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Multiplet ligand-field theory using Wannier orbitals
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We demonstrate how ab initio cluster calculations including the full Coulomb vertex can be done in the basis
of the localized Wannier orbitals which describe the low-energy density functional (local-density approximation)
band structure of an infinite crystal, e.g., the transition-metal 3d and oxygen 2p orbitals. The spatial extent
of our 3d Wannier orbitals (orthonormalized N th-order muffin-tin orbitals) is close to that found for atomic
Hartree-Fock orbitals. We define ligand orbitals as those linear combinations of the O 2p Wannier orbitals which
couple to the 3d orbitals for the chosen cluster. The use of ligand orbitals allows for a minimal Hilbert space
in multiplet ligand-field theory calculations, thus reducing the computational costs substantially. The result is
a fast and simple ab initio theory, which can provide useful information about local properties of correlated
insulators. We compare results for NiO, MnO, and SrTiO3 with x-ray absorption, inelastic x-ray scattering, and
photoemission experiments. The multiplet ligand-field theory parameters found by our ab initio method agree
within ∼10% with known experimental values.
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I. INTRODUCTION

Many electronic properties of solids can now be described
ab initio thanks to the advent of powerful computers and the
development of ingenious methods, such as density-functional
theory1–3 (DFT) with local density4 (LDA) or generalized
gradient5 (GGA) approximations, the LDA + Hubbard U

(LDA + U ),6,7 quantum chemical methods,8–12 dynamic
mean-field theory,13–20 quantum Monte Carlo simulations,21,22

and exact diagonalization for finite clusters.22,23 Nevertheless,
for correlated open-shell systems with several local orbital
and spin degrees of freedom, electronic-structure calculations
remain a challenge.

Ground-state properties and spectral functions may be
calculated by exact diagonalization of the many-electron
Hamiltonian, but this is hindered by the exponential growth
of the Hilbert space with the number of correlated electrons
in the system. Exploiting symmetry and limiting the number
of correlated electronic degrees of freedom may enable the
treatment of relatively large clusters, as was done in the
important case of doped high-Tc cuprates, where symmetry
in the spin sector allowed Lau and co-workers to use clusters
with up to 32 CuO2 plaquettes, each with a single Cu dx2−y2 ,
and two O p orbitals.24 For local properties, such as excitonic
spectra, exact diagonalization for finite clusters becomes much
more appealing, as relatively small clusters often suffice.
Magnetic anisotropies, g tensors, magnetization-dependent
electron-spin resonance spectra, crystal-field excitations, and
a manifold of excitonic core-level spectra are usually well
described using very small clusters. For transition-metal and
rare-earth compounds, the cluster may often be limited to
merely a single d- or f -electron cation surrounded by its
nearest-neighbor ligands as illustrated in Fig. 1. For clusters
that small, exact diagonalization is equivalent to multiplet
ligand-field theory (MLFT), one of the earliest quantum-
chemistry methods developed to describe the electronic struc-
ture of transition-metal and rare-earth compounds.25 MLFT
is a highly cost-efficient method, able to account for many

of the local properties and excitonic spectra of correlated
materials.

MLFT calculations traditionally use parameters fitted to
experiments. Despite being a great help for understanding and
interpreting experimental results, this approach is, however,
not completely satisfactory and, over the years, numerous
theoretical studies have therefore been devoted to obtaining
MLFT parameters ab initio.26–41 Sugano and Shulman26

calculated the ligand-field parameters by constructing single-
particle molecular orbitals (MOs) as linear combinations of
atomic Hartree-Fock orbitals and thereby in several cases
obtained qualitative agreement with experiments. More often,
MO theory with a more complete basis is used.29,30 After
the LDA had proven useful not only for s and p, but also
for d and f electrons in solids,42 several authors obtained
MLFT parameters by performing an LDA calculation for
the cluster and using its Kohn-Sham MOs.31–37 Such a
calculation breaks the translation invariance of the crystal
already at the single-particle LDA level, and it is necessary
to remedy finite-size and surface effects, e.g., by embedding
the cluster in a set of point charges mimicking the rest
of the solid. Such procedures are not well controlled, e.g.,
depending on the details, the sign of the crystal field may
change.26–28

Here we use a different route to performing ab initio
MLFT calculations. Our procedure is similar to the method
originally devised by Gunnarsson et al.43,44 for obtaining the
parameters in the Anderson impurity model and, in the last
15 years, used extensively for dynamical-mean-field-theory
(DMFT) calculations for realistic solids (LDA + DMFT).16–20

We start our ab initio MLFT calculation by performing a DFT
calculation for the proper, infinite crystal using a modern DFT
code which employs an accurate density functional and basis
set [e.g., linear augmented plane waves (LAPWs)].45,46 From
the (self-consistent) DFT crystal potential we then calculate a
set of Wannier functions suitable as the single-particle basis for
the MLFT calculation.47–52 Since the members of such a set are
centered on either the transition-metal (TM) or ligand atoms,
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FIG. 1. (Color online) A NiO6 cluster used in multiplet ligand-
field theory (MLFT) as a local representation of the rocksalt face-
centered-cubic NiO solid. The Ni cation is surrounded by its six
nearest-neighbor O ligands.

we shall call them Wannier orbitals. Typically, they are the
TM 3d and oxygen 2p orbitals which, taken together, exactly
describe the DFT 3d and 2p bands. For the distinction between
italic and roman fonts for p and d orbitals, see Appendix A. In
general, the set should be minimal and span exactly all DFT
solutions in the energy range relevant for the property to be
calculated. It is important that this set contains sufficiently
many ligand orbitals to make the correlated TM orbitals well
localized, i.e., the TM d orbitals should not have tails on
any other atom. This localization allows one to restrict the
many-electron calculations of local properties to a single TM
site plus its ligand neighbors. Hence, in the current method,
there are no embedding errors, except those arising from
truncating the single-particle basis to include only the Wannier
orbitals on the cluster.

In the following we introduce the method by the example of
the late transition-metal oxide NiO with configuration 3d8. In
Sec. II, we show that similar results can be obtained for middle
and early transition-metal oxides, specifically 3d5 MnO and
3d0 SrTiO3.

In Sec. III, we compare with results obtained by several
different experimental techniques: (Sec. III A) 2p x-ray
absorption (XAS), a charge-neutral excitation of a transition-
metal 2p core electron into the 3d shell; (Sec. III B) 2p

core-level x-ray photoemission (XPS) from Ni impurities
in MgO; (Sec. III C) inelastic x-ray scattering (IXS) of
core to valence excitations, a technique similar to XAS; we
specifically show 3p core-electron excitations into the 3d

shell; (Sec. III D) inelastic x-ray scattering of d-d excitations.
The experiments presented for these materials are relatively
well understood, so that the comparison with our ab initio
results constitute a critical test of the theoretical method. At
the end of the paper, we give our conclusions. In Appendix A
we provide information on the different basis sets or Wannier
orbitals used, as well as the meaning of the different occupation
numbers and the concept of formal valence. Details of the
calculations, including numerical values of several MLFT
parameters obtained ab initio, may be found in Appendix B.
A discussion of the double counting of interactions in the
LDA and MLFT calculations may be found in Appendix C.
In Appendix D we show how ligand orbitals can be obtained
in general symmetry from the O 2p orbitals, with the use
of block tridiagonalization of the orbital basis set. This
is an essential ingredient which makes these calculation
numerically efficient. Appendix E contains a short note on
the exact diagonalization routines.

II. OBTAINING THE MLFT PARAMETERS FROM THE
LDA BY THE EXAMPLE OF NiO

In this section we introduce the ab initio MLFT method by
the example of NiO. We will discuss the different steps taken
in order to obtain the MLFT parameters. First we discuss the
LDA procedure used to obtain the potential, Wannier functions
and tight-binding parameters. Next we discuss the meaning
of the different one-electron parameters. In the last part of
this section we discuss many-body parameters, i.e., the Slater
integrals.

We start our ab initio calculations with a conventional
charge-self-consistent LDA calculation for the experimental
crystal structure. NiO has the rocksalt structure in which each
Ni atom is surrounded by six O atoms in cubic symmetry,
and vice versa. We used the linear augmented plane wave
method45,53 as implemented in WIEN2K.46 The resulting LDA
band structure is shown along the symmetry lines of the
face-centered-cubic (fcc) Brillouin zone in Fig. 2. It is not
very different from the band structure obtained and discussed
40 years ago by Mattheiss54 who used Slater exchange and
a non-self-consistent potential construction. The three O 2p
bands extend over 5 eV, from −8.2 to −3.2 eV below the
Fermi level. The five Ni 3d bands consist of three t2g bands
extending from −3.0 to −0.9 eV and two eg bands extending
from −1.4 to + 1.3 eV. The bottom of the Ni 4s band is 1.5 eV
above the Fermi level and at the � point. As pointed out by
Mattheiss, the reason why the 4s band is above the 3d bands
and thus empty, while it is half full in elemental Ni, is that
strong hybridization with the O 2p band pushes it up (and the
2p band down) in the oxide.

