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Phase transition arising from the underscreened Anderson lattice model: A candidate concept
for explaining hidden order in URu2Si2
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We analyze a type of phase transition that appears in the spin-rotationally invariant form of the underscreened
Anderson lattice model and we obtain, with decreasing temperature, a continuous transition with the opening of
a gap. We suggest that this model might describe the “hidden-order” transition in URu2Si2. We also examine the
gaps that appear in the electronic dispersion relations of the bands of different orbital character and compare our
results with those found through photoelectron spectroscopy.
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I. INTRODUCTION

In 1985 it was found1 that URu2Si2 became superconduct-
ing below 0.8 K, and also that there was a large jump in the spe-
cific heat at 17.5 K. In 1986, transport, thermal, and magnetic
measurements2 on URu2Si2 produced compelling evidence
that the transition at 17.5 K produced a gap ∼10 meV which
spread across about 40% of the Fermi surface. Far-infrared
reflectance measurements3 provided direct evidence for a gap
with a magnitude between 5.6 and 7.5 meV which formed
below 17.5 K. Recent ultrafast spectroscopy measurements4

provided corroborating evidence for the existence of gaps of
5 and 10 meV, and scanning tunneling microscopy (STM)
measurements5 have shown the existence of 5-meV gaps.
Initially the transition was assumed to be of magnetic origin.
Inelastic neutron-scattering measurements6 showed evidence
for the existence of tiny ordered magnetic moments (of the
order 10−2 μB). However, subsequent pressure measurements7

showed that a transition to an antiferromagnetic state with
well-defined ordered moments (of the order 0.4 μB) occurs
above P = 0.5 GPa. The application of pressure was found
to have only a minimal effect on the transition temperature.
NMR measurements8 indicated that at zero pressure the system
was inhomogeneous, containing both paramagnetic regions
and regions of antiferromagnetism. It was confirmed that
the patches of antiferromagnetism can be created either by
impurity doping,9 or by stress fields in pure URu2Si2.10 Hence,
it is now thought that the origin of the transition at 17.5 K is not
due to the appearance of small moment antiferromagnetism,
although there is significant evidence that the transition is
produced by Fermi-surface nesting which is similar to that
found in the high-pressure Néel state.11–14 Since experiments
were unable to identify the nature of the order parameter,
the transition has come to be known as a “hidden-order”
transition. Over the 27 years that have elapsed since its
first discovery, there have been many theoretical15–18 and
experimental attempts to uncover the nature of the transition.
Some recent theories include descriptions of states with
rotational spin currents that break spin-rotational invariance
but not time-reversal invariance,15 modulated-spin liquid
states that break the C4 rotational invariance,16 states with
incommensurate hybridization density waves promoted by the

spin-independent coulomb interaction between the 5f and
conduction electrons,17 or unconventional spin-density wave
states where the order parameter has d-wave symmetry.18 The
present status of the field has been comprehensively reviewed
in Ref. 19.

In this paper, we shall examine the underscreened Anderson
lattice model which describes two itinerant 5f bands which
resonantly couple to a single conduction band. Like the
Anderson lattice model,20,21 which is a generalization of
a single-impurity model introduced to describe a magnetic
impurity in a metal,22 the underscreened Anderson lattice
model23,24 is a generalization of a model introduced to
describe the single-impurity underscreened Kondo effect.25,26

The model is generic and is not specifically tailored to the
electronic structure of URu2Si2.27,28

The underscreened Kondo or Anderson lattice model were
recently studied to describe the competition between ferro-
magnetism and the Kondo effect, which has been observed
in uranium and neptunium compounds.23,24,29 But in the
URu2Si2 compound, the Kondo effect is not involved in the
transition occurring at 17.5 K and we can use a simplified
mean-field treatment of the Anderson Hamiltonian at the
Hartree-Fock level. Moreover, as it will be explained later, we
can simplify the problem by taking a zero value for one of the
two d-f hybridization terms, without changing the physical
results. Thus in the present model, the f electrons interact
via local (spin-rotationally-invariant) Coulomb and exchange
interactions. We find that the system exhibits a competition
between magnetic ordering and a novel type of ordering. The
novel state corresponds to an inhomogeneous state with wave
vector Q and in which the 5f bands are mixed, in contrast the
normal state where the 5f bands have pure orbital characters.
However, the admixture is spin-dependent and, in certain
circumstances, corresponds to a broken gauge invariance of
the Hamiltonian. The type of correlation is best illustrated
in the limit of zero hybridization, where the correlation can
be described simply in terms of the 5f electron creation
operators corresponding to the two bands (labeled by α and β).
The correlation can be seen in the even-parity, broken-time-
reversal symmetry state constructed from products of operators
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of the type

