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We investigate the periodic Anderson model with k-dependent c- f mixing reproducing the point nodes of the
hybridization gap by using the dynamical mean-field theory combined with the exact diagonalization method.
At low temperature below a coherence temperature 7y, the imaginary part of the self-energy is found to be
proportional to T2 and the pseudogap with two characteristic energies A; and A, is clearly observed for T < Ty,
while the pseudogap is smeared with increasing T and then disappears at high temperature 7 = T, due to
the evolution of the imaginary self-energy. When the Coulomb interaction between f electrons U increases,
Ay, A,, and T, together with T, at which the magnetic susceptibility is maximum decrease in proportion
to the renormalization factor Z resulting in a heavy-fermion semiconductor with a large mass enhancement
m*/m = Z~! for large U. We also examine the effect of the external magnetic field H and find that the
magnetization M shows two metamagnetic anomalies H; and H, corresponding to A, and A, which are reduced
due to the effect of H together with Z. Remarkably, Z~! is found to be largely enhanced due to H especially
for Hy < H < H,, where the field induced heavy fermion state is realized. The obtained results seem to be
consistent with the experimental results observed in the anisotropic Kondo semiconductors such as CeNiSn.
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I. INTRODUCTION

In the heavy-fermion systems, f electrons hybridize with
conduction (c) electrons via the c- f mixing to form coherent
quasiparticles with large effective mass, which is due to the
effect of Coulomb interaction between f electrons at low
temperature, while at high temperature, f electrons are almost
localized and scatter c electrons resulting in the Kondo effect.'
The systems show various types of ground states including the
so-called Kondo semiconductor, which exhibits an insulating
behavior at low temperature with highly reduced energy gap.
With increasing temperature, the energy gap tends to be
smeared, and then the system shows the behavior of incoherent
metal at high temperature. Typical examples of the Kondo
semiconductors are SmBg,2 YbB1,,? and Ce;BisPt;,* which
have cubic crystal structures and possess well defined energy
gaps of the orders of 100 K as observed in the measurements
of the thermodynamic and transport properties.

Another class of the Kondo semiconductors such as
CeNiSn and its isostructural compounds with the orthorhom-
bic structure shows the behavior of anisotropic semiconductor
or semimetal.>'* The longitudinal NMR relaxation rate
1/T;'%12 and the Sommerfeld coefficient y7!'*!* are sup-
pressed below 10 K indicating the development of a pseudogap
in the density of states (DOS) at low temperature. Such
pseudogap behavior is well accounted for by the V-shaped gap
model with a residual DOS'? or the semimetallic model with
nodes in the gap.*® The V-shaped pseudogap in the DOS was
directly observed below 10 K in the tunneling spectroscopy.’!
As for the transport properties, the resistivity along the a-axis
pa decreases with decreasing temperature as expected by the
semimetallic model,*® while p;, and p. slightly increase below
3 K.” The inelastic neutron scattering experiments revealed the
existence of anisotropic magnetic excitations.'>~!7 Anisotropic
pseudogap properties were also observed in the magnetization
and the magnetoresistance.'8->" Despite the intense efforts, it
is still controversial whether CeNiSn has a zero DOS just at
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the Fermi level or a dip structure DOS around the Fermi level
within the experimental uncertainties.

A remarkable feature of the anisotropic Kondo semi-
conductors is the significant temperature dependence of
the pseudogap. In the tunneling?! and the photoemission
spectroscopies,”>?? the pseudogap in the DOS is clearly
observed at low temperature, while it vanishes at high tem-
perature. Such temperature dependent pseudogap cannot be
explained with a simple rigid-band model. Therefore the elec-
tron correlation effect is considered to be crucial for the
temperature dependence of the pseudogap together with the
large reduction of the gap width. More recently, possible long-
range ordered states in the anisotropic Kondo semiconductors
have also been extensively investigated with the effects of the
pressure’*? and the doping.?6-2

Many theoretical studies for the Kondo semiconductor have
been made on the basis of the periodic Anderson model
(PAM)*-3! with k-independent c- f mixing reproducing the
isotropic hybridization gap by means of various methods
such as the Gutzwiller approximation,®>3? the slave-boson
mean-field theory,>*-3® the noncrossing approximation,®’ the
1/N expansion®®*’ and the dynamical mean-field theory
(DMFT).*'~4 These studies have shown that due to the strong
correlation effect, the hybridization gap is highly reduced
to form a renormalized gap,>° which is clearly observed
at low temperature but disappears at high temperature.’’~**
A magnetic field induced insulator to metal transition has
also been observed at low temperature.*>*® The obtained
results are consistent with the experimental results observed
in the isotropic Kondo semiconductors such as Ce;BisPt; and
YbB ;.