Within the LDA, NiO is a metal, in strong contrast to
experiments where NiO is found to be a good insulator with
a room-temperature resistance of ∼105 � cm and an optical
band gap of about 3.0–3.5 eV.55–57 This is one of the most
noticeable failures of the LDA. However, for the current paper,
this is not a problem. Although the LDA cannot reproduce the
correct electronic structure near the nickel atom, the minimal
set of localized Ni d and O p orbitals which together span the
low-energy solutions of Schrödinger’s equation for the LDA
crystal potential exactly, i.e., the 5 + 3 = 8 bands in Fig. 2,
is expected to constitute a good single-particle basis set for
many-body calculations.

In order to prevent double counting of the multipole part of
the Coulomb interaction, we constrain the self-consistent LDA
potential to be spherically symmetric inside nonoverlapping
muffin-tin (MT) spheres (see Appendixes B and C), but allow
it to be general in the MT interstitial; it is a so-called warped
MT potential. For this potential we generate a basis set of eight
localized TM d and O p orbitals per cell which span the eight
bands exactly. Since these bands do not cross any other bands in
NiO, this can be done by projection of the LDA LAPW Bloch
states onto Wannier functions choosing band- and k-dependent
phases which make the Wannier functions atom centered and
localized. For an oxide like SrTiO3, the TM d and O p bands
do cross and hybridize with other bands far away from the
Fermi level; near avoided crossings it is therefore not clear
onto which of the bands to project. Moreover, one might want
to go beyond perfect crystals. Rather then using projection,
we generate the minimal basis set of localized orbitals
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FIG. 2. (Color online) Left panel: NiO LDA band structure calculated with the large LAPW basis set (thin, black lines) and with the small
Wannier-orbital basis set consisting of three O p (green), three Ni d(t2g) (blue), and two Ni d(eg) (red) orthonormalized NMTOs per NiO
(thick colored lines). Colors are mixed according to the hybridization between the Bloch sums of the three kinds of orbital. The Fermi level
is taken as the zero of energy. Middle panel: Wannier-orbital projected densities of states. Right panel: The eight Wannier orbitals. Shown are
constant-amplitude contours containing 90% of the orbital charge with the color (red or blue) giving the sign. The Ni(O)-centered octahedra
have O(Ni) at their corners.

directly by using the N th-order muffin-tin orbital (NMTO)
method.47–49 This method solves the problem exactly by
multiple-scattering theory at N + 1 chosen energies, followed
by N th-order polynomial interpolation in the Hilbert space,
but only for a superposition of spherically symmetric short-
ranged potentials (to leading order in the potential overlap).
We must therefore first perform the overlapping muffin-tin
approximation58 (OMTA) to the warped MT potential, i.e.,
by least-squares minimization determine the radial shapes
of the overlapping potential wells and the common potential
zero.

The resulting basis set of five Ni d plus three O p NMTOs
per cell59,60 with the N + 1 = 2 energies ε0 = −5.2 and
ε1 = −1.2 eV produces the eight colored, thick bands in
Fig. 2. Within the width of the line they are indistinguishable
from the LAPW bands. Hence, the NMTO minimal basis set
for the OMTA to the warped potential is a highly accurate
representation of the large LAPW basis set for the low-energy
states, but many times more efficient. Our Wannier orbitals
are symmetrically orthonormalized NMTOs,47–49 and the
colors indicate the relative O p, Ni d

(
t2g

)
, and Ni d

(
eg

)
Wannier-orbital characters. The middle panel of Fig. 2 shows
the partial density of states projected onto these Wannier
orbitals. Compared with the commonly used projection onto
truncated partial waves inside a MT sphere, our projection
has the advantage of leading to well-defined occupation
numbers because it is onto a complete, orthonormal basis set
of localized, smooth orbitals. Our projection also takes care
of the O p (t1u) character which flows into the neighboring
Ni MT sphere due to the large size of the Wannier O p

orbital. In this regard, it should be remembered that a MT
sphere is not chosen to give a good representation of the
charge density, and hence of the occupied Wannier orbitals,

but of the potential. Since the latter has an envelope function
which for rocksalt-structured NiO is essentially the Coulomb
potential from equal but opposite point charges on identical
cubic sublattices, Ni and O have similar-sized MT spheres.
This makes it necessary for the wave functions resulting from a
MT-based method for solving Schrödinger’s equation, such as
the LAPW method, to carry the partial-wave expansions much
further than to p or d, typically to l ∼ 8, because the outer parts
of the O p orbitals, for instance, are being expanded around the
Ni sites. Nevertheless, with appropriately normalized partial
waves, projection of the density of states does give similar
results as with Wannier pd orbitals.

The eight Wannier orbitals wi (r) are shown on the right-
hand side of Fig. 2 as those surfaces where |wi (r)| = const and
which incorporate 90% of the charge,

∫
S
|wi (r)|2 d3r ≡ 0.9.

The red or blue color of a lobe gives its sign. As one can see, the
Ni d orbitals are extremely well localized. This is a necessary
condition for several many-body models which implicitly
assume such an orbital basis set, for example, the Hubbard
model which neglects all off-site Coulomb correlations. In
order to visualize the localization of the Ni 3d Wannier orbitals
at a more quantitative level, we computed the effective radial
wave functions for the t2g and eg orbitals by multiplying with
the corresponding spherical harmonics and averaging over all
solid angles. These radial functions are compared in Fig. 3
with that of a Ni atom in the d8 configuration as calculated
with the Hartree-Fock method.61 Although there are slight
differences, the agreement is astonishing. The local Ni d

Wannier orbitals in NiO are rather similar to atomic Ni wave
functions. Note that the atomic Ni d radial function depends on
the filling of the d shell, but is rather insensitive to the filling
of the 4s shell. The atomic radial function shown in Fig. 3
is calculated for a Ni2+(3d84s0) configuration, but would be
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FIG. 3. (Color online) Angular-averaged radial wave functions
R(r) for the Ni eg and Ni t2g Wannier orbitals compared with
the Hartree-Fock radial wave function for a Ni2+ ion in a 3d8

configuration. For Ni+ 3d8s1 and Ni 3d8s2, the radial functions
are similar. The distance to the nearest oxygen is 2.09 Å, which
is consistent with the sum of the ionic radii of 0.72 Å for Ni2+ and
1.40 Å for O2−. The inset shows the Slater integrals Eq. (1) for the
multipole Coulomb interactions.

practically the same for a Ni+ (3d84s1) or neutral Ni
(
3d84s2

)
configuration.

Since we have chosen not to include Ni s orbitals in the
minimal basis, it does not describe the high-lying, empty
Ni 4s band which has antibonding O 2p character. The
corresponding Ni 4s bonding character of the O 2p-like
band is, however, completely taken care of by including
(downfolding) the Ni 4s character into the tails of the O 2p

Wannier orbitals, as is seen in Fig. 2. In the bottom right-hand
panel one can see how Ni 4s character is added at the tip of
each lobe of the O 2p orbital, such that the outermost 4s radial
lobe expands the tip of the 2p lobe, while the remaining inner
radial 4s lobes of alternating sign cause the 2p lobe to tail
off in an oscillating manner. The shape of the O 2p Wannier
orbital is of course also influenced by the requirement that it
be orthogonal to the Ni 3d Wannier orbitals.

The NMTO method is particularly useful when a real-
space tight-binding representation of the Hamiltonian is
needed.17,20,43,44,50,52 Both the orthogonal Wannier functions
as well as the corresponding tight-binding representation of
the Hamiltonian in this basis set are directly available in the
NMTO formalism. Details on the NMTO method can be
found in previous publications47–49 and Appendix B. Here
we would like to stress that the Wannier orbitals used within
this paper are not constructed by maximally localizing the
Wannier functions,62 but their extent is a result of symmetry
constraints. This leads to orbitals that are not always maximally
localized, especially in the details of the tails of these orbitals.
The Ni d Wannier orbitals obtained by NMTO do show a
very large overlap with atomic orbitals, which might well be
larger than the overlap one might find between atomic orbitals
and maximally localized Wannier orbitals. It is the agreement
between our Wannier orbitals and atomic orbitals which makes
the method successful. An alternative method to obtain good
Wannier orbitals for correlated model calculations could be
to maximize the overlap of the Wannier orbital with atomic
orbitals.