(
αkf

†,α
k+Q,↑ + βkf

†,β
k,↑

)(
αkf

†,α
−k−Q,↓ − βkf

†,β
−k,↓

)
(1)

acting on a vacuum state |0 >, where the coefficients of the
operators are normalized to unity:

|αk|2 + |βk|2 = 1. (2)

It is seen that the mixed two-particle states and the correspond-
ing unmixed two-particle states (αk = 1, βk = 0) have pre-
cisely the same type of expectation values for spin-conserving
5f orbital single-particle operators, and likewise for the 5f

spin operators. The interference terms can only be measured
by a combined spin and orbital-sensitive measurement.

II. THE MODEL

The model describes two degenerate localized 5f bands
(labeled by χ = α,β), which acquire itinerant character by
direct hopping between neighboring 5f shells and the mixing
with one itinerant conduction band. The Hamiltonian is written
as

Ĥ = Ĥf + Ĥd + Ĥf d, (3)

where Ĥf describes the f electrons, Ĥd describes the itinerant
conduction band, and Ĥf d describes the hybridization. The
Hamiltonian Ĥf is given by

Ĥf =
∑
k,σ,χ

E
χ

f (k)nχ

f,k,σ

+
(

U

2N

) ∑
k,k′,q,σ,σ ′,χ,χ ′

f
†,χ
k+q,σ f

†,χ ′

k′−q,σ ′f
χ ′
k,σ ′f

χ

k′,σ

+
(

J

2N

) ∑
k,k′,q,σ,σ ′,χ,χ ′,

f
†,χ
k+q,σ f

†,χ ′

k′−q,σ ′f
χ

k′,σ ′f
χ ′
k,σ , (4)

in which the first term, proportional to E
χ

f (k), describes the
dispersion relation for the χ th 5f band while the second and
third terms describe the screened Coulomb interaction between
the 5f electrons in the same 5f shell. The third term contains
an interorbital exchange interaction which is required to make
the model spin rotationally invariant.30 Since we have selected
only two 5f bands, the model is not invariant under spatial
rotations.31 The conduction electron Hamiltonian Ĥd can be
expressed as

Ĥd =
∑
k,σ

ε(k)d†
k,σ dk,σ , (5)

where ε(k) describes the dispersion relation of conduction
electrons labeled by the Bloch wave vector k. The Hamiltonian
describing the on-site hybridization process is given, as usual,
by

Ĥf d =
∑
k,σ,χ

(
Vχ (k)f †,χ

k,σ dk,σ + V ∗
χ (k)d†

k,σ f
χ

k,σ

)
. (6)

The Coulomb interaction can be rewritten in the form

Ĥint =
(

U − J

2N

) ∑
k,k′,q,σ,χ �=χ ′

f
†,χ
k+q,σ f

χ

k,σ f
†,χ ′

k′−q,σ
f

χ ′

k′,σ

+
(

U

2N

) ∑
k,k′,q,σ,χ,χ ′

f
†,χ
k+q,σ f

χ

k,σ f
†,χ ′

k′−q,−σ
f

χ ′

k′,−σ

+
(

J

2N

) ∑
k,k′,q,σ,χ �=χ ′

f
†,χ
k+q,σ f

χ ′
k,σ f

†,χ ′

k′−q,−σ
f

χ

k′,−σ
.