As for the anisotropic Kondo semiconductors such as
CeNiSn, the k dependence of the c- f mixing is considered
to be important in addition to the strong correlation effect.
The k-dependent c-f mixing originates from the crystal
electric field (CEF) ground states of f electrons®*3'47 and
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yields the specific DOS with the pseudogap structure.*8-!

The PAM with the k-dependent c- f mixing has been studied
by using the Gutzwiller approximation*® and the slave-boson
mean-field theory,* which reproduce the highly reduced
pseudogap and well explain the thermodynamic and transport
properties of the anisotropic Kondo semiconductors at low
temperature. However, the temperature dependence of the
pseudogap, which is directly observed in the tunneling and
photoemission spectroscopies,?' >3 together with the magnetic
field dependence was not discussed there.

The purpose of this paper is to elucidate the effects of
temperature and magnetic field on the electronic states of
the anisotropic Kondo semiconductors. For this purpose, we
study the PAM with k-dependent c-f mixing by using the
DMFT which becomes exact in the limit of infinite spatial
dimensions and is expected to be a good approximation in three
dimensions. The DMFT is known to describe well the strongly
correlated electron systems over the whole parameter regime
of temperature, magnetic field and frequency, and has been
extensively developed for the PAM with k-independent c- f
mixing to describe the heavy-fermion systems and the Kondo
semiconductors.*'~# In the previous work, we have employed
the DMFT combined with the exact diagonalization (ED)
method for the PAM with the k-dependent c- f mixing and
have obtained the magnetic field dependence of the electronic
state which well accounts for the metamagnetic behavior
observed in CeRu,Si,.”> The present paper is a straight forward
extension of the previous work for the case with the anisotropic
Kondo semiconductors such as CeNiSn.

In this paper, we investigate the anisotropic Kondo semi-
conductor on the basis of the PAM with the k-dependent c- f
mixing at half-filling by using the DMFT + ED method.>?
The physical quantities are calculated systematically over the
wide parameter regime of temperature 7', magnetic field H
and Coulomb interaction U between f electrons. The paper is
organized as follows: in Sec. II, we present the Hamiltonian of
the PAM with the k-dependent c- f mixing and the formulation
of the DMFT + ED method. In Sec. III, we show the results
of the physical quantities for H = 0, the renormalized DOS,
the magnetic and charge susceptibilities, the renormalization
factor and the imaginary part of the self-energy as functions
of U and T. In Sec. IV, we present the H dependence of the
physical quantities, the magnetization and the renormalization
factor for various U and 7. In Sec. V, the paper is ended
with a summary together with discussions where the present
results are compared with the previous theoretical results and
the experimental results.

II. MODEL AND FORMULATION

A. Model Hamiltonian

Our model Hamiltonian of the PAM with k-dependent c- f
mixing:{‘”"‘&51 consists of the conduction electron term H,, the
f electron term H and the ¢- f mixing term H, as follows:

H:HC+Hf+HCv (1)

H. =" €ch, cra ©)
o
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Hf _Zef’”nlm+UZ l+ i—2 (3)

Hy =Y (Vino Flycro + Hee. ) )
kmo

where c,tm is a creation operator for a ¢ electron with the wave

vector k and the spin o = 1,1, fle is that for a f electron
with the lowest Kramers doublet state m = =+ at site i, and
nlfm = fle Sim- €k (€fn) is the energy for the ¢ (f) electron,
Vime 18 the c- f mixing matrix element and U is the Coulomb
interaction between f electrons. In Eq. (4), the effect of the
external magnetic field H is included only in the f electrons
as €y, = €; — mH, because the g value for the f electron is
known to be much larger than that for the c electron.

In this paper, we assume that the lowest Kramers doublet
state under the CEF is J, = £3/2, which is referred to as
m = = and the c electron state is simply given by the plane
wave. Such a model was originally developed by Ikeda and
Miyake to describe the electronic state of the anisotropic
Kondo semiconductors such as CeNiSn.*®

In this case, the c- f mixing matrix element is given by [see
Eqg. (A10) in Appendix]

(Vk+T Vk+¢> _v <—GY31(Qk) bY3 () ) 5)
Vier  Viey TN\ =bY32(Q)  a¥s_1(Q)
with a = 87” and b =,/ 2(;” , where Y,,(£2;) is a spherical

harmonics with the argument of the solid angle €2 of the wave
vector k, and V¢ is the ¢- f mixing strength defined in Eq. (A6)
in Appendix, which is a parameter in our model.