Although only the Ni d bands in Fig. 2 are partly occupied,
inclusion of O p orbitals in the basis is important for describing
spectroscopy. In photoemission, for example, the removal of

a TM d electron can lead to a transfer of charge from the O to
the TM atom. This dynamical screening would not be captured
on a basis of only TM d orbitals. Multiplet crystal-field theory
(MCFT), i.e., local calculations using a basis of only TM d

orbitals, which have antibonding O p tails fixed to them, can
be useful in many other cases, for example for calculating
magnetic anisotropies. In this paper, however, we concentrate
on multiplet ligand-field theory and explicitly include the O p

orbitals in the basis set.
Until now, we have considered an infinite crystal and have

calculated the one-electron potential in the local-density and
warped muffin-tin approximations. For that potential we have
derived a set of localized O p and Ni d Wannier orbitals
which exactly describe the O p and Ni d bands, as well as the
corresponding tight-binding Hamiltonian. We now use these
orbitals and this Hamiltonian for the NiO6 cluster (Fig. 1).
The band structure thereby reduces to the O p-like π and σ

levels and the Ni d-like π∗ and σ ∗ levels shown in the central
part of the left-hand panel of Fig. 4, plus some O p levels
which do not couple to the Ni d levels and are therefore not
shown in the figure. For comparison, we repeat from Fig. 2 the
crystalline density of states projected onto the O p, Ni d(t2g),
and d(eg) orbitals. In the following we discuss the formation
of these simple cluster levels before we consider calculating
many-electron multiplets.

The NMTO Ni d Wannier orbitals have the on-site energies
εt2g

= −1.55 and εeg
= −1.05 eV with respect to the Fermi

level. Had the potential been spherically symmetric within the
range of the Ni d orbitals, the eg and t2g radial functions in
Fig. 3 would have been identical, and their levels degenerate
with energy εd = 3

5εt2g
+ 2

5εeg
= −1.35 eV. The crystal-field

splitting, 10Dq = εeg
− εt2g

= 0.5 eV, is basically due to the
fact that the eg and t2g orbitals point respectively toward and
between the nearest oxygen neighbors, which are negatively
charged. (The notation 10Dq for εeg

− εt2g
is standard in

MLFT.63) In the conventional ionic picture, two electrons
are transferred from each neutral Ni 3d84s2 atom to each
O atom, where they complete the 2p shell. Hence, the
crystal-field splitting would be the radial matrix element of
the nonspherical part of the electrostatic Madelung potential
proportional to r4{Y40(r̂) + √

(5/14)[Y44(r̂) + Y4−4(r̂)]} from
these ±2 charges. However, with the atomic radial function
shown in Fig. 3, which yields 〈r4〉 ≈ (0.71 Å)4, the splitting
is merely ∼0.3 eV, i.e., ∼0.2 eV too small, and this is even
an overestimate because the charge transfer from the 4s to
the 2p band is reduced by covalency. Note in passing that,
had we taken the anisotropy of the electrostatic potential to
be the one caused by the LDA charge density and the protons
outside the Ni MT sphere, we would have obtained merely
0.01 eV. This is so because the Ni MT radius of 1.10 Å is
larger than the Ni2+ ionic radius of 0.72 Å and thus cuts off part
of the oxygen charge density (remember that MT spheres are
designed to describe the potential and not the charge density).
Hence, the anisotropy experienced by the different angular
behaviors of the eg and t2g orbitals can at most account for
only half the calculated crystal-field splitting. Next, we turn to
the different radial behaviors (Fig. 3). These are mostly due
to the requirement that the Ni eg and t2g Wannier orbitals be
orthogonal to the nearest O 2p orbitals. The eg radial function
changes sign for increasing r , while the t2g radial function
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FIG. 4. (Color online) Left panel: Orbital energy-level diagram for the NiO6 cluster on the same energy scale as the LDA band structure
for the solid (Fig. 2) shown in the middle panel. The Fermi level is the zero of energy. Right panel: Constant-amplitude contours of the Ni d

Wannier orbitals and of the Ni-centered ligand orbitals. The latter are symmetrized linear combinations of the O p Wannier orbitals.

merely decays. At short distances (r � 0.7 Å), the normalized
eg radial function is therefore larger than the normalized
t2g function. Since the maxima of the two radial functions
occur where the radial potential vNi (r) + 6/r2 is huge and
negative, the higher eg maximum causes a lower potential
energy, opposite to what is needed to explain the size of the
crystal-field splitting. In the end, it turns out that the ∼0.5 eV
crystal-field splitting is not only a result of the potential acting
on the different angular and radial wave functions, but also due
to the kinetic energy. The eg orbitals overlap more with the O
p orbitals than do the t2g orbitals, whereby orthogonalization
increases the kinetic energy more for the former than for the
latter. For the calculation of the MLFT parameters it turns
out to be important to treat all these interactions on an equal
footing.

We now continue our explanation of the orbital energy-level
diagram in Fig. 4, this time starting from the on-site energy
εp = −4.74 eV of the O 2p Wannier orbitals marked on the
right-hand side. The ionic energy is thus εd − εp ≈ 3.4 eV.
Since we have chosen not to include Ni 4s orbitals in the basis
set, the bonding Ni s character has been downfolded into the O
p orbitals so that the −4.75 eV includes a downward shift of
about 1 eV from Ni s covalency. The NiO6 cluster contains 6 ×
3 = 18 O p orbitals, but not all linear combinations can interact
with d orbitals on the central Ni site. Hence, the basis set for
the MLFT calculations can be greatly reduced by including
only those linear combinations which do couple, the so-called
ligand (L) orbitals.25 The reduction of the Hilbert space by use
of ligand orbitals is crucial for efficient MLFT calculations
as is explained in more detail in Appendix D. For each TM
d orbital there is exactly one such linear combination. The
right-hand panel of Fig. 4 shows the five Ni d orbitals together
with the five Ni-centered L orbitals of the same symmetry.
There is an important difference between the L t2g and L eg

orbitals: Whereas the L t2g orbitals are bonding (the same
color) between nearest O p Wannier orbitals, and thus give

rise to a substantial O-O σ -like bond charge, the L eg orbitals
are antibonding (different colors). As a result, the energies of
the L t2g and eg orbitals are respectively Tpp = ppσ − ppπ

below and above εp.64,65

We finally complete the level diagram by including the
covalent hopping integrals Vt2g

= pdπ × 4/
√

4 = 2pdπ and

Veg
= −

√
3

2 pdσ × 4/
√

4 = −√
3pdσ ∼ 3pdπ (Ref. 66) be-

tween the L p and TM d orbitals of, respectively, t2g and eg

symmetry. The t2g hopping gives rise to an L p-like π and
a TM d-like π∗ level, and the eg hopping gives rise to an L

p-like σ and a TM d-like σ ∗ level. It is these π∗ and σ ∗ levels
which in the solid broaden into Ni t2g and eg bands. The σ ∗
level is close to the Fermi level in the LDA and this indicates
that the σ ∗ orbital is half full. The π , σ , and π∗ orbitals have
considerably lower energies and are fully occupied.

Our MLFT calculations include Coulomb correlations
beyond the one-electron mean-field potentials discussed so
far, but only among the TM d orbitals. Arguments for treating
the L p orbitals as well as their Coulomb repulsion with the
TM d orbitals at the LDA level are that the L p orbitals
are fairly delocalized and that they are almost fully occupied.
As an example, we can safely neglect correlation in an event
where two holes meet on a single oxygen atom and scatter.
The Coulomb correlations are responsible for the multiplet
structure, and we keep them among the Ni d orbitals, but make
a distinction between the spherical (U , �) and the nonspherical
repulsions.

The spherical part of the Coulomb repulsion, often
parametrized by U , is strongly screened in a solid. If a Ni
d electron is removed, there will be a charge flow into the Ni
4s orbital, for example, which reduces the energy cost of such
an excitation. Although several calculations of the screened
U have been presented in the past,44,67–77 we fit U such as to
obtain the best agreement between our MLFT calculation and
the experimental multiplet spectra.78,79 The parameter � is the
orbitally averaged (spherical) part of the difference between
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the on-site energies of the Ni d orbitals and the L p orbitals at
a filling of eight electrons in the Ni d shell. In the LDA, as well
as for the ground state found in our MLFT calculations, the Ni
d occupation exceeds 8 due to the covalency with the oxygens.
The relation between �, as defined in MLFT calculations, and
εd − εp, as obtained from the LDA, is rather nontrivial and we
shall therefore treat, not only U , but also � as an adjustable
parameter. In the foreseeable future, it should be possible to
calculate U and � from first principles.

The nonspherical parts of the Coulomb interactions we can
easily calculate because the multipole interactions between
two d electrons are hardly screened. For example, the Coulomb
repulsion between two dx2−y2 electrons is obviously larger
than that between a dx2−y2 electron and a d3z2−1 electron,
but to screen this difference requires electrons with high
angular momentum around the Ni site; a Ni 4s electron,
for instance, could not do it. Also electrons on neighboring
sites are inefficient in screening the multipole because it
decays fast (∝r−k−1). It has been shown that neglecting any
screening of the multipole part of the Coulomb interaction
gives reasonable agreement between theory and experiment.80

Also in the present work, we shall neglect any screening of
the multipole part of the Coulomb interaction and shall find
reasonable agreement with experiments.

Multipole interactions are the cause of the Hund’s-rule
energy. For example, two dx2−y2 electrons must have different
spins, whereas two electrons in different d orbitals, and hence
less repulsive, may be in a spin-triplet state, as well as in
the spin-singlet state. Experimentally it has been shown80

that the multipole interactions of the Coulomb interaction,
are reasonably well approximated by assuming that the d

orbitals have the pure-angular-momentum form: R (r) Y2m (r̂).
The inset in Fig. 3 is a table of the values of the Slater integrals
obtained using the Ni2+ ionic radial function R (r), as well as
the radial functions obtained by averaging the Ni t2g and eg

Wannier orbitals over solid angles. The Slater integrals for d

orbitals are

F (k) =
∫ ∫

rk
<

rk+1
>

R2(r1)R2(r2) r2
1 dr1 r2

2 dr2, (1)

where r< = min(r1,r2), r> = max(r1,r2), and k = 0, 2, or
4. The definitions of U and the Hund’s-rule exchange JH

vary: The average repulsion between two d orbitals is Uav =
F (0) − 14

441 (F (2) + F (4)). However, in order to discuss the
Mott gap, one uses the energy difference between the lowest
multiplets of different configurations and that has led to
the definition U = F (0) + 4

49F (2) + 36
441F (4). The Hund’s-rule

exchange can be defined either as JH = 1
14 (F (2) + F (4)) or as

JH = 2.5
49 F (2) + 22.5

441 F (4). The bare F (0) as calculated from the
Wannier orbitals is of the order of ∼25 eV. This is clearly
much too large because the monopole part of the Coulomb
repulsion is strongly screened. The values of F (2) and F (4)

are respectively ∼11 and ∼7 eV, in good agreement with
experimental values, as we shall see. The multiplet interactions
are quite large and lead to a multiplet splitting of the Ni d8

configuration of about 7.5 eV, which is the energy difference
between the 3F ground-state configuration and the highest
excited singlet of 1S character. This is larger than the Ni d
bandwidth and therefore not a small energy.

We will compare our results to several experiments,
including core-level spectroscopy. Once a core hole is made,
the interaction between the core and valence electrons becomes
important. Here again we will make a distinction between the
multi- and monopole interactions. The monopole interactions
U2p,3d and U3p,3d will, as for the valence states, be taken
from fits to experiment.78,79 For the multipole interactions,
i.e., the Slater integrals F 2

p,d , G1
p,d , and G3

p,d , we again assume
that screening can be neglected, which allows us to directly
calculate these integrals from the core and valence Wannier
orbitals. The core Wannier orbitals are equivalent to atomic
wave functions since they have no intersite overlap. It is
important to use a scalar-relativistic method for the calculation,
as well as to calculate the core wave functions for the final state
occupations, which requires an open-shell calculation. We
used an atomic Hartree-Fock code to obtain these core wave
functions,61 but any open-shell, scalar-relativistic method
should give similar results. Specific values of the Slater
integrals can be found in Table I in Appendix C.

We now have all ingredients needed to perform MLFT
calculations of experimentally observable quantities. But
before we do this, we will introduce similar ligand-field
calculations for MnO and SrTiO3. This allows us to compare
oxides of early, intermediate, and late transition metals and
show that the method is likely to apply to a range of correlated
transition-metal compounds.

III. NiO, MnO, AND SrTiO3

In Fig. 5 we show from top to bottom the LDA band
structures of NiO, MnO, and SrTiO3 calculated in the same
way as in Fig. 2 and explained in the previous section, with
details given in Appendix C. Whereas NiO and MnO have
the fcc rocksalt structure, SrTiO3 has the simple-cubic (sc)
perovskite structure in which the Sr cube has Ti at its body
center and O at its face centers; in MLFT we treat the TiO6

cluster. Going from NiO to MnO, the TM-electron and -proton
counts are both reduced by 3, whereby the d-band filling gets
reduced from d8 to d5. Concomitantly, we see that the 3d bands
move up in energy relatively to the 4s and O 2p bands, by about
1.5 eV. The p and eg bandwidths as well as the eg-t2g splitting
decrease, presumably due to the increased ionicity, εd − εp.

Going finally to SrTiO3, the TM-electron and -proton counts
are further reduced by 3, but due to the change of stoichiometry,
the nominal d-band filling is now reduced to d0 rather than to
d2. SrTiO3 is a band insulator and the LDA band structure
shown in the bottom panel agrees with the ionic configuration
Sr2+Ti4+(O2−)3: We see nine full O 2p bands separated by a
2 eV gap from the three empty Ti 3d(t2g) bands. The latter
are separated by a small gap from the two Ti 3d(eg) bands
which overlap the two Sr 4d(eg) bands and the bottom of
the Ti 4s band. The three Sr 4d(t2g) bands are pushed up in
energy by covalent pdσ interaction with the 12 nearest oxygen
neighbors50 and thus lie more than 8 eV above the Fermi level.
Due to the different structure and stoichiometry of SrTiO3, its
bands are quite different from those of NiO and MnO.

The agreement between the O p-like and TM d-like bands
obtained with the LAPW method and those obtained with the
minimal basis set of NMTOs is almost perfect for NiO and
MnO. The agreement is also satisfactory for SrTiO3, although
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TABLE I. Top panel: MLFT parameters obtained from LDA. The Slater integrals are obtained from the spherically averaged Wannier
orbitals. Lower two panels: One-electron tight-binding parameters as obtained from the LDA TM d O p Wannier-orbital set. The hopping is
from the first to the second orbital displaced by the vector [abc]. [000] denote on-site energies. Shown are only those values larger than 10 meV.
The bold numbers enter in the MLFT calculations; the normal font longer-range hopping integrals are truncated in the cluster approximation.
For the p-p hopping in the [001] direction of SrTiO3 the first two values listed concern hopping along an O-Ti-O bond. The last three values
concern O-O hopping in the Sr-O plane. The notation for the eg orbitals is such that dz2 ≡ d3z2−1 and dXY ≡ dx2−y2 . All values are in eV.

Veg
Vt2g

10Dq Tpp ζ3d F
(2)
dd F

(4)
dd ζ2p F

(2)
2p3d G

(1)
2p3d G

(3)
2p3d ζ3p F

(2)
3p3d G

(1)
3p3d G

(3)
3p3d

NiO 2.06 1.21 0.56 0.72 0.08 11.14 6.87 11.51 6.67 4.92 2.80 1.40 12.87 15.89 9.58
MnO 1.92 1.15 0.67 0.53 0.04 9.35 5.78 6.85 5.29 3.77 2.14 0.77 10.93 13.56 8.15
SrTiO3 4.03 2.35 1.79 0.99 0.02 8.38 5.25 3.78 4.23 2.81 1.59 0.43 9.85 12.08 7.35
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2
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2
1
2

1
2 ]

dz2pz dxzpx pxpy pypx pxpx pzpz dz2dz2 dXYdXY dxydxy dxzdxz dxzdyz dxydz2 dxypy dxypz dz2pz

NiO 1.19 −0.60 0.38 0.38 0.25 −0.10 −0.01 −0.08 −0.20 0.06 0.04 0.04 −0.03 −0.02 0.00
MnO 1.11 −0.57 0.28 0.28 0.19 −0.09 −0.04 −0.06 −0.26 0.08 0.05 0.04 −0.03 −0.02 0.02
SrTiO3 2.33 −1.18 0.42 0.34 0.24 −0.07 — — — — — — — — —

[001] [0 1
2 1] [11 1

2 ] [000]
pzpz pxpx pzpz pxpx pypy dz2dz2 dxzdxz dxypx dyzpz dz2py dz2pz dxzpx dxzpy dxypx εp εd

NiO 0.02 −0.04 — — — −0.01 −0.03 0.00 0.02 −0.03 0.00 0.00 0.00 0.00 −4.75 −1.35
MnO 0.05 −0.03 — — — −0.06 −0.05 0.00 0.02 −0.03 −0.01 0.00 0.00 0.00 −5.22 −0.39
SrTiO3 −0.01 −0.11 0.06 −0.02 −0.02 0.05 −0.13 −0.02 0.05 −0.03 0.00 −0.02 −0.01 −0.02 −1.53 3.31

near the bottom of the Ti t2g band, and at various places in
the O 2p band, small discrepancies may be detected. These
are most likely due to the OMTA causing a slightly inaccurate
description of the hybridization with the high-lying Sr 4d and
Ti 4s bands.

From the right-hand side of the figure, we see that for
all three materials the TM 3d Wannier orbitals are very well
localized. This is a necessary condition for using them in
MLFT. We do not show the O 2p orbitals as in Fig. 2, but had
we done so for SrTiO3, we would have seen not only bonding
Ti 4s character of the p orbital pointing toward Ti, but also bits
of bonding Sr 4d and 5s characters of the two other p orbitals,
which point toward Sr.50 The good localization of the Ti eg

orbitals is related to the feature seen in the left-hand panel
around 8 eV, that the NMTO Ti eg band interpolates smoothly
across the avoided crossing of the LAPW Ti eg and Sr eg bands.
Had this not been the case, the Ti eg Wannier orbitals would
have been long ranged. Hence, we can construct a minimal
set of localized NMTOs, even when bands described by the
set are crossed by and hybridize with other bands, provided
that we can choose the N + 1 expansion energies outside the
range of those other bands. For SrTiO3, we used ε0 = −2.6
and ε1 = 1.5 eV.

The 3d Wannier orbitals for the three oxides are very
similar; they merely contract along the 3d row of the periodic
table. This is seen when going from the bottom to the top in
the right-hand panel of Fig. 5, and even more clearly in Fig. 6
where we show the angular-averaged t2g Wannier orbitals. The
well-known reason for this orbital contraction is as follows:
Upon proceeding one step along the TM row, a proton and
an electron are added. The electron incompletely screens the
attractive potential from the proton seen by another valence
electron, and as a result, the one-electron potential becomes
deeper and deeper upon proceeding along the series, until
the d shell is full and the screening is complete. Since this
mechanism is atomic, the shapes of our 3d Wannier functions

are fairly robust and the chemistry merely changes tails—and
thereby normalizations—a little. This is what we saw in Fig. 3.
For that reason, the contraction seen in Fig. 6 of the t2g

radial functions—which are less influenced by O than the eg

functions—closely follows that of the 2 + ionic radii, which
are 0.72 (Ni2+), 0.80 (Mn2+), and 0.90 Å (Ti2+), in the sense
that at the respective radius, all three radial functions have
about the same amplitude. This happens although the Wannier
orbitals are calculated for the real solids, which in the case of
SrTiO3 have a Ti-O distance far smaller than expected from
the size of the Ti t2g function in Fig. 6. That the chemical
binding of SrTiO3 is different than those of NiO and MnO
also becomes clear by adding the accepted ionic radius of
O2− (1.40 Å) to the M2+ radii given above (M represents the
transition metal), obtaining 2.12, 2.20, and 2.30 Å for the
M-O distance in, respectively, NiO, MnO, and SrTiO3. The
real distances in NiO and MnO are nearly the same, but much
smaller (1.95 Å) in SrTiO3.

The short Ti-O distance is of course reproduced by
using the Ti4+ radius of 0.68 Å which corresponds to
the band-structure configuration Sr2+Ti4+(O2−)3 = Sr 4d0

Ti 3d0 (O 2p6)3. This ionic picture of the binding seems to
neglect the Ti-O and Sr-O covalencies predicted by the LDA,
i.e., the fact that there is a considerable amount of Ti 3d and
Sr 4d partial-wave character in the O 2p bands. But this is
only apparently so: The Ti 3d and Sr 4d radial functions
are essentially exponentially increasing because they solve
the respective radial Schrödinger equation for O 2p-band
energies, which are far below those of the Ti 3d and Sr 4d
bands. Hence, these partial waves simply complete the shape
of the O 2p Wannier orbitals inside the Ti and Sr MT spheres.

IV. COMPARISON WITH EXPERIMENTS

In order to test the quality of MLFT calculations using the
LDA Wannier orbitals, we now present a comparison between
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FIG. 5. (Color online) As Fig. 2, but for fcc
NiO (d8), fcc MnO (d5), and sc SrTiO3 (d0). On
the right-hand side, the oxygen orbitals are not
shown.

theory and experiment for several established spectroscopies,
which show TM excitons. Such locally bound states are
represented well within the small cluster used in the MLFT.
The materials considered, namely, NiO, MnO, and SrTiO3, are
insulators, thus justifying the theoretical methodology further.
NiO, MnO, and SrTiO3 have local ground states which are
well understood, and the spectra shown here have already been
explained in the literature. Different in the present paper is that

the MLFT parameters (except for U and �) are not fitted to
the experiment, but calculated ab initio.

In the following subsections we first discuss x-ray absorp-
tion at the L2,3 edge, which probes TM 2p to 3d excita-
tions. Next we show TM 2p core-level x-ray photoemission
experiments on an impurity system. Both 2p XAS and 2p

XPS excite the same core states and the difference is that
in x-ray absorption the electron is excited into the local 3d
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FIG. 6. (Color online) Angular-averaged TM t2g Wannier orbitals
in NiO, MnO, and SrTiO3. The distance to oxygen is 2.09 Å in NiO,
2.21 Å in MnO, but only 1.95 Å in SrTiO3.The ionic radii are 0.72
for Ni2+, 0.80 for Mn2+, 0.90 for Ti2+, but only 0.68 Å for Ti4+.

shell whereas photoemission excites the core electron into
vacuum states. The resulting spectra are very different. We then
continue with core excitations measured with inelastic x-ray
scattering. From a theoretical point of view, inelastic x-ray
scattering of core to valence excitations and x-ray absorption of
core to valence excitations is very similar. The initial and final
states probed are the same. The difference is that whereas x-ray
absorption is mainly caused by dipole transitions, inelastic
x-ray diffraction is caused by multipole transitions determined
by the length of the transferred momentum. Finally, in the last
subsection, we show inelastic x-ray scattering of d-d excita-
tions in NiO. These spectra are particularly instructive as they
allow for a relatively straightforward understanding of how the
different interactions contribute to each multiplet excitation.
For pedagogical reasons we provide a brief introduction to each
of the experimental techniques. A more thorough description
of these techniques can be found in textbooks, e.g., those by
De Groot and Kotani,81 Stöhr,82 and Schülke.83

A. L2,3 edge x-ray absorption

X-ray absorption spectroscopy at the TM L2,3 edge is a
technique whereby a TM 2p core electron is excited into the
3d valence shell. The excitation energy is in the x-ray range and
varies from ∼440 eV for Ti to ∼855 eV for Ni. The excitations
are dipole allowed, which make them so intense that spectra
with very little noise can be obtained. The spectra split into two
sets of peaks, the L3 and L2 edges, due to spin-orbit coupling
in the TM 2p core hole. This results in a 2pj=3/2 level (L3

edge) lying 3
2ζ2p above a 2pj=1/2 level (L2 edge). For core

levels the relativistic spin-orbit coupling is strong and element
dependent: ζ2p = 3.78 eV for Ti, 6.85 eV for Mn, and 11.50 eV
for Ni. Hence, in Fig. 7 we see the L3 and L2 edges at 640 and
650 eV for MnO, and at 852 and 870 eV for NiO.

For SrTiO3,
3
2ζ2p is of similar size as the 2p-3d multiplet

splitting, i.e., the L2 and L3 edges overlap. The splitting
within an L2 or L3 edge is due to the combined interaction
of covalent ligand-field effects and Coulomb interactions
between the 3d electrons and between the 2p core hole and
the 3d electrons. This leads to the relatively involved spectra
with many features as seen in Fig. 7. Even for SrTiO3 where
one might be tempted to relate the four intense peaks in the
2p XAS spectrum to excitations from the 2pj=3/2 or 2pj=1/2

orbitals into either the t2g or the eg orbitals, the intensity ratios
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FIG. 7. (Color online) Comparison of the experimental (thick red)
and MLFT (thin blue) TM 2p (L2,3 edge) core-level x-ray absorption
spectra for SrTiO3, MnO, and NiO. The experimental SrTiO3 spectra
are reproduced from Uehara et al. (Ref. 84), the MnO spectra from
Csiszar et al. (Refs. 85 and 86), and the NiO spectra from D. Alders
et al. (Ref. 87).

4:2 between excitations from respectively 2pj=3/2 and 2pj=1/2

core holes, and 3:2 between excitations to respectively t2g and
eg states) do not follow this one-electron picture: Assigning
the peaks at 458, 460, 463, and 465 eV to excitations of
the form 2pj=3/2 → t2g , 2pj=3/2 → eg , 2pj=1/2 → t2g , and
2pj=1/2 → eg , respectively, would yield the intensity ratios
12:8:6:4, which are clearly not observed. On the other hand,
starting from a 2p53d1 final-state configuration in a cubic
crystal field does yield the correct intensities,88 plus several
small peaks. Our ab initio results, shown in blue in the figure,
confirm this interpretation. Within the atomic 2p53d1 excitonic
picture the interpretation in terms of t2g and eg excitations
of the L3 and L2 edges for the four peaks might still be a
reasonable starting point, but one should realize that there
is a considerable mixing between states due to Coulomb
interactions.