(7)

To aid the analysis,we introduce the normalized non-Hermitian
operator ẑq,σ :

ẑq,σ = 1

N

∑
k

f
†,β
k+q,σ f α

k,σ . (8)

This product of operators provides a measure of the coupling
between the two types of f bands. The last line in the
interaction of Eq. (7) originates from the spin-flip term
which was required from considerations of spin-rotational
invariance.30 We also introduce the 5f orbital charge-density
operator via

ρ̂χ
q,σ = 1

N

∑
k

f
†,χ
k+q,σ f

χ

k,σ . (9)

It should be noted that the first term in the interaction Eq. (7)
can be expressed in terms of products of either ẑq,σ or of the
orbital density operators ρ̂

χ
q,σ .

We shall assume that the α and β bands are degenerate and
that Vβ(k) = 0. In this case, one can see that the Hamiltonian
is invariant under a gauge transformation of the β electrons,
which is independent of the gauge invariance of the α and
conduction electrons. This gauge symmetry is analogous to
the chiral gauge symmetry present in the massless limit of the
Dirac equation. It is important to note that taking Vβ(k) = 0
does not change the physical results but only simplifies the
calculations.

III. THE MEAN-FIELD APPROXIMATION

In the mean-field approximation, the interaction term in
the Hamiltonian is expanded in powers of the fluctuations of
bilinear products of operators:

�n̂
χ

f,σ = (
n̂

χ

f,σ − n
χ

f,σ

)
,

(10)
�ẑq,σ = (

ẑq,σ − zq,σ

)
,

where the hats have been dropped for the averaged quantities.
We have assumed that the average f electron occupation
numbers are translationally invariant (i.e., n

χ

f,i,σ = n
χ

f,σ ), but
we have retained the momentum dependence of the expectation
values of the non-Hermitian operators. The terms in the
Hamiltonian quadratic in the fluctuations are neglected. This
approximation reduces the Hamiltonian to an expression
quadratic in fermionic operators that can be diagonalized.
We shall assume that the average zq,σ is a nonzero complex
number for commensurate momentum transfers Q, where Q

could be any vector that is both on and normal to the Brillouin
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zone boundary. The assumption of a finite momentum transfer
corresponds to having an inhomogeneous state. However, the
inhomogeneous nature of this state is masked in either purely
spin-sensitive or purely orbital-sensitive measurements.

In the Hartree-Fock approximation, the temporal and spatial
Fourier transform of the single-electron f -f Green’s function
satisfies the equations of motion:(

ω − Eα
f,σ (k)

)
G

α,χ ′
ff,σ (k,k′,ω)

= δα,χ ′
δk,k′ + Vα(k)Gχ ′

df,σ (k,k′,ω)

+ κ−Q,σG
β,χ ′
ff,σ (k + Q,k′,ω),(

ω − E
β

f,σ (k)
)
G

β,χ ′
ff,σ (k,k′,ω)

= δβ,χ ′
δk,k′ + Vβ(k)Gχ ′

df,σ (k,k′,ω)

+ κ∗
Q,σG

α,χ ′
ff,σ (k − Q,k′,ω), (11)

where the Hartree-Fock f -band dispersion relation E
χ

f,σ (k) is
given by

E
χ

f,σ (k) = E
χ

f (k) +
∑
χ ′

[
(U − J )nχ ′

f,σ (1 − δχ,χ ′
) + Un

χ ′
f,−σ

]
,

(12)

and the gap parameter κQ,σ is defined as the complex number

κQ,σ = Jz−Q,−σ − (U − J )z−Q,σ . (13)

The mixed f-d Green’s function is found to satisfy

(ω − ε(k))Gχ ′
df,σ (k,k′,ω)

= Vα(k)∗Gα,χ ′
ff,σ (k,k′,ω) + Vβ(k)∗Gβ,χ ′

ff,σ (k,k′,ω). (14)

The above equation forms a closed set which is easily solved
when Vβ(k) = 0 and Q is commensurate with the lattice. The
solutions are given by

G
α,χ ′
ff,σ (k,k′,ω)

= [ω − ε(k)]

Dσ (k,ω)

[[
ω − E

β

f,σ (k + Q)
]
δα,χ ′

δk,k′

+ κQ,σ δβ,χ ′
δk+Q,k′

]
,

G
β,χ ′
ff,σ (k,k′,ω)