B. c- f hybridized bands for U = 0

In the noninteracting case with U = 0, the Hamiltonian
Egs. (1)-(4) with Eq. (5) is diagonalized to yield the c-f
hybridized bands with the energies,

ES = Yepm + e £ (€ m — ) + 41 6)

with [ = Za [Vino |2, where I, depends only on the z
component of the unit k vector, k. = k. /|k|, and is explicitly
given by [see Eq. (A13) in Appendix]

I = 3VZ (1 — k2) (1 + 15k2). (7)
Then, the hybridization gap between the upper and the lower
hybridized bands has nodes on the k, axis with k, = %1
resulting in a pseudogap structure of the DOS as shown in
Fig. 1, where two characteristic energies of the pseudogap
Ay and A, originates from the minimum of Iy at k, =0

and the maximum of I; at k, = + respectively. This

15’
pseudogap is found to well reproduce the anisotropic Kondo
semiconductor CeNiSn,*® where the characteristic temperature
dependence of the specific heat and the NMR relaxation rate
at low temperature is well accounted for by the pseudogap.
We note that the f electrons DOS at the Fermi level is finite
as shown in Fig. 1, and then, the resistivity shows a metallic
behavior at low temperature as observed in CeNiSn.*® This
is a striking contrast to the case with the k-independent c- f
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FIG. 1. The noninteracting DOS for f and c electrons p(e) and
pc(e)neare =0forU =0,€4, =0,V =0.5,and D = 2.

mixing that yields a finite hybridization gap reproducing the
isotropic Kondo semiconductor, where the resistivity shows
a semiconducting behavior at low temperature. Here and
hereafter, we assume the bare c-DOS to be a rectangular DOS
with the band width 2D centered at ¢ = 0.

C. DMFT + ED formalism

In the DMFT,*#%2 the lattice model is mapped onto an
effective impurity model embedded in an effective medium
which is to be determined self-consistently. To solve the
effective impurity model, we employ the ED method for a
finite-size cluster given by the following Hamiltonian,

lmp E EOmnOm“_ljno-‘rnO + E E €mMNim
m

+ Z Y (Vinayai-1m + He) 8)

where a,Tm is a creation operator for an electron with m = £
for the impurity site / = 0 and that for the effective medium
sites =1, ...,Ny; — 1, respectively, and n;,, = a;,nalm. U is
the Coulomb interaction between electrons on the impurity
site and is set to be the same value of U in the original lattice
Hamiltonian Eq. (3). A set of parameters {¢;,,,, V;;, } is so-called
Weiss field parameters (WFPs), which represents the effective
medium and is to be determined self-consistently.
In the noninteracting case with U = 0, the impurity Green’s
function is written with the WFPs as
-1

Vil
g,(zl(Zv) = |2y — €m — Z - s )

=1 2y €lm

where z, = i(2v 4+ 1)z T is the Matsubara frequency with the
temperature 7. For finite U, we solve the N,-site Hamilto-
nian (8) by using the Householder ED algorithm to obtain the
impurity Green’s function G,(z,) = [G%(z,)™' — Z,u(z,)]7!
together with the impurity self-energy %,,(z,). Then, the self-
consistency condition, where the impurity Green’s function
coincides with the local f electron Green’s function G',f, (zy) of
the original PAM in Eq. (1) with the same self-energy X,,(z,),
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(10)

is given by

1
Gf v) — — v m
@) =~ Xk: [z €r

. 1
INTICH RS>

Substituting Eq. (7) into G,’,‘;(zv) in Eq. (10), we obtain a more
explicit expression for G,{,(z) as

Xm(zy) —

m(Zv).

Gl(z) = ! + !
mn - T~ €rm — Em(Z) [Z —€fm — 2:m(Z)]Z
1ot ¢+ D
x 5/0 deIkln<§_ = D) (11)
with { =2y — ]k/[Zu - Efm - Em(z)]

In the explicit calculation to obtain the DMFT + ED
solution, the following procedures are carried out: (i) under
given WFPs {24, V°l4} ' the N,-site Hamiltonian (8) is solved
by using the Householder ED algorithm to obtain eigen values
and eigen vectors. (ii) From the eigenvalues and eigenvectors,
the self-energy X,,(z,) is calculated. (iii) Substituting ¥,,(z,,)
into Eq. (10), new WFPs {¢=",V,*"'} are determined so as to
satisfy the self-consistency condition Eq. (10) with Eq. (9) as
possible. The steps (i)—(iii) are iterated until the old and new
WFPs coincide with each other.