The cluster eigenstates cannot be represented by single
Slater determinants. For correlated TM compounds, the
spectral line shape is governed by multiplet effects leading
to involved spectral functions, not obviously related to the
density of states.89,90 The spectra are therefore generally used
as fingerprints which contain unique features resembling the
local ground-state properties. The energy of the final state
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is determined by local atomiclike physics. The intensity
with which each state can be reached depends, via the
optical selection rules, on the ground-state symmetry and the
polarization of the light. This can lead to large spectral changes
for small changes in the ground state.81,89,90 For example, a p

electron can only be excited into an dx2−y2 orbital with x- or
y-polarized light, but not with z-polarized light. Changing the
orbital occupation can therefore lead to a strong polarization
dependence which for certain multiplets can be as strong as
100%.91 Due to the strong TM 2p spin-orbit coupling, the XAS
spectra are also sensitive to the spin of the ground-state.92,93

Theoretically, as well as experimentally, one finds that the
monopole part of the 2p-3d Coulomb interaction is larger
than that of the 3d-3d interaction.61,78,79 This leads to strongly
bound excitons at the TM L2,3 edge and allows one to
describe the spectra using MLFT. Besides these excitonic
states, excitations into nonbound states are also possible.94

Such excitations essentially probe the conduction bands of the
compound. For NiO both excitations are clearly visible in the
experimental spectra shown in the bottom panel of Fig. 7: The
excitonic bound states give rise to sharp excitations which
extend upward from 852 eV; they are seen to agree very
well with our MLFT spectra. At 865 eV the experimental
NiO spectra show an edge jump where the cross section for
photon absorption increases discontinuously. This is the onset
of L3 excitations into the conduction-band continuum without
formation of bound states. These continuum excitations are
of course not reproduced with MLFT. The L2 excitations into
bound excitons give rise to the sharp features starting at 870
eV and captured by our MLFT. Around 856 eV there is a slight
disagreement between the theoretical and experimental Ni L3

edge spectra which might be due to the neglect of the Ni 4s

orbitals in our cluster basis set.
Looking at NiO, MnO, and SrTiO3, one may notice

that our calculations reproduce the low-energy parts of the
spectra better than the high-energy parts. The former are most
excitonic and therefore best described by the small basis set in
the cluster. It may furthermore be noticed that not only are the
edge jumps absent in the calculation, but also the interference
between the excitonic excitations of the L2 edge and the
continuum states of the L3 edge. These interference effects
give rise to Fano-like line shapes present in the experiment, but
not in the theory. The effect is relative small as the interference
between 2pj=3/2 and 2pj=1/2 states is forbidden in many
channels. There is, however, a substantial mixing of core states
due to Coulomb interactions, which could be the main reason
for the interference effects between continuum and excitonic
states of the L3 and L2 edges.

Nevertheless, the agreement between MLFT and experi-
ment is rather good in Fig. 7 for all three TM oxides. This
agreement is as good as—or even better than—that obtained
for calculations in which all standard MLFT parameters are
optimized to give the best fit to experiment.81,84–87 There are
many parameters in such a calculation and finding the best
fit is not trivial. The use of ab initio values for an otherwise
equivalent MLFT calculation can therefore be of great help
to interpret x-ray absorption spectra and thus also in the
understanding of elastic resonant x-ray diffraction (RXD)
spectra,95 and the resonant energy dependence of resonant
inelastic x-ray scattering (RIXS).96,97 For systems with lower

local symmetry, the number of parameters is even larger, and
so is the need for values determined ab initio.

Compared with other ab initio methods used for the
calculation of the L2,3 edges of correlated transition-metal
compounds,32–37,98–100 the current method preforms well. For
d0 compounds, i.e., band insulators like SrTiO3, very pow-
erful methods based on multiple-scattering formalisms98,99

or the Bethe-Salpeter equations100 are available. For Mott-
Hubbard or charge-transfer insulators, ab initio configuration-
interaction calculations of high quality have been performed
for finite-sized clusters.32–37 Our MLFT method has the
advantage that its one-electron basis functions exactly describe
the relevant bands for the infinite crystal and at the same time
localize so well that one can afford to include correlations
beyond the LDA for merely the TM d orbitals. This allows for
very efficient, but still accurate, many-body calculations in the
framework of the well-studied multiplet ligand-field theory.

B. 2 p core-level photoemission of Ni0.03Mg0.97O

Core-level photoemission is uninteresting from a one-
electron point of view. Core levels are atomiclike and have
no momentum-dependent dispersions and therefore δ-peaked
densities of states. Accordingly, 2p photoemission is expected
to yield two spin-orbit-split peaks with intensity ratio 2:1.
However, the experimental spectra101 from Ni 2p core-level
photoemission in Ni0.03Mg0.97O exhibit four distinct spectral
features, as shown in Fig. 8. Emission from the Ni 2p3/2

level gives rise to the structure between 852 and 868 eV and
emission from the 2p1/2 level to the structure between 870
and 886 eV. The structure between 860 and 868 eV originates
from multiplet excitations with main character 2p

3/2
3d8 (with

the underbar indicating a hole) while the peak centered at
855 eV belongs to an excitation with main final-state character
2p

3/2
3d9L. It is the strong Coulomb attraction between the

2p core hole and the 3d electron which causes the latter state
to have lower energy than the former, and thus screens the
core hole by driving charge in from the ligand. Between 870
and 886 eV, this spectrum of screened and unscreened states is
repeated, but now for excitations from the 2p1/2 core level. Our
MLFT spectra agree well with the experimental spectra101 and
with MLFT calculations for Ni impurities in MgO with fitted
parameters.101 The resulting interpretations of the experiment
are the same.
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FIG. 8. (Color online) Comparison of the experimental (thick red)
and MLFT (thin blue) Ni 2p core-level photoemission spectra of NiO
in the impurity limit. The experimental spectra are reproduced from
Altieri et al. (Ref. 101).
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These Ni 2p core-level photoemission spectra are strikingly
different from the previously considered Ni 2p x-ray absorp-
tion spectra in the bottom panel of Fig. 7.94 In core-level x-ray
absorption, a TM core electron is excited into the 3d shell of
the same atom, whereby the sample remains locally neutral.
The 3d electron can bind with the core hole left behind and
thereby screen the core-hole potential. This gives rise to the
strong excitonic peaks seen in the x-ray absorption spectrum.
In core-level photoemission, a core electron is emitted from the
sample (excited into the vacuum) and can therefore not screen
the core hole left behind. The core hole is either screened by
the surrounding ligands or left unscreened, which gives rise to
higher-energy excitations.

Photoemission spectra are generally not excitonic. It might
therefore seem strange to use MLFT to calculate those spectra.
Nevertheless, experience has shown that many features of
photoemission from correlated transition-metal compounds
can be captured by full multiplet theory for a local cluster. Pho-
toemission combined with cluster calculations has contributed
greatly to our understanding of correlated TM and rare-earth
compounds.64,78 The influence of nonlocal screening, i.e., the
effect of the material being a solid and not a single impurity,
has been studied experimentally by comparing the core-level
photoemission from TM impurities with that from the TM
compounds.101 The main features of the Ni 2p photoemission
spectra from Ni0.03Mg0.97O are the same as from NiO. The
largest bulk effect is a splitting of the peaks at 855 and 873 eV.

Important progress in understanding bulk valence pho-
toemission from NiO has been made recently by solving
the LDA O p Ni d Wannier-orbital Hubbard model in the
dynamical mean-field approximation102,103 (LDA + DMFT)
and also by using the variational cluster approximation.104

How important correlation between different Ni sites is, and
therefore how important the inclusion of dynamical nonlocal
screening effects is,105 remains an open question. On a
different level, MLFT is able to reproduce a substantial part of
the photoemission spectra, even though these are not excitonic.

C. Nonresonant inelastic x-ray scattering at the M2,3 edge

In Sec. IV A, we compared experiments and MLFT for
core-level x-ray absorption. Now we shall discuss core-level
spectra obtained with a technique which from a theoretical
point of view is very similar to x-ray absorption, namely,
inelastic x-ray scattering. In XAS at the TM M2,3 edge, a TM
3p core state is excited to a 3d conduction state by absorption
of a photon. The same excitation can be caused when a
photon is scattered inelastically and only part of its energy
is absorbed.83,106–108 The major difference between XAS and
IXS is that, for the former, the energy of the photon has to equal
the absorption edge, whereas for the latter, the energy of the
photon should be (much) higher than the absorption edge since
only a fraction of its energy is absorbed. For XAS at the TM
M2,3 edge, the leading interaction is of dipole character, i.e.,
one can use the long-wavelength limit. For IXS, the transferred
momentum can be selected by looking at different scattering
angles and energies: for small momentum transfers, dipole
transitions are measured, and for larger momentum transfers,
octupole transitions.107 In Fig. 9 we show the nonresonant
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FIG. 9. (Color online) Comparison of the experimental (thick red)
and theoretical (thin blue) Mn 3p (M2,3 edge) nonresonant inelastic
x-ray scattering spectra of MnO at large momentum transfer (q). The
two panels give spectra for different directions of momentum transfer.
They exhibit the generalized natural linear dichroism present for an
octupole transition in cubic symmetry. The experimental spectra are
reproduced from Gordon et al. (Ref. 109).

IXS at the M2,3 edge in MnO for high magnitude momentum
transfers where octupole transitions are the strongest.

There is a clear difference between the L2,3 (2p to 3d)
and M2,3 (3p to 3d) edges in MnO. One reason is that the
spin-orbit coupling constant for 3p is much smaller than for
2p, e.g., for Mn, ζ2p = 6.85 and ζ3p = 0.77 eV. The splitting
between the M3 and M2 edges is thus much smaller (not
resolved in the experimental spectra) than the splitting between
the L3 and L2 edges. Another reason why the L2,3 and the
M2,3 edges look different comes from the fact that the 3p

wave function is larger than the 2p wave function due to
the extra node. This leads to a smaller monopole part of the
Coulomb repulsion and larger multipole interactions between
the p and 3d orbitals. In general, for excitations within the
same radial shell the multiplet splittings are larger than the
excitonic binding energy.110 This has important consequences.
The highest-energy multiplets of the M2,3 excitations are
pushed above the continuum edge and form broad resonances
instead of sharp mulitplets. The low-energy multiplets, on the
other hand, are still sharp excitonic states. Due to the strict
selection rules applicable to XAS and IXS, one can choose the
experimental geometry such that only particular excitations are
allowed. The spectra shown in Fig. 9 are octupole dominated
and sensitive only to the low-energy excitonic features in the
spectra. One would not be able to reproduce the broad dipole
resonances with MLFT.

One of the beauties of octupole transitions is that they
show dichroism in cubic symmetry.109 This can be seen in
the two different panels of Fig. 9, and is well reproduced by
our theory. For a dipole transition one cannot distinguish cubic
from spherical symmetry. [A transition of angular momentum
L = 1 branches to a single irreducible representation (T1u)
in cubic symmetry.] An octupole transition, however, shows

165113-11



M. W. HAVERKORT, M. ZWIERZYCKI, AND O. K. ANDERSEN PHYSICAL REVIEW B 85, 165113 (2012)

nice dichroism in cubic symmetry, whereby the momentum
transfer q for IXS takes the place of the light polarization ε in
XAS. A transition of angular momentum L = 3 branches to
three different irreducible representations in cubic symmetry,
namely, T1u, T2u, and A2u. As a consequence, the dichroic
spectra can be used to obtain detailed information about the
differences in bonding of t2g and eg electrons. The shift in
the spectral energy and the change in spectral weight for
excitations with q either in the [111] (top panel) or [001]
(bottom panel) direction is related to the different energy of
the t2g and eg electrons and the difference in occupation of
these orbitals due to covalent bonding.

D. Nonresonant inelastic x-ray scattering of d-d excitations

This last section in which we compare MLFT with
experiment deals with low-energy excitations without a core
hole. It has recently been shown that surprisingly strong
d-d or crystal-field excitations can be observed in NiO with
nonresonant IXS for large momentum transfers.111–113 These
spectra contain similar information as the weak d-d excitations
inside the optical gap observed with optical spectroscopy.56,57

The difference between IXS and optics is that with optics these
transitions, being even in parity, are forbidden and only become
allowed by simultaneous excitation of a phonon and a crystal-
field excitation. This makes a quantitative interpretation of
optical d-d excitations involved. The interpretation of the
nonresonant IXS is, on the other hand, straightforward and
allows for a quantitative comparison.107,114

In Fig. 10 we show the experimental112 and theoretical
nonresonant IXS spectra for a powder of NiO at large
momentum transfer (averaged over a transfer of 7.3–8.0 Å−1).
These spectra are governed by quadrupole and hexadecapole
transitions between the 3d orbitals. The nonresonant IXS
excitations are spin conserving. Locally the Ni ground-state
configuration is d8 with the t2g orbitals fully occupied and
the eg orbitals half filled with 〈S2〉 = 2, i.e., S = 1. In the
one-electron picture, one can make a single excitation going
from the t2g shell to the eg shell, which has an experimental
energy of about 1.1 eV. This is the peak of T2g final state
symmetry in the experiment. In principle one could also excite
two t2g electrons simultaneously into the eg subshell. This
would give rise to a single peak at twice the energy. In a pure
one-electron picture the double excitation is forbidden because
nonresonant IXS couples a single photon to a single electron.
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FIG. 10. (Color online) Comparison of the experimental (thick
red) and MLFT (thin blue) nonresonant inelastic x-ray scattering
intensity of low-energy d-d excitations. The experimental spectra are
reproduced from Verbeni et al. (Ref. 112).

Using full multiplet theory, however, both excitations have a
finite intensity. This has to do with the strong t2g-eg multiplet
interaction which mixes, for the excited states, the single Slater
determinants. One even finds three peaks instead of two. The
first peak indeed corresponds to an excitation of a single t2g

electron into the eg subshell. The second peak is roughly
the simultaneous excitation of two t2g electrons into the eg

subshell. Finally, in order to understand the third peak, one
should realize that the t2g (xy) electron is Coulomb repelled
more from an eg (x2 − y2) electron than from an eg (3z2 − 1)
electron because of the larger overlap of densities. This leads
to multiplet splitting of the t5

2ge
3
g states and to mixing of t5

2ge
3
g

and t4
2ge

4
g states.

One could also have understood the energy and number
of excitations by starting from spherical symmetry where
Coulomb repulsion splits the S = 1 states into a lowest state
of 3F symmetry and an excited state of 3P symmetry. In cubic
symmetry the 3F states branch into a 3A2 ground state, a 3T2

first excited state, and a 3T1 second excited state. The 3P

state branches to a state of 3T1 symmetry, which can mix
with the highest excited state branching from the 3F state.
Such multiplet effects are hard to capture at the DFT level.
Recent time-dependent DFT calculations with the LDA + U

functional do show Frenkel excitons (d-d excitations) within
the optical gap, but they cannot reproduce the correct number
of multiplet states.115

Let us finally have a closer look at the comparison between
the experimental and MLFT crystal-field excitations in NiO.
MLFT gets the lowest excitation (3T2)5% too low and the
highest (3T1)10% too high. As the 3T2 energy is mainly
determined by one-electron interactions, we conclude that the
eg-t2g splitting due to covalency in our LDA-based calculation
is 5% underestimated. At the same time, the multiplet splitting
due to the Coulomb repulsion, i.e., the values of the F

(2)
dd

and F
(4)
dd Slater integrals, are 10% overestimated. The latter

could be a result of neglecting the screening of the multipole
interactions, but not necessarily, because there are additional
channels in which two 3d electrons can scatter into two higher
excited states due to Coulomb repulsion. This gives rise to
a multiplet-dependent screening, not easily described with a
single screening parameter.110

V. CONCLUSIONS

We have shown how multiplet ligand-field theory calcula-
tions can be based on ab initio LDA solid-state calculations,
in a similar way to that originally devised by Gunnarson
et al.43,44 and recently done for LDA + DMFT calculations.
The resulting method could be named LDA + MLFT. The
theory is very well suited for the calculation of local ground-
state properties and excitonic spectra of correlated transition-
metal and rare-earth compounds. Our TM d Wannier orbitals,
which together with the O p Wannier orbitals span the LDA
TM d and O p bands, are quite similar to atomic orbitals, and
this justifies many previous studies using the latter.

We compared several experimental spectra (XAS, nonreso-
nant IXS, photoemission spectroscopy) for SrTiO3, MnO, and
NiO with our ab initio multiplet ligand-field theory and found
overall satisfactory agreement, indicating that our ligand-field
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parameters are correct to better than 10%. The covalency seems
to be slightly underestimated and the Slater integrals for the
higher multipole interactions overestimated. The method is ex-
pected to provide insights into the local properties of transition-
metal compounds with only modest computational efforts.
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APPENDIX A: DEFINITION OF O AND TM ORBITALS,
COVALENCY, AND FORMAL VALENCE

It is a general praxis to talk about Ni d and O p orbitals,
even in a solid. The definition of local orbitals in a solid is
not always clear. In this paper we choose such orbitals as
generalized Wannier orbitals of a given local symmetry. For
our materials, i.e., transition-metal oxides, there are two useful
definitions for the Wannier orbitals, depending on the size of
the basis set used and the energy bands they span. These two
different definitions are often used in an ambivalent way. Here
we explain the definitions of the two different sets of orbitals,
by the example of NiO.

In Fig. 11 we show in the top row the Ni d and O p Wannier
orbitals which are most atomiclike. Linear combinations of
these eight orbitals span the eight bands shown on the left of
the top row in Fig. 11. Due to covalency, the Ni d orbitals
defined in this way are occupied by more than eight electrons.
At the same time, the O p Wannier orbitals are occupied by
fewer than six electrons, i.e., they have holes. When forming
band states, the Ni d and O p orbitals mix and part of the O p

character ends above the Fermi energy. One should not think
of these extra electrons or holes as mobile charge carriers.
These partial occupations are just a result of the choice of the
basis set used, which is different from the eigenbasis, the band
states.

A different choice of the Wannier orbitals, closer to the
eigenfunctions, can be seen in the lower two rows of Fig. 11.
Here we show from top to bottom the Ni d (eg and t2g) and O
p t1u orbitals. The Ni d orbitals are those five orbitals which
together span the Ni d bands in the energy range from −3 to
2 eV. The O p orbitals are those three orbitals which together
span the O p bands in the energy range from −8 to −3 eV.

In order to distinguish the two different sets of Wannier
orbitals we have throughout this paper used italic font for the
more localized atomiclike orbitals and roman font for the more
extended orbitals. The difference in notation is quite subtle, but
in almost all cases one can understand from the context which
definition is meant.

The two basis sets of either atomiclike Ni d and O p orbitals
or more delocalized Ni d and O p orbitals span the same bands
and can thus be expressed in terms of linear combinations of
each other. The unitary transformation between the two sets
of Wannier orbitals is such that it diagonalizes the covalent
interaction between the Ni d and O p orbitals. The Ni d and
O p orbitals interact, whereas the Ni d and O p orbitals are
noninteracting at the one-particle or LDA level. The five Ni d

orbitals span the five d bands exactly and the three O p orbitals
span the three O p bands exactly. The O p orbitals are bonding
combinations of the TM d and O p orbitals. The TM d orbitals
are antibonding combinations of the TM d and O p orbitals.

With the use of the Ni d (O p) Wannier orbitals, which span
only the Ni d (O p) bands one can define the formal valence
of Ni in NiO. It is common to state that O is 2−, i.e., has
an occupation of p6, and Ni is 2+, i.e., has an occupation
of d8. If one counts the electrons in the Wannier orbitals that
separately span the Ni or O bands one immediately reproduces
the formal valence. The occupation numbers are different if
one looks at the more atomiclike Ni d and O p orbitals. For
these orbitals covalence introduces holes in the O Wannier
orbitals and extra electrons in the Ni Wannier orbitals. For the
oxides described in the present paper, the occupations of the
two kinds of Wannier orbitals are NiO 3d8 ≈ 2p5.43d8.6, MnO
3d5 ≈ 2p5.53d5.5, and SrTiO3 3d0 ≈ (2p5.7)33d0.9.

Let us note that for our purposes, the Wannier d or-
bitals are not sufficiently localized. Nevertheless, in early
LDA + DMFT calculations which could handle only a few
correlated orbitals, even more “downfolded” t2g or eg Wannier
orbitals 50,51 were used by necessity; they clearly exhibit the
covalencies.52

APPENDIX B: COMPUTATIONAL DETAILS

The self-consistent LDA (Ref. 4) LAPW calculations were
performed with the WIEN2K code46 using a plane-wave cutoff
of kmaxRMT = 8, with RMT the smallest MT-sphere radius and
kmax the largest k vector. The NMTO calculations were done
with the Stuttgart code,116 had N = 1, and all partial waves
downfolded, except the TM d and O p.47–50,52 The LAPW
warped potential (spherical inside the LAPW MT spheres)
was least-squares fitted to an overlapping MT potential with
the recently developed OMTA code58 and was used in the
NMTO calculations. The radii of the hard screening spheres
were 70% of the OMT radii.

The material-dependent settings are as follows:
NiO. Space group Fm-3m (225) a = 4.177 Å, Ni at Wyckoff

position 4a and O at 4b. MT radii for Ni 2.08a0 and for O
1.84a0. a0 = 0.5292 Å is the Bohr radius. OMT radii for Ni
2.2a0, for O 2.5a0, and for an additional empty sphere at
Wyckoff position 8c 1.6a0. The expansion energies were −5.2
and −1.2 eV.

MnO. Space group Fm-3m (225) a = 4.4248 Å, Mn at
Wyckoff position 4a, O at 4b. MT radii for Mn 2.20a0, and
for O 1.95a0. OMT radii for Mn 2.3a0, for O 2.7a0, and
for an additional empty sphere at Wyckoff position 8c 1.7a0.

Expansion energies −5.0 and −1.0 eV.
SrTiO3. Space group Pm-3m (221) a = 3.905 Å, Ti at

Wyckoff position 1a, Sr at position 1b, and O at position 3d.
MT radii for Ti 2.32a0, for Sr 2.00a0, and for O 1.36a0. OMT
radii for Ti 2.4a0, for Sr 3.8a0, and for O 2.0a0. Expansion
energies −2.6 and +1.5 eV.

The NMTO band structures and densities of states as
presented in Figs. 2 and 5 were calculated from the real-space
TM 3d O 2p Wannier-orbital (tight-binding) representation
of the LDA Hamiltonian, neglecting hops between sites more
distant than 2.5a. The tight-binding parameters larger than
10 meV are presented in the lower panels of Table I. Only
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FIG. 11. (Color online) NiO band structure (left) and Wannier orbitals (right) for three different basis sets. Top panels: Including both the
Ni d and O p orbitals. Middle panels: Including only the Ni d orbitals. Bottom panels: Including only the O p orbitals.

the nearest-neighbor hopping integrals (boldfaced) enter in
the cluster calculations. In SrTiO3, the point symmetry of O
is merely tetragonal so that the p orbital pointing toward the
Ti atom is slightly different from those pointing in directions
perpendicular to the Ti-O bond (and, e.g., toward Sr). For a
discussion of the bonding between the O p and Sr d orbitals
and how this changes the different O p Wannier functions
see Pavarini et al.50 Due to the two different types of O p

Wannier functions, the relation between the hopping integrals
and the cubic ligand-field parameters is slightly more involved
than those valid for O in cubic symmetry and given in Sec. II.
In general (for all symmetries), the ligand-field parameters

can be found by block tridiagonalization of the tight-binding
Hamiltonian of the cluster with respect to the TM d orbitals.
For more details see Appendix D.

Wannier orbitals have tails on the neighboring sites,
although most of the orbital weight is close to the nucleus
at its center (Fig. 3). The tails lead to long-ranged hopping
integrals and their values are given in the lowest panels of
Table I. It should be noticed that in order for MLFT to work
properly with a basis set of LDA-based Wannier orbitals, it is
important to have TM 3d atomiclike character for r � 1.5 Å,
but it is not essential to have hopping limited to the first-nearest
neighbors.
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TABLE II. Multiplet ligand-field theory parameters taken from
experiment. Note that the experiments shown in this paper are not
very sensitive to these parameters. For a more thorough discussion
on these parameters we refer to the papers by Bocquet et al. (Ref. 78)
or Tanaka and Jo (Ref. 79). All values are in eV.

U3d,3d � U2p,3d U3p,3d

NiO 7.3 4.7 8.5 —
MnO 5.5 8.0 7.2 5.5
SrTiO3 6.0 6.0 8.0 —

The multipolar part of the Coulomb integrals is calculated
by directly integrating the wave functions. In order to obtain
numerically stable integrals, the Wannier orbitals were ex-
panded in radial wave functions times spherical harmonics, an
approximation for which a set of Slater integrals can be intro-
duced. Sufficiently accurate results are obtained when different
radial wave functions for the t2g and eg orbitals are used. The
core wave functions, are calculated using the Hartree-Fock
method.61 For reasons of space, Table I only gives the Slater
integrals for the radial functions averaged over t2g and eg; the
difference between these integrals for NiO are given as an
inset in Fig. 3. The spin-orbit coupling constants have been
calculated using a spherical approximation, including only the
local d character at the TM site. The resulting constant is the
same for the t2g and eg orbitals.

The parameters fitted to experiments are shown in
Table II. These values are in good agreement with those in the
literature.78,79 One should realize that since x-ray absorption
involves a charge-neutral excitation, it is not very sensitive to
U and �. The experiments discussed in this paper were chosen
to be most sensitive to the calculated values (Table I).

The NMTO method47–49 constructs the basis set of Ni d plus
O p localized orbitals by first constructing such a set for each of
the N + 1 energies ε0, . . . ,εN , chosen to span the energy range
of interest. In such a set of zeroth-order (N = 0) MTOs, each of
the orbitals is a solution of Schrödinger’s differential equation
for the overlapping MT potential for the chosen energy, but has
kinks at all Ni and O (but not, e.g., Sr) hard spheres.117 Those
hard spheres are chosen to be slightly smaