (a) + T̃

(2imp,a))−1 − g(2imp,a)
]−1

. (15)

A mapping between the two-impurity and the lattice model
is accomplished by connecting the irreducible correlation
functions ga(z) of both approaches. For each nonzero distance

vector a with solution g
(2imp,a)
a (z) of the two-impurity model,

we identify

ga(z)
!= 1

νa

g(2imp,a)
a (z) (a 	= 0) (16)

where the matrix elements [cf. Eq (12)]

ga(z) = 1

N

∑
k

e−ik agk(z) (17)

are the Fourier transform of the lattice correlation function of
Eq. (4) and νa the number sites that have a distance a = |a| =√∑

i a
2
i to a given site.

The prefactor 1/νa in Eq. (16) arises due to the restricted
phase space for scattering in the two-impurity model compared
to the lattice situation. In the two-impurity cluster, the
interaction-induced scattering always transfers the electron
from one site to the other at distance a. In contrast, in the lattice
the scattering process transfers an electron only in a fraction
1/νa of cases to one specific site with distance a = |a|.

There is some ambiguity for the correlation function with
zero distance a = 0. While in the lattice there is only one such
function, g0(z), there exist many such functions g

(2imp,a)
0 from

all the effective two-impurity models, one for each distance a.
Then the question arises, which of all these functions should
be chosen.

To this end, we take a constructive approach where we
start from a reference correlation function gDMFT(z) obtained
with the DMFT and add to it all additional correlations of
representative two-impurity clusters at different distances:

g0(z) = gDMFT(z) +
∑
|a|

[
g

(2imp,a)
0 (z) − gDMFT(z)

]
. (18)

The momentum-dependent correlation function of the lattice
theory is now given by the inverse Fourier transform

gk(z) =
∑

a

eik aga(z), (19)

which directly leads to the full lattice Green function via
Eq. (3).

As explained after Eq. (10), the effective medium T̃
(2imp,a)

in the framework of our self-consistent theory has to be
obtained from lattice quantities. This is achieved by identifying
the momentum-dependent T matrices of both models,

Tk(z)
!= T

(2imp)
k (z) =

∑
a

eik a T (2imp,a)
a (z). (20)
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The momentum-dependent T matrix Tk incorporates the
correct translationally invariant linear combination of two-site
propagations with a fixed distance. Inverting the Fourier
transform and using Eq. (7), we obtain the T matrix for a
two-impurity model with fixed distance a,

T (2imp,a)
a = 1

N

∑
k

e−ik a
tk

1 − gk(z)tk
. (21)

From this, the irreducible medium for the two impurity model
can be obtained by inverting Eq. (15) and inserting the known
expression for g(2imp,a).

Lattice and crystal symmetries are completely respected
in the present approach. Lattice-translational invariance is
incorporated by construction. Even though the two-impurity
models are solved for distances in real space, the correlation
functions g

(2imp,a)
a (z), which explicitly excludes single-particle

hopping, is periodized with the help of a Fourier transform to
yield the lattice correlation function gk(z). Crystal symmetries
are also fully respected since all the two-impurity models
for which the distance vectors ai are generated by point-
group transformations, have identical effective media and are
therefore identical. Point-group symmetries can even be used
to decrease the computational cost as only one representative
two-impurity model of such a group of symmetry-related
points needs to be solved. The solutions of all the others follow
by symmetry operations.

We conclude this section by summarizing the steps of the
calculation scheme:

(1) chose a set of Na representative distance vectors {ai}
with i = 1, . . . ,Na , one for each set of symmetry-related
distance vectors.

(2) Start with an initial guess for the effective media
T̃

(2imp,ai ) for each distance vector.
(3) Solve Na different effective two-impurity models, one

for each representative distance ai with the medium T̃
(2imp,ai ).

The result are Na (matrix) Green functions G(2imp,ai ) from

which the correlation functions g(2imp,ai ) are derived via the

inversion of Eq. (13),

g(2imp,a) = [
G(2imp,a)−1 + t (a) + T̃

(2imp,a)]−1
. (22)

(4) Map the correlation functions of the two-impurity
models to their lattice counterparts for fixed distances with
Eqs. (16) and (18). Fourier transform these gai

(z) via Eq. (19)
to obtain gk(z).

(5) Use gk(z) and Eq. (21) to get the two-impurity T matrix

T
(2imp,ai )
ai

for each distance vector ai . A new guess for the

effective medium T̃
(2imp,ai ) is obtained with the inversion of

Eq. (15),

t (a) + T̃
(2imp,a) = [

T (2imp,a)−1 + g(2imp,a)
]−1

. (23)

(6) Go back to step II A and iterate until convergence is
reached. One-particle spectra of the lattice are then obtained
from Eq. (3) in momentum space and the local function via a
Fourier transform.

An earlier approach of Schiller and Ingersent also
utilizes a two-impurity model to extend the DMFT to

include nonlocal correlations.31 However, there are various
differences to our approach. They consider an expansion in
the inverse spatial dimension 1/d and consequently employ
the two-impurity model only for one specific distance, i.e.,
nearest-neighbor sites only. Additionally, they identify the
irreducible self-energies [cf. Eq. (4)] of the lattice and the
two-impurity model. In contrast, we establish the mapping
between the lattice and the effective impurity models via the
correlation function ga . This represents a crucial difference,
since ga includes all propagation processes correlated between
the two sites via the interaction. Thus, it also incorporates
repeated interaction-induced scattering between two sites
that are excluded from the irreducible self-energy but need
to be accounted for in the lattice Dyson equation (2). An
important point concerns the incorporation of the explicit
hopping between nearest-neighbor sites t (a). In the present
approach, the single-particle transfers and free propagations
through the medium are explicitly separated from correlation
effects in both models, cf. Eqs. (2) and (11). This implies
for the two-impurity model the hopping to be incorporated
into the effective medium [see Eqs. (11) and (15)] and ensures
translational invariance. Additionally, any imbalance in the
treatment of inter and intracluster hopping in the two-impurity
model, as it occurs, for instance, in the CDMFT, is removed.

III. SELF-CONSISTENT SCHEME APPLIED TO THE
2d-HUBBARD MODEL

In this section, we present results for the two-dimensional
(d = 2) Hubbard model (1) obtained with the approximation
scheme described in the previous section. We focus on the
metallic regime at not too low temperatures. Long-ranged
magnetic order and superconducting states are thus excluded,
whereas magnetic correlations of finite extent and the pre-
cursor regime of a metal-insulator transition are included and
accessible.

For the solution of the two-impurity problems, we em-
ploy a solver based on direct perturbation theory in the
hybridization,11,32 which is an extension of the two-orbital
solver33 and which is described elsewhere.28,34 In contrast
to the usual noncrossing approximation35 (NCA), this two-
impurity enhanced noncrossing approximation includes vertex
corrections, which allow for the accurate description of finite
Coulomb repulsions.

As in the case of DMFT, the impurity solver to be used
with this scheme is arbitrary and exchangeable. An important
requirement for the two-impurity solver is that it needs to be
able to treat dynamic nondiagonal effective media T̃

(2imp,a)
a (z).

We study the Hubbard model on a two-dimensional simple-
cubic lattice with nearest-neighbor hopping only. The half
bandwidth D = 2dt = 4t is used as unit of energy and we set
kB = c = h̄ = 1. The noninteracting spectral function of this
system is shown in the inset of Fig. 2(a).

In order to investigate the influence of the nonlocal corre-
lations, we consider various stages of the scheme differing
in the maximum distance ‖a‖ to be incorporated into the
approximation. This distance is measured with a Manhattan
metric indicated by ‖.‖ reflecting the minimum number of
elementary hoppings between the two sites. For example,
the approximation denoted with NLD(1) includes only two-
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FIG. 2. (Color online) Comparison of the spectral function
of the two-dimensional (d = 2) half-filled Hubbard model on a
simple cubic lattice for various temperatures T and for different
levels of the nonlocal approximation: (a) DMFT, (b) NLD(1), and
(c) NLD(2). The parameters in all calculations are U/D = 1 and
ε = −U

2 = −D

2 . All curves are calculated with the two-impurity
enhanced noncrossing approximation as impurity solver. The inset
in (a) shows the noninteracting density of states.

impurity models of nearest-neighbor lattice sites, that is, the
set of distance vectors is given by a1 ∈ {(±1,0)T ,(0,±1)T }.
Accordingly, in NLD(2), this set is augmented with the four
next-nearest neighbor distances, i.e., the set of vectors is
a2 ∈ {a1,(±1,±1)T ,(±2,0)T ,(0,±2)T } and so on.