III. RESULTS for H =0

In this section, we show the U and T dependence of physical
quantities in the absence of the external magnetic field, H = 0.
We restrict ourselves only to the half-filling case with the
particle-hole symmetry, where we set € ; = —U/2 and the ¢
and f electron numbers per site are given by (n¢) = (n/) = 1.
In addition, we assume that the system is in the paramagnetic
state with (n +) (n ) = 5, and then the physical quantities
are independent of m. Here and hereafter, the parameters
are set to as follows: the half ¢ band width D = 2, the c- f
mixing strength V. = 0.5, and the site number of the effective
impurity model Ny = 6.5

A. Renormalized f-DOS

Figure 2(a) shows the renormalized f-DOS p/(e) near
the Fermi level ¢ =0 for several values of U at a low
temperature 7 = 0.001. In this calculation, we perform the
analytic continuation of the self-energy X,,(z) from the
imaginary frequency to the real frequency by using the Padé
approximation, and then substitute X, (e 4+ i0,) into Eq. (11)
to obtain p/(¢) = p;), (e) 1Ime(e +i04). When U in-
creases, the renormalized pseudogap with the renormalized
characteristic energies A, and A,, which correspond to A
and A, for U = 0 shown in Fig. 1, decreases together with
decrease in the quasiparticle band width resulting in the
highly reduced pseudogap accompanied by the heavy-fermion
bands for large U. We also find that the spectral weight
due to the quasiparticle bands decreases with decreasing the
quasiparticle band width, while that due to the broad peaks
corresponding to the Hubbard-like bands around €y = —U /2
and €7 + U = U/2 increases (not shown). We note that, as
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FIG. 2. (Color online) The renormalized f-DOS p/(¢) near the
Fermi level € = O for several values of U at T = 0.001 (a) and for
several values of T at U = 1.8 (b).

the self-energy %,,(z) is independent of k in the DMFT, p/ (0)
at 7 = 0 is unchanged by U and has a finite value (see also
Fig. 1) resulting in a metallic behavior at low temperature as
mentioned in Sec. II B.

One of the most remarkable features of the Kondo semicon-
ductor is that the gap structure largely depends on temperature
in contrast to the case with the ordinary semiconductor. In
Fig. 2(b), we plot the renormalized f-DOS p/(€) near the
Fermi level € = 0 for several values of T at U = 1.8. At
low temperature, we observe a clear pseudogap structure with
the renormalized characteristic energies A, and A,. With
increasing T, the pseudogap structure is found to be smeared,
and then finally disappears at high temperature above the
so-called coherence temperature 7y, where the 7' dependence
of p/(€) is mainly caused by the evolution of the imaginary
part of the self-energy ImX(¢) that becomes large for T 2 T
as explicitly shown in Sec. III C. Such T dependence of p/ (¢)
has been observed in the tunneling?' and photoemission?>??
spectroscopies for the Kondo semiconductors.

To see the renormalized characteristic energies A; and A,
more explicitly, we plot the energy derivative of the f-DOS
dp/ (€)/de for several values of U at T = 0.001 as shown in
Fig. 3. The two significant peaks of dp” (¢)/de corresponding
to A;/2 and A, /2 are clearly observed and found to decrease
with increasing U. In Fig. 4, the U dependence of A,
and A, are plotted together with the renormalization factor
Z calculated from the real part of the self-energy as Z =
Zy = (1 — LReX,(€)le=o)'. When U increases, A; and A,
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7=0.001

FIG. 3. (Color online) The energy derivative of f-DOS
dp”’ (€)/de for several values of U.

decrease with decreasing Z resulting in the highly reduced
pseudogap.

As mentioned in Sec. IIB, the pseudogap energies A;
and A, are given by the band energies with k, = 0 and
k. = 4.,/7/15, respectively. Then, A; and A, are expected
to be given by the corresponding energies of the renormal-
ized quasiparticle bands whose widths are reduced by the
renormalization factor Z. In fact, A; and A, are found to
be in good agreement with A;Z and A,Z, respectively, and
are highly reduced in proportion to Z < 1 for large U as
shown in Fig. 4. The highly reduced pseudogap observed for
large U is accompanied by the heavy fermions with the large
mass enhancement factor m*/m = Z~' > 1 resulting in the
heavy-fermion semiconductor with the nodal gap structure.

B. Magnetic and charge susceptibilities

In Fig. 5, we show the uniform and the local components of
the magnetic susceptibilities for f electrons x " and x°¢ as

functions of T for U = 0,1 and 1.5, where X;‘]“i is calculated
from the magnetization M = (nf:) - (nf ) in the presence of
uni

a small external magnetic field H = 0.01 as x2" = M/H and
Xo¢ is calculated from the eigenvalues and the eigenvectors

in the effective impurity model for H = 0 using the standard
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FIG. 4. (Color online) U dependence of the characteristic ener-
gies of the renormalized pseudogap A, and A, and the renormaliza-
tion factor Z together with A;Z and A;Z, where A, and A, are the
bare characteristic energies of the pseudogap.

linear-response formulation. We can see both of the magnetic
susceptibilities agree well with each other in the case with the
present model where the specific nesting vector responsible
for the strong k dependence of the magnetic susceptibility is
absent.