= Dσ (k + Q,ω)−1
[
κ∗

Q,σ [ω − ε(k + Q)]δα,χ ′
δk+Q,k′

+ ([
ω − Eα

f,σ (k + Q)
]
[ω − ε(k + Q)]

− |Vα(k + Q)|2)δβ,χ ′
δk,k′

]
, (15)

where the denominator Dσ (k,ω) is given by

Dσ (k,ω) = [(
ω − E

β

f,σ (k + Q)
)(

ω − Eα
f,σ (k)

) − |κQ,σ |2]
× (ω − ε(k)) − |Vα(k)|2(ω − E

β

f,σ (k + Q)
)
.

(16)

For completeness, we give the d electrons Green’s function

Gdd,σ (k,k′,ω) = δk,k′

Dσ (k,ω)

[(
ω − E

β

f,σ (k + Q)
)

× (
ω − Eα

f,σ (k)
) − |κQ,σ |2]. (17)

The zeros of the denominator Dσ (k,ω) yield the Hartree-Fock
quasiparticle dispersion relations for electrons of spin σ .

The quantity zQ,σ is determined from the expectation value
of the product of operators which are off-diagonal in the band
indices

z∗
Q,σ = 1

N

∑
k

〈
f

†,α
k,σ f

β

k+Q,σ

〉
, (18)

which can be related to the definition of the real-time Green’s
function for small negative times t = −η, where η → 0. Upon
expressing the real-time Green’s function in terms of its Fourier
transform and closing the contour in the upper-half complex
ω plane, as well as noting the pole structure of the Green’s
function, one finally arrives at the result

z∗
Q,σ = − 1

N

∑
k

[ ∫
C

dω

2πi
f (ω)Gβ,α

ff,σ (k + Q,k,ω)

]
, (19)

where f (ω) is the Fermi function and where the contour
C encloses the real axis. Since the f-f Green’s functions
involve zQ,−σ , the zQ’s must be determined self-consistently.
Furthermore, since the Green’s functions for 5f electrons
of spin σ with mixed band indices are odd functions of
zQ,−σ , the self-consistency equations have the trivial solution
zQ,σ = 0 ∀ σ , which corresponds to the conservation of the
number of electrons in the β band. We shall first consider the
trivial solution with zQ,σ = 0.

A. The normal state

The normal state is defined as that for which zQ,σ = 0 ∀ σ .
The single-electron Green’s functions for the 5f bands reduce
to

G
β

ff,σ (k,k′,ω) = δk,k′

ω − E
β

f,σ (k)
,

(20)

Gα
ff,σ (k,k′,ω) = [ω − ε(k)]δk,k′[

ω − Eα
f,σ (k)

]
[ω − ε(k)] − |Vα(k)|2 ,

in which the dispersion relation for the β 5f Hartree-Fock
quasiparticles is simply given by E

β

f,σ (k). The conduction
electron states are admixed with 5f states of α character and
their Green’s functions reduce to

Gdd,σ (k,k′,ω) =
[
ω − Eα

f,σ (k)
]
δk,k′[

ω − Eα
f,σ (k)

]
[ω − ε(k)] − |Vα(k)|2 .

(21)

The Green’s functions for the αth band can be recast in the
form

Gα
ff,σ (k,k,ω) = |A+

σ (k)|2
ω − E+

σ (k)
+ |A−

σ (k)|2
ω − E−

σ (k)
,

(22)

Gdd,σ (k,k,ω) = |B+
σ (k)|2

ω − E+
σ (k)

+ |B−
σ (k)|2

ω − E−
σ (k)

,
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where the dispersion relations of the hybridized Hartree-Fock
quasiparticle bands E±

σ (k) are given by

E±
σ (k) =

(
Eα

f σ (k) + ε(k)

2

)

±
√(

Eα
f σ (k) − ε(k)

2

)2

+ |Vα(k)|2. (23)

The f and d characters of the bands have weights given by
|A±

σ (k)|2 and |B±
σ (k)|2, respectively, where

|A±
σ (k)|2 = 1

2

⎡
⎣1 ±

[
Eα

f σ (k) − ε(k)
]

√[
Eα

f σ (k) − ε(k)
]2 + 4|Vα(k)|2

⎤
⎦ ,

|B±
σ (k)|2 = 1

2

⎡
⎣1 ∓

[
Eα

f σ (k) − ε(k)
]

√[
Eα

f σ (k) − ε(k)
]2 + 4|Vα(k)|2

⎤
⎦ .

(24)

The k dependence of the quasiparticle dispersion relations
and the form factors are sketched in Fig. 1. In the figure, the
energies are given in units of half the conduction bandwidth.
The 5f densities of states are shown in Fig. 2. Due to the
relatively small value of the hybridization (V = 1/10) and the
large value of the 5f bandwidth (Wf = 6/10) caused by f-f
hopping, the α and β 5f densities of states have quite similar
shapes at energies removed from the hybridization gap. The
hybridization gap is centered on Ef /(1 + Wf /2). It should
be noted that near the band edges, the shape of the band is
similar to that of the unhybridized bands, except for small
energy shifts of the order of |V |2.

Magnetic instabilities

In the Hartree-Fock approximation, the paramagnetic phase
is generally expected to retain its stability relative to mag-
netic states for small values of the Coulomb U and the
exchange J interactions. The dynamic spin susceptibility for
the Hartree-Fock state can be found from the equations of
motion in the random-phase approximation (RPA).32 The static
susceptibility found by setting ω = 0 shows a pole when

[
1 − Uχ

α,α(0)
f (q,0)

][
1 − Uχ

β,β(0)
f (q,0)

]
− J 2χ

α,α(0)
f (q,0)χβ,β(0)

f (q,0) = 0, (25)

which signals the instability to a spin-density wave with wave
vector q. In the above equation, the quantity χ

β,β(0)
f (q,0)

represents the response of the β band to a Weiss field and
is given by

χ
β,β(0)
f (q,0) = 1

N

∑
k

(
f

[
E

β

f (k + q)
] − f

[
E

β

f (k)
]

E
β

f (k) − E
β

f (k + q)

)
, (26)

FIG. 1. (Color online) (Upper panel) The three dispersion rela-
tions for the bands of the underscreened Anderson lattice model in
the normal state (schematic). The momentum k is taken to be along
the (1,1,1) direction. The upper [E+(k)] and lower [E−(k)] bands
are comprised of α 5f states hybridized with the conduction band.
The band in the center marked by the red curve (open circles) is the
unhybridized β band. (Lower panel) The 5f weights of the upper and
lower hybridized bands (|A±

σ (k)|2) are plotted as functions of k. The
β band has pure 5f character.

and χ
α,α(0)
f (q,0) is the reduced Hartree-Fock 5f spin suscep-

tibility for the α band which is given by

χ
α,α(0)
f (q,0) = 1

N

∑
k,±,∓

|A±(k + q)|2|A∓(k)|2

×
(

f [E±(k + q)] − f [E±(k)]

E∓(k) − E±(k + q)

)
. (27)

The quantity χ
α,α(0)
f (q,0) has the same form as the reduced

5f susceptibility found from an RPA study of the Anderson
lattice.21 Due to the Ef dependence of the form factors in
the α-band 5f electron density of states, the susceptibility
χ

α,α(0)
f (q,0) has a band Van-Vleck component in addition

to a modified Pauli paramagnetic term. Both Hartree-Fock
susceptibilities are always positive. It is expected that if the
β band is described in a tight-binding approximation, the
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FIG. 2. (Color online) The α and β components of the 5f density
of states per spin versus ω (solid lines), and nα

f and n
β

f electrons per
spin (dashed lines) as functions of μ, in which the Hartree-Fock
energies of the 5f orbitals have been kept constant. The simple
cubic tight-binding density of states has been approximated by a
semielliptical form.

reduced susceptibility χ
β,β(0)
f (q,0) may show a divergence at

the β-band nesting vector Q = (1,1,1) when μ approaches
the center of the band. In any case, it should be noted that the
magnetic instability is promoted by nesting the Fermi-surface
sheets that have the same 5f orbital characters.

B. The instability to a novel state

We will now introduce a novel state which is based on a
nonzero value of z∗

Q,σ given by Eq. (18). This new parameter
links the two f electrons of different orbitals α and β and
exists in the situation of the underscreened Anderson lattice
model, but not in the classical Anderson lattice model. This
model is used here since we are now discussing the case of the
uranium compound URu2Si2.23

The self-consistency condition for zQ,σ can be expressed as

z∗
Q,σ = −κ∗

Q,σ

1

N

∑
k

∫
C

dω

2πi

[ω − ε(k)]f (ω)

Dσ (k,ω)
. (28)

If the novel transition is second order, then at the transition
we expect that Fσ ∼ 0, so the above set of equations can be
linearized to yield[

1 − (U − J )χα,β,(0)
f,σ (Q,0)

]
z∗
Q,σ =−z∗

Q,−σ Jχ
α,β

f,σ (Q,0),

(29)[
1 − (U − J )χα,β,(0)

f,−σ (Q,0)
]
z∗
Q,−σ =−z∗

Q,σ Jχ
α,β

f,−σ (Q,0),

where

χ
α,β,(0)
f,σ (Q,0)

= 1

N

∑
k,±

|A±
σ (k)|2

(
f [E±

σ (k)] − f
[
E

β

f,σ (k + Q)
]

E
β

f,σ (k + Q) − E±
σ (k)

)
. (30)

The summand in χ
α,β,(0)
f,σ is manifestly positive. Hence, for

positive J we may have a state for which the z component
of the spin magnetization for each 5f band vanishes (i.e.,

FIG. 3. (Color online) The interband susceptibility χ
α,β(0)
f (Q)

(solid line) and the sum of the intraband susceptibilities χ
α,α(0)
f (Q) +

χ
β,β(0)
f (Q) (dashed line) as functions of μ, with fixed Hartree-Fock f

electron bands E
χ

f,σ (k). The unhybridized f and conduction-band
dispersion relations have been described within a simple cubic
tight-binding model.

n
χ

f,σ = n
χ

f,−σ ) and the spin-up with the spin-down dispersion
relations are identical, but for which zQ,σ = −zQ,−σ . For
negative values of J , one may have a paramagnetic solution
for which zQ,σ = zQ,−σ . If |zQ,σ | �= |zQ,−σ |, the system may
have a nonzero value of the z component of the magnetization.
We shall, henceforth, restrict our attention to positive J . The
critical value of J , Jc, at which this new phase may occur is
given by the expression[

1 − (U − Jc)χα,β,(0)
f,σ (Q,0)

][
1 − (U − Jc)χα,β,(0)

f,−σ (Q,0)
]

= J 2
c χ

α,β,(0)
f,−σ (Q,0)χα,β,(0)

f,σ (Q,0). (31)

It is seen that the novel transition is promoted by the Fermi-
surface nesting between the two bands with different 5f orbital
characters. In this aspect our theory bares a resemblance to that
of Dubi and Balatsky.17 However, in their case the hybridiza-
tion wave is driven by a spin-independent interaction, whereas
in our theory the transition is driven by the spin-flip part
of the Hund’s rule exchange and thus breaks spin-rotational
invariance. The interband susceptibility χ

α,β,(0)
f (Q,0) is shown

as a function of μ in Fig. 3. The graph determines the μ

dependence of the critical value of J−1
c at which the novel

state first becomes stable, when U = J . The figure also shows
χ

α,α(0)
f (Q,0) + χ

β,β(0)
f (Q,0) which, when U = J , determines

the critical value of J−1 required for the antiferromagnetic
instability. The magnetic susceptibility of the β band diverges
logarithmically when the Fermi surface approaches the perfect
nesting condition μ = E

β

f,σ (k) = E
β

f,σ (k + Q) at μ = 0.3.
The second peak originates from the α-band susceptibility.
This is expected since the hybridized α band follows a similar
dispersion relation to the β band, except it is split and shifted
by an energy of the order of |V |2 by the hybridization and,
therefore, should exhibit a similar structure at a shifted value
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of the chemical potential. The interband susceptibility shows
a similar nesting peak at an intermediate value of μ. The
graph indicates that the commensurate novel state may have
a narrow region of phase space where it is stable against
paramagnetism and Néel antiferromagnetism. The instability
criterion can be extended to incommensurate wave vectors q

by using the RPA. For an incommensurate transition, where
the band folding is not appropriate, one should see clear signs
of gapping in angle-resolved photoemission, at wave vectors
corresponding to the nesting of sheets of the Fermi surface
with different orbital characters. However, the gapping is
expected to produce a new branch that only has appreciable
intensity in the nested region of the Fermi surface. Since
the Néel antiferromagnetic state is expected to be produced
by intraband nesting, and since this model is characterized
by a close proximity of the intra- and interband nesting
vectors, it is expected that these two phases are competing
for the same regions of the Fermi surface. It should be noted
the role of nesting in the electronic structure of URu2Si2
has been investigated within the local density approximation
(LDA).27,28 The LDA studies27,28 have identified a commen-
surate nesting vector associated with the antiferromagnetic
phase and have also discovered the pure character of the
5f bands in the normal state. The underscreened Anderson
lattice model, although generic, captures these features. Our
description is also consistent with the interpretation of inelastic
neutron-scattering measurements.11,12 Hence, it seems highly
unlikely that this novel state will coexist homogeneously with
antiferromagnetism. This is consistent with the experimental
observations9 on URu2Si2. For U = J and a general value of
J away from the quantum critical value Jc, the temperature
dependence of the gap |κQ,σ (T )| has the usual mean-field
variation shown in Fig. 4. The calculated ratio of the gap
parameter to Tc of ∼2.25 should be compared with the
experimentally determined value5 of 2.9 ± 0.15. The result
shown in Fig. 4 is important for the comparison with the
compound URu2Si2. It supports our hypothesis that the change
occurring at 17.5 K is due to an opening of a gap resulting from

FIG. 4. (Color online) The temperature dependence of the gap
parameter |κQ,σ (T )| for a value of J = 0.128 and U = J . This value
of J is comparable to the assumed value of 0.6 for the 5f bandwidth
due to direct f-f hopping.

the underscreened band structure with a twofold degenerate 5f

level, as expected in uranium compounds.

IV. RESULTS AND DISCUSSION

The novel state is described by a nonzero value of the
complex order parameter ZQ, defined as the trace over spins
of a spin-dependent expectation value

ZQ = 1

2N

∑
k,σ

σ
〈
f

†,β
k+Q,σ f α

k,σ

〉
, (32)

which characterizes a type of spin inter-5f orbital-density
wave. Since this appears to be a second-order instability which
breaks a continuous gauge symmetry through short-ranged
interactions,33 there should be a branch of collective Goldstone
modes associated with it.34 However, unlike the case of
ordinary magnetic instabilities,32 the Goldstone modes are not
expected to be easily accessed via inelastic neutron-scattering
spectroscopy. Therefore, we shall outline the signatures of
the novel state that may be accessed in orbitally sensitive,
angle-resolved photoemission measurements.

In the novel state, the 5f quasiparticle dispersion relations
are modified and the orbital characters of the bands are mixed.
The dispersion relations and the 5f orbital characters of the
bands are shown in Fig. 5 for wave vectors along the nesting
direction. The weights for each character when summed over
the bands yield unity. It can be seen that the set of bands
containing the α character contains a pair of adjacent band
segments with disjoint dispersion relations which are quite
similar to those of the upper and lower hybridized bands of the
normal state. The 5f α intensities of this pair of band segments
grossly follow the same pattern as the intensities of the pair of
hybridized bands in the normal state. However, the individual
α weights of the segments do show sharp jumps in the regions
where gaps, either at the Fermi-surface gaps or above, are
found. It is the gapping of the Fermi surface that stabilizes the
novel state. A Fermi-surface gap occurs for |k| ∼ 0.48, and a
smaller gap above the Fermi-surface gap can be seen for |k| ∼
0.37. It should be noted that Fermi-surface gaps at k ∼ ±0.56
have been inferred from the experimental measurements of
Dakovski et al.36 In the momentum intervals enclosed by these
gaps, the dispersion relation marked by solid red triangles has a
gradual variation in intensity caused by the hybridization of the
5f α band with the conduction band. The set of bands with β

character contain two adjacent segments that, when combined,
resemble the pure β band of the normal state. The β weights
of these two adjacent segments form a (disjoint) curve that
remains almost constant over almost the entire Brillouin zone,
similar to the normal state. However, there are rapid changes
in the intensity for the k values where the energy gaps occur
between the consecutive segments. It is seen that the Fermi-
surface gaps for the β-character bands occur at k ∼ ±0.52,
which slightly differ from the k values for which the Fermi-
surface gaps occur in the bands with α character. This leads to
a double-gap structure seen in Fig. 6. It should be noted that
despite the gapping of the Fermi surface for the normal-state
derived bands, the occurrence of new bands that cross the
Fermi energy, albeit with reduced intensities, allows the novel
(mean-field) phase to be classified as metallic. This can be seen
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FIG. 5. (Color online) (Upper panel) A schematic close-up view
of the dispersion relations (filled markers) for the bands with α

character in the novel state and their 5f α weights (unfilled markers).
The wave vector k is directed along the (1,1,1) direction. The position
of the Fermi energy μ is marked by the arrow. The α intensities for
the various branches of dispersion relations are indicated by symbols
of the same type. (Lower panel) The dispersion relations for the bands
with β character and their 5f β weights are plotted as functions of k.

in the density of states shown in Fig. 7. For the commensurate
case considered here, the picture greatly simplifies if one folds
the Brillouin zone. Indeed, evidence of a modified periodicity
(such as from simple tetragonal to body-centered tetragonal)
in the “hidden-order” state of URu2Si2 has been inferred from
angle-resolved photoemission experiments.35

In summary, we propose that this concept of a spin-
interorbital density wave may describe the “hidden-order”
state of URu2Si2. The order parameter is complex, indicating
that the transition breaks a continuous gauge symmetry of
the Hamiltonian. The correlations in this state are not readily
accessible by purely spin or purely orbital measurements.
However, the novel state is produced by the nesting between
sheets of the Fermi surface with different (unmixed) orbital
characters. Furthermore, below the transition temperature, the
Fermi surface will gap at these points, leading to the formation
of small patches of dispersion relations that describe electrons

ω

FIG. 6. (Color online) The dispersion relations for the 5f α (black
line) and 5f β (red line) electrons along the (k,k,k) direction. The
widths of the lines are proportional to their intensities. The Fermi
energy μ is set at about 0.32 and is indicated by the horizontal line.
The α-dispersion relations shows the existence of a direct gap of
the order of 2|V | ∼ 0.2 between the two branches. For other wave
vectors, the α and β branches follow similar dispersion relations;
however, their degeneracy is lifted by a small energy of the order of
|V |2. Gaps at the Fermi energy are seen to occur at points which are
connected by the commensurate nesting vector Q = (1,1,1). (Figure
courtesy of T. Durakiewicz.)

with mixed orbital characters. The existence of two distinct
gaps with mixed characters of 5f states may be identifiable
through orbitally sensitive angle-resolved photoemission mea-
surements. Indeed, such gaps shifting states away from the
Fermi level at specific locations in the Brillouin zone have
been seen36 to evolve in the hidden-order phase of URu2Si2.
Since antiferromagnetism is favored by nesting between sheets
with the same (unmixed) orbital characters, and since the

FIG. 7. (Color online) The combined α 5f ρα(ω) and conduction-
band density of states for the ordered state as a function of ω. The β

5f density of states ρβ (ω) is also shown as a function of ω. It seen
that the gap structure associated with the novel ordering is highly
asymmetric.
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interband and intraband nesting points are close, the novel
ordering is expected to compete with antiferromagnetism, as
has been found to be the case for URu2Si2. Thus, we have
presented a new model starting from two 5f -localized bands
hybridized with a conduction band within the underscreened
Anderson lattice model. We have obtained an electronic struc-
ture with gaps which increase with decreasing temperature.
Our model can account for the opening of a gap observed
in a number of different experiments (including recent
photoemission measurements) in the hidden-order phase of
URu2Si2.
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