Figure 2 displays the local single-particle spectral function

ρ(ω) = − 1

π
Im

1

N

∑
k

Gk(ω + i0+) (24)

for three different temperatures and various stages of the
approximation. Figure 2(a) shows the usual DMFT solution,
while Figs. 2(b) and 2(c) show the NLD(1) and NLD(2)
spectral functions, respectively. The sequence of decreasing
temperatures reveals the development of the well-known
many-body resonance at the Fermi level μ = ω = 0 in
DMFT [see Fig. 2(a)] indicating the formation of low-energy
quasiparticles.16

The inclusion of nonlocal correlations by utilizing NLD(1)
leads to the formation of a pseudogap inside this resonance
[see Fig. 2(b)]. A further inclusion of next-nearest neighbor
correlations [see Fig. 2(c)] widens the gap and the side
peaks become more pronounced. We cannot definitely decide
whether or not a complete gap forms at zero temperature
(T → 0) where the spectral function vanishes at the Fermi
energy, as it was found in a recent two-site DCA calculation.36

Too low temperatures can not be investigated with our impurity
solver due to the violation of Fermi liquid properties.28,37

Additionally, in the high-energy part of the spectrum the
inclusion of additional neighbors seems to bring out more
of the van-Hove singularities at ω = ±D of the original
unperturbed (U = 0) spectrum [see inset of Fig. 2(a)].

Inclusion of additional sites with ‖a‖ > 2 into our NLD-
scheme does not produce considerable changes, at least for this
choice of parameters. This can be observed in Fig. 3, where
spectral functions for a fixed temperature T = 0.041D are
shown for various maximal distances up to ‖a‖ = 3, i.e., in-
cluding neighbors reachable by up to three transfer processes.
The changes become successively smaller and the curves from
NLD(2) and NLD(3) are already almost indistinguishable.

Our calculations clearly show the appearance of high side
peaks at the borders of the pseudogap. The existence of side
peaks in the low-energy spectrum is in accord with numerical
DCA results,20 where, however, large cluster sizes where
necessary to resolve gap and side peaks.

We would like to point out, that the side peaks in the
low-lying quasiparticle regime bear a strong resemblance to
what is observed in a related work28 for the TIAM. In our
opinion, we now find a coherent version of the splitting-
scenario described there: the direct and the induced effective
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FIG. 3. (Color online) Comparison of the spectral function for the
different levels of the NLD(i) approximation and T = 0.041D. The
two-site correlations included range from between nearest-neighbor
sites in NLD(1) up to all pairs of sites reachable by three elementary
hoppings NLD(3). Other parameters are as in Fig. 2.
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hopping generate bonding and antibonding molecular-like
orbitals amongst different sites. The strength of this strongly
depends on the crystal structure since the relevant effective
matrix elements vary and oscillate with distance.28 They are
also very sensitive to the position of the Fermi level, which
sets a scale for such oscillations. The phase-information and
coherence of electron propagations which is necessary for such
a splitting is fully incorporated into our approach according
to Eq. (21). These aspects also manifest themselves in the
sharpening of the high-energy features around ω ≈ D when
going from NLD(1) to NLD(2,3).

In addition to the bonding-antibonding splitting, an effec-
tive antiferromagnetic exchange Jt = 4t2/U between neigh-
boring sites is generated that leads to the suppression of
Kondo-like correlations. Both effects described above induce
a pseudogap and can lead to a splitting of the coherent
many-body resonance at the Fermi level. These cases could,
in principle, be distinguished as the splitting due to molecular
binding should be linear in |t |, while the magnetic singlet-
triplet splitting Jt is proportional to t2. However, our choice of
parameter values implies similar magnitudes for the hopping
t and the effective exchange Jt , and both effects should be of
comparable size here.

An interesting question is, whether the excitations in the
vicinity of the Fermi surface form a dispersive band or are
narrowly concentrated in k space. We show in Fig. 4 the
k-resolved spectral function

ρ(k,ω) = − 1

π
ImGk(ω + i0+) (25)

for k along the diagonal (1,1) direction in the Brillouin zone.
One still recognizes the original cosine form of a tight-binding
band via the positions of the peaks in the projection onto the
k-ω plane. However, these peaks develop a considerable width
with growing |ω|, which indicates that quasiparticle excitations
are not well defined away from the Fermi surface. Near the
Fermi level ω = 0, two distinct pairs of narrow peaks are
visible at wave vectors k ≈ ±π

2 (1,1)T . Even though very slight
remnants of these peaks are observable at neighboring wave
vectors too, their height is rapidly suppressed as k moves away
from ±π

2 (1,1)T . Since these maxima apparently furnish the
spectral weight of the flanks of the pseudogap observable, e.g.,
in Fig. 3, we conclude those side peaks to be rather localized in
k space. Thus they are a result of increasing lattice coherence
at decreasing temperature.

Remarkably, also near the band edges at k = 0 and k =
±π (1,1)T with respective energies ω ≈ ±D, rather narrow
peaks appear on top of the broad resonances connected with
the original band. Since they show up only if next-nearest
neighbors are included, i.e., in NLD(2) but not in NLD(1)
(and DMFT), we attribute them to next-nearest neighbor
correlations, possibly of magnetic nature. A participation of an
indirect binding effect due to the repeated action of the transfer
t , i.e., a molecular orbital-like effect, can also not be excluded
with our choice of parameters.

Up to now a symmetric situation 2ε + U = 0 was inves-
tigated in which a possible Mott-Hubbard gap as well as a
possible pseudogap in the low-energy quasiparticle regime
both were to open around the Fermi level. Both effects can
be separated and identified individually by moving away

from half-filling, i.e., with increasing doping. Equivalently, we
increase the Coulomb repulsion U beyond the value U = −2ε

and keep all other parameters fixed.
Calculations for such particle-hole asymmetric situations

are shown in Fig. 5. Panel (a) displays the formation of a
Mott-Hubbard gap at positive energies with increasing U

as calculated with the DMFT approximation. As expected,
the center of the incipient gap moves away from the Fermi
level by an amount proportional to U while the many-body
resonance remains pinned at the Fermi level. Figure 5(b)
shows results of NLD(1) calculations for the same values of U .
The Mott-Hubbard gap forms at positive energies in a similar
fashion as in the DMFT results of Fig. 5(a). Additionally, a
pseudogap emerges in the many-body resonance at the Fermi
level as it was already found in earlier work.20–24,38 Figure 5(c)
shows the effect of including more neighbors in our NLD(i)
scheme for fixed Coulomb interaction U . One again recognizes
the dominant role of nearest-neighbor correlations since the
spectra with i � 1 all differ considerably from the DMFT
result. The low-energy region seems to be converged for
i = 2, and the inclusion of next-nearest neighbors apparently
smoothes the spikes around the pseudogap.

In contrast, the inclusion of next-next-nearest neighbors
(i = 3) still has considerable impact on the high-energy

−π

−π/2

0

π/2

π -2 -1.5 -1 -0.5 0 0.5 1 1.5 2

0
1
2

Dρ(k, ω)(a )

k

ω/D

π/2

π -0.4 -0.2 0 0.2 0.4

0

1

2

Dρ(k, ω)(b )

k

ω/D

FIG. 4. (Color online) k-resolved spectral function obtained with
the NLD(2) for wave vectors along the (1,1)-direction, and for ε/D =
− 1

2 , U/D = 1, and T/D = 0.05. (a) shows the full energy interval,
while (b) displays a magnification of the energy interval around the
Fermi energy.
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FIG. 5. (Color online) Spectral functions for fixed ε = −D

2 and
temperature T/D = 0.05 for various U . (a) DMFT and (b) NLD(1).
(c) Spectral function for fixed U/D = 1.5 and different stages of
the approximation as indicated. The inset shows a close up of the
low-energy region around the Fermi level. The fillings corresponding
to the curves shown in (c) are nDMFT ≈ 0.90 and nNLD(i) ≈ 0.92.

features at negative energies, while at positive energies only
small differences are induced. This apparently indicates a
reduced hybridization and corresponding band narrowing for
states in the vicinity of the negative band edge. The importance
of lattice structure, coherence, and correlations for the possible
development of hybridization gaps and band splittings as
they were already discussed in the symmetric case is evident
from these results. The longer-ranged correlations also seem
to work in favor of restoring particle-hole symmetry in the
low-energy region [see inset of Fig. 5(c)], a phenomenon
which is also discussed in connection with the cuprate
superconductors.23,24,39

Figure 6 compares a NLD(3) spectral function for finite
doping and U = 1.5D with a spectrum obtained from a
DCA calculation as it was published in Fig. 5 of Ref. 24.

0

0.2

0.4

0.6

0.8

-2.5 -2 -1.5 -1 -0.5 0 0.5 1 1.5 2 2.5

D
ρ
(ω

)

ω/D

0.2

0.4

0.6

-0.4 -0.2 0 0.2

NLD(3) n = 0.92

DCA n = 0.95

FIG. 6. (Color online) Comparison of NLD(3) and DCA spectral
functions. The NLD(3) curve is the one shown in Fig. 5(c). The
DCA result is taken from Fig. 5 of Ref. 24 and was obtained from
self-consistent quantum Monte Carlo solution of a 16-site cluster for
U/D = 1.5 and T/D = 0.017. The filling for the DCA calculation of
nDCA ≈ 0.95 is slightly larger than the NLD(3) filling, nNLD(3) ≈ 0.92.
The inset shows an enlargement of the region around the Fermi level.

The qualitative features of both approaches nicely agree: the
humps and minima visible in the DCA spectra translate to
corresponding but more pronounced features in the NLD(3).
Given the different nature of the two approximations, this
provides additional evidence for the physical nature of the
observed structures.

The magnitude of the pseudogap is of the same order in both
approaches, although the DCA result is slightly larger and the
low-energy spectrum much more asymmetric. One reason for
this can be found in the enhanced two-impurity noncrossing
approximation as the two-impurity solver, which is known
to produce a too small many-body low-energy scale for the
SIAM. This is especially relevant for the low-energy region
and also translates to self-consistent approximations (see, e.g.,
Ref. 15).

The different temperatures of both calculations should not
be relevant for the qualitative features as T is already rather
low and further decreasing it will only slightly deepen the
pseudogap. However, a qualitative difference between the
two calculations is found in the different fillings, which, in
general, strongly influences the low-energy spectral function.
The analysis in Ref. 24 revealed that decreasing the filling from
nDCA ≈ 0.95 to ≈0.88 (for otherwise identical parameters)
leads to a spectral function that is nearly particle-hole
symmetric at low energies and does not exhibit a pseudogap.
In this light, the NLD(3) spectral function for nNLD(3) ≈ 0.92
with a nearly symmetric low-energy spectrum and a small
pseudogap represent a plausible intermediate solution.

IV. CONCLUSION

We have proposed a general and nonperturbative scheme for
the treatment of correlated electron systems on crystal lattices.
Our approach represents an extension of the well-known
DMFT to include nonlocal two-site correlations with arbitrary
spatial extent. The self-consistent formulation establishes a
mapping between nonlocal two-site correlations of the lattice
model and the equivalent functions of various two-impurity
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Anderson models with varying distance. The two-impurity
models are solved in real space, but the extracted correlation
functions are transformed into momentum space via a Fourier
transform. Thereby translational invariance is built into our
scheme by construction.

Most important, the spatial range of correlations, which are
explicitly included in the treatment is unrestricted, in principle.
It corresponds to the maximum impurity-impurity distance in
an effective TIAM, which is solved in our approach and is
therefore only limited by the accuracy of the two-impurity
solver.

As a first application, we applied our scheme to the Hubbard
model on a two-dimensional simple-cubic lattice. We found
that the leading nonlocal correlations produce a pseudogap
in the low-energy single-particle excitation spectrum as it
is to be expected.20–24,38 Moreover, pronounced side peaks
occur as a signature of increasing coherence. In a situation
without particle-hole symmetry, we could clearly discriminate
between the Mott-Hubbard gap induced by mostly local
atomic correlations and the pseudogap, which is found in
the many-body resonance at the Fermi level. We have also
demonstrated that the inclusion of correlations over larger
distances brings out more details of the excitation spectra in
the high-energy region.

Additionally, our method compares very well to results
from the DCA. The spectral functions of both approaches

exhibit similar qualitative features for finite doping, although
they are more pronounced in our scheme. Also, the pseudogap
obtained within both approaches is of the same magnitude.

The scheme presented opens an excellent perspective
for more detailed investigations of systems where nonlocal
correlations play an important role. These include phase
transitions and critical phenomena, in general, and quantum
critical points, in particular, as they are found, for example, in
heavy-fermion compounds or cuprate superconductors. Also,
the calculation of nontrivial critical exponents and their scaling
behavior40 seems to be in reach using this new approach.
In some cases, it will nevertheless be necessary to include
higher-order irreducible correlations beyond those between
only two sites. This will be of particular importance, when
complicated ground states involving correlations on plaquettes
of sites or general resonating valence bond-states are under
consideration.41
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