For U =0, ' (together with x.°°) shows a maximum
at a certain temperature T,,x which roughly corresponds to
A1/2 and is described by the Pauli paramagnetism with the
pseudogap structure of the f-DOS (see Fig. 1). As shown
in Fig. 5, x (xl°¢) is enhanced for U = 1 and 1.5 due to
the correlation effect resulting in an enhanced Pauli paramag-
netism at low temperature below the coherence temperature

Ty where the pseudogap structure of the renormalized f-DOS

FIG. 5. (Color online) T' dependence of the uniform and the local
components of the magnetic susceptibilities for £ electrons x" and
X forU =0and U = 1.
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X X U=4.0-v~
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U=2.0

U=1.0 =1

large U

FIG. 6. (Color online) T dependence of the local magnetic and
charge susceptibilities, x!°°(T) and x!°°(T), respectively, for several
values of U.

is observed [see Fig. 2(b)], and then, x'™ (x.°¢) shows a
maximum at Ty, ~ A;/2 due to the pseudogap structure.
On the other hand, at high temperature T > Ty, x"™ (x1°)
exhibits a Curie-law behavior x'" ~ x1°¢ ~ 1/T where the
f electron is considered to be almost localized and then the
pseudogap structure in the renormalized f-DOS is found to
disappear as shown in Fig. 2(b).

To see the correlation effect due to U systematically, we
plot the T dependence of x 1 for several values of U in Fig. 6.
When U increases, xfg“ increases to show the enhanced Pauli
paramagnetism at low temperature 7 < Ty together with the
Curie-law behavior at high temperature T > Tj, where A,
decreases with increasing U as shown in Fig. 4. In Fig. 6, we
also plot the 7' dependence of the local charge susceptibility for
f electrons x!°°, which is also calculated from the eigenvalues
and the eigenvectors in the effective impurity model using
the standard linear-response formulation. x!° monotonically
decreases with increasing U and is largely suppressed for large

U corresponding to the Kondo regime.

C. Quasiparticle lifetime

The quasiparticle lifetime 7 is known to be related to
the imaginary part of the self-energy as 1/2t = —ImX{0,).
To obtain ImX(i0,), we perform the analytic continuation
of the self-energy X, (z) from the imaginary frequency to
the real frequency by using the Padé approximation as
mentioned in Sec. IIT A. It is found that —ImX(i0,) obeys
the 72 dependence at low temperature below the coherence
temperature T and is well reproduced by a fitting function
co + (T / Ty)?, where cq the value at T = 0 expected to be
zero in the Fermi liquid theory and c is the value at T = Tj,.

In the present numerical calculation, ¢ is small (cy < ¢) but
finite due to the effect of finite size Ny, and is found to decrease
with increasing N; as approaching ¢o — Ofor N; — oo. Then,
the inverse lifetime is estimated as 1/27 = —ImX(i0) — ¢
and is plotted as a function of T for several values of U in
Fig. 7. We can see that 1 /2t thus obtained is in good agreement
with the fitting function 1/2t = ¢(T'/ Tp)? (dotted lines), where
we set ¢ = 0.04 above which 1/27 is found to deviate from
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FIG. 7. (Color online) T? dependence of the inverse lifetime for
several values of U. The dotted lines represent the fitting functions
1/2t = ¢(T/ Ty)* (dotted lines) with ¢ = 0.04 and the coherence
temperature 7y, which depends on U.

the 72 dependence and we determine Ty so as to fit 1/27 to
the fitting function as possible for each U. When U increases,
the coherence temperature 7; decreases in proportion to Z as
explicitly shown in the next section.

D. Characteristic temperatures

In Fig. 8, we plot the characteristic temperatures, Tax
obtained in Sec. IIIB and T, obtained in Sec. IIIC, as
functions of U together with the characteristic energies of
the renormalized pseudogap A and A, obtained in Sec. IIT A.
We can see that 7y monotonically decreases with increasing
U and is roughly proportional to Z for large U, where T ~
A ~ A\ Z (see also Fig. 4). Then, the T2 coefficient of the
inverse lifetime A = ¢/ T is proportional to Z~% = (m*/m)>*
for large U as expected from the Fermi liquid theory. We
note that, for small U, the inverse lifetime, i.e., the imaginary
part of the self-energy, can be obtained from the second-order

0.4 :

FIG. 8. (Color online) U dependence of the characteristic tem-
peratures Ty, and T together with the characteristic energies of the
renormalized pseudogap A| and A,.
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perturbation with respect to U and is proportional to U?, and
then Ty oc U~! as observed in Fig. 8.

At low temperature 7 < Tp, the imaginary part of the
self-energy is sufficiently small to obtain the well defined
quasiparticles, which yield the pseudogap structure of the
renormalized f-DOS as shown in Fig. 2(b). Therefore the
T dependence of the physical quantities such as y, is well
described by the quasiparticle band for T < Tj, where xp
shows a maximum at Tp,,x ~ Al/ 2, which is smaller than T,
due to the pseudogap structure of the renormalized f-DOS as
shown in Fig. 5. When U increases, Tp,x ~ A /2 decreases
in proportion to Z as A; ~ A, Z (see Fig. 4).

IV. RESULTSFOR H # 0

In this section, we examine the effect of the external
magnetic field H especially focused on the metamagnetic
behavior. Due to the particle-hole symmetry withey = —U/2,
the self-energy X, (z) is independent of m even for H # 0, and
then, Z, =Z_= 7.

A. Magnetization and differential susceptibility

Figure 9 shows the H dependence of the magnetization
M = (nﬂ:) - (nf ) and that of the differential susceptibility
dM/dH for several values of U and T'. At low temperature,
two metamagnetic anomalies in M are observed at critical
magnetic fields H = H; and H, as shown in Figs. 9(a)-
9(c), and the corresponding two sharp peaks in dM/dH are

: : : — 150
0.6|@MU=16 ] vEL @y dM
. el
I 100
0.4 /
[ g2 :’{'«
02t [H 30

0.02

FIG. 9. (Color online) H dependence of the magnetization M at
U=1.6(a),U =1.8(b),and U = 2.0 (c) and that of the differential
susceptibility dM/dH at U = 1.6 (d), U = 1.8 (e), and U = 2.0
(f) for several values of T'.
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observed at H = H; and H, as shown in Figs. 9(d)-9(f). We
find that the critical magnetic fields H, and H, are given by
the following relations: H; = Ai(H)/2and H, = Ay(H,)/2,
respectively, where A (H) and A,(H) are the renormalized
pseudogap energies whose values for H = 0 are shown in
Fig. 4 and largely depend on the external magnetic field H as
explicitly shown in the next section.

When U increases, A;(H) and A,(H) decrease for a
given value of H as explicitly shown in Fig. 4 for H = 0.
Therefore H; and H, decrease with increasing U as shown
in Figs. 9(d)-9(f). When T increases, the two metamagnetic
peaks in dM/d H clearly observed at T < T, are smeared,
and then, merge into a broad peak at Ty < T < Ty, where
Tmax and Ty are shown in Fig. 8. The metamagnetic behavior
finally disappears to show the monotonic M-H curve similar
to the case with the localized spins at high temperature T 2 Ty,
where the pseudogap structure disappears as shown in Fig. 2(b)
and the magnetic susceptibility shows the Curie-law behavior
as shown in Fig. 6.

B. Inverse renormalization factor

As mentioned in the previous subsection, the renormalized
pseudogap energies A (H) and A,(H) largely depend on
the external magnetic field H at low temperature. This is
mainly caused by the H dependence of the renormalization
factor Z(H) as A{(H) ~ Z(H)A, and Ay(H) ~ Z(H)A,. In
Fig. 10, we plot the H dependence of the inverse renormal-
ization factor Z~! for several values of U and T. At low
temperature, Z~! increases with increasing H for H < H,,
where it shows an abruptincrease at H = Hj, and shows a peak
for Hy < H < H,, and then decreases for H 2 H,, where it
shows a kink at H = H,. This H dependence is caused by
the pseudogap structure of the renormalized f-DOS p/(€) at
low temperature (see Fig. 2 for H = 0), where the f-DOS at
the chemical potential p/(0) is small due to the pseudogap
for H < Hj, while it shows an abrupt increase at H ~ H,
and becomes large for Hy < H < H,, and then gradually
decreases with increasing H for H 2 H,. Therefore the
correlation effect between the f electrons is enhanced due to
H especially for H; < H < H, resulting in the enhancement
of m*/m = Z~'. Then, we observe a remarkable field induced
heavy-fermion state for H; < H < H,.

When T increases, Z~! decreases for H, < H < H,, while
it increases for H < H; and H 2 H,. Therefore, the peak
structure of Z~!' with pronounced anomalies at H; and H»
clearly observed at low temperature T < Tpax is smeared
to show a broad peak around Hy S H S Hy at Tyox ST S
Ty, and then finally disappears to show the monotonically
decreasing function of H at high temperature T 2 Ty, as
similar to the case with dM /d H [see Figs. 9(d)-9(f)].

Finally, we plot the differential susceptibility d M /d H and
the inverse renormalization factor Z~! as functions of H for
various U at a low temperature 7 = 0.001 in Figs. 11(a)
and 11(b). At H = H,, dM /d H shows a sharp peak and Z~!
shows an abrupt increase, while, at H = H,, dM /d H shows
a cusp and Z~! shows a kink. For H; < H < H,, both of
dM/dH and Z~" are largely enhanced as compared to those
values for H = 0. Thus we find that the pseudogap structure
due to the point nodes of the hybridization gap in the PAM
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FIG. 10. (Color online) H dependence of the inverse renormal-
ization factor Z~! for several values of T at U = 1.6 (a), U = 1.8
(b), and U = 2.0 (¢).

is responsible for the remarkable field induced heavy-fermion
state accompanied by the metamagnetism.

V. SUMMARY AND DISCUSSIONS

In summary, we have investigated the PAM with the
k-dependent c- f mixing that reproduces the point nodes of the
hybridization gap simulating the pseudogap structure of the an-
isotropic Kondo semiconductors by using the DMFT + ED
method. The physical quantities have been calculated system-
atically over the entire range of the parameters: 7, U, and H.
What we have found are as follows: (1) at low temperature
below the coherence temperature Ty, the imaginary part of
the self-energy is proportional to 72, where the pseudogap
with two characteristic energies A, and A, is observed. The
magnetic susceptibility shows the enhanced Pauli paramag-
netic behavior with a maximum at T,,(<7) due to the
effect of the pseudogap. When U increases, A, A, Ty, and
Tmax decrease in proportion to the renormalization factor Z
resulting in a heavy-fermion semiconductor with a large mass
enhancement m*/m = Z~' for large U. (2) In the presence
of the external magnetic field H at low temperature 7 < Tp,
the magnetization M shows two metamagnetic anomalies H,
and H, corresponding to A, and A, that are reduced due to
the effect of H together with Z. Remarkably, Z~! is largely
enhanced due to H especially for H, < H < H,, where the
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FIG. 11. (Color online) H dependence of the differential suscep-
tibility dM/d H (a) and inverse renormalization factor Z~' (b) for
several values of U at T = 0.001.

field induced heavy-fermion state is realized. (3) When T
increases, the pseudogap together with the metamagnetic
anomalies is smeared due to the evolution of the imaginary
self-energy and finally disappears at high temperature 7 =
Ty, where the magnetic susceptibility shows the Curie-law
behavior.

The present DMFT results are consistent with the previous
results from the Gutzwiller approximation*® and the slave-
boson mean-field theory® at low temperature T < T, where
the renormalized pseudogap is clearly observed. On the other
hand, with increasing T, the deviation between the present and
the previous results increases appreciably due to the evolution
of the imaginary self-energy resulting in the smearing of the
pseudogap, and then, the discrepancy becomes significant at
high temperature T 2 Ty, where the pseudogap disappears in
the present study in contrast to the previous studies with the
rigid pseudogap structure.

In the previous DMFT studies, the PAM has been exten-
sively investigated in the case with the k-independent c-f
mixing*® where the fully opened hybridization gap A is
found to be highly reduced to a renormalized value A ~ ZA
due to the strong correlation effect. At the half-filling with H =
0, the Fermi level sits in the renormalized hybridization gap
resulting in the insulating ground state, i.e., the isotropic Kondo
semiconductor. When H increases, the DOS is split due to the
Zeeman splitting, and then, the Fermi level enters the upper
(lower) hybridized band of the majority (minority) spin above
a critical magnetic field H, ~ A /2 at which the field induced
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insulator-metal transition takes place.*’ Correspondingly, Z~!
is found to be almost independent of H below H,, while Z -1
shows a discontinuous increase at H = H,,* where the DOS
at the Fermi level changes from zero to a finite value and
then the correlation effect is enhanced. For H > H,, Z~!
monotonically decreases with increasing H as the Kondo effect
due to the local spin fluctuation is suppressed by the magnetic
field. At finite temperature, the discontinuous increase in Z~!
observed at T = 0 changes into a broad peak around H, due
to the thermal broadening effect.*¢

In the present PAM with the k-dependent c-f mixing
reproducing the anisotropic Kondo semiconductor, the Fermi
level sits in the dip of the DOS at the half-filling instead of
in the fully opened hybridization gap with the k-independent
c- f mixing. Therefore the DOS at the Fermi level is finite
even for H = 0 and increases with increasing H toward H;.
Correspondingly, the mass enhancement factor Z~! gradually
increases with increasing H toward H;, where the correlation
effect is enhanced due to the large DOS at the Fermi level.
This is the origin of the field induced heavy-fermion state in
the present model. For H > H;, Z~' gradually decreases with
increasing H as the Kondo effect is suppressed by the magnetic
field. We note that, in the present study, we concentrate only
on the particle-hole symmetric case, where Z,, is independent
ofm: Z, = Z_ = Z,even for finite H. In the case without the
particle-hole symmetry, the m dependence of Z,, for finite H
is considered to be significant. In fact, such m dependence
of Z, was obtained in our previous DMFT study for the
PAM away from the half-filling reproducing the heavy-fermion
metamagnetism.>?

Finally, we compare our theoretical results with the ex-
perimental results in the anisotropic Kondo semiconductors
such as CeNiSn. At low temperature 7 < Ty, the pseudogap
structure due to the k-dependent c- f mixing well describe
the characteristic T dependence of the physical quantities
observed in CeNiSn as previously obtained by Ikeda and
Miyake.*® In addition, the present results account for the T
dependence also at high temperature T 2 T, e.g., the Curie
law behavior of the magnetic susceptibility. Most significantly,
the T dependence of the f-DOS in the present results is
consistent with the experimental results from the tunneling?!
and photoemission®>?3 spectroscopies, where the pseudogap
structure is clearly observed at low temperature, while it
disappears at high temperature. The metamagnetic anomalies
at H; and H, are also consistent with the experimental
observations.'®?° More recently, the high magnetic field
measurements exceeding 50 T (see Ref. 20) have revealed that
the existence of a third metamagnetic anomaly at H3(> H;),
which has not been obtained in the present study. To discuss the
anomaly at Hj, the effect of the excited CEF levels, which are
not included in the present study, is considered to be important.
Therefore we need further investigations to describe the 7 and
H dependencies of the Kondo semiconductors by using more
realistic models including the excited CEF levels together with
the realistic band structure.
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APPENDIX: k-DEPENDENT c- f MIXING MATRIX

In this Appendix, we note the general expressions of the
k-dependent c- f mixing term.*’#*33051 Here, ¢ electron state
is a direct product of the plane wave state and the spin state

Xo(&) as

Vi (r,€) = (rélko) = ﬁe“"’xg(é)-

The plane-wave expansion around a position vector r is given
by

(AD)

R =dm Y il (k)Y O i)Y pg (0.0),
Pq

(A2)

where j,(kr) is a spherical Bessel function and Y,,(60,¢) is a
spherical harmonics with the argument of the solid angle €2,
of the vector r or 4 of the wave vector k. Therefore the ¢
electron wave function is described by

Vo (r,&) = j_nﬁeikki

307 k)Y ()Y g ()Xo (), (A3)
Pq

where r; is a vector from a site R;, r; = r — R;.

The f electron states are characterized by the localized
atomic orbital around a site R;. The LS coupling in the
Ce compounds splits the 14-folded wave functions to the
excited J = 7/2 octet and the ground J = 5/2 sextet. In
Ce compounds, the sextet in J = 5/2 are usually split into
three Kramers doublets by CEF. Each Kramers doublet |u)
is expanded with a linear combination of J multiplets as
below

J

Yu(rg) = (rElw) = Y (r&lTM)(J M),
M=—J
=Y bumtgo Rup(r)Y pg(0.9)x0 (),

Mgo

where R,,,(r) is the radial function with quantum number (72, p)
and aygy, = (npqo|J M) is the Clebsch-Gordan coefficient
and b,y = (JM|u) is a coefficient with the linear combina-
tion of some of | J M). Consequently, f electron wave function
around a site R; is described by

%L("if) = Z b;LMano'Rnp(ri)qu(Qr,-)Xa(E)v

Mqgo

where ay,, = —o,/7/2;”M8qM_% for the J =5/2 sextet.
By using the above wave functions, c-f mixing between

the states |ko) and |u) can be directly calculated as
below:

—ik-R (A4)

. 1 )
Vléua = <k0—|v|:u'> = ﬁe IVkM(T9

PHYSICAL REVIEW B 85, 165114 (2012)

where Vi, by

Vkua = V4r anp Z buMano' qu(Qk)v
Mq

Vi = m(—i)p/driV,-ij(kri)v(ri)Rnp(ri), (A6)

(AS5)

where the mixing strength Vi,, = Vs is a treated as a
parameter of our model. Thus the c- f mixing Hamiltonian
between the states |ko) and ) H.s is written by

Her =Y (Vo Chy fiw + Hee).

kuo

(AT)

In general, the J = 5/2 sextets are split into three Kramers
doublets except for the I'g state in the cubic CEF. When we
consider the only lowest Kramers doublets denoted by the
pseudo spin states 1 = %, the c-f mixing matrix Vj with
their elements Vi, scaled by V., is a 2 x 2 matrix, which is
written by

N 1 Varr Vit
Vi = . (A8)
ch Vk,¢ Vk,¢
For example, when p = £+5/2,
X — T Y5() 22 Y33(Qu)
Vi = , (A9
/Y3 /EY30(u)
and when u = +3/2,
X — FY51(0) B2 Y3(Qu)
Vi = ,  (A10)
VY@ /EY(Q)
and when u = +1/2,
X — FEY3(Q20) /1 Y30(Q0)
Vi = (A1)
—/ Y30/ EYa(Q)

The important quantity for the k-dependent c- f mixing is
I, as mentioned in the Sec. IIB, and these are written
by

A2
o= £5/20 = 2V2(1- k%), (A12)
po=£3/25 = V2 (1 —k2)(1+15k2),  (A13)
w=£1/20 = 3V2 (1 — 2k2 + 5k2). (Al4)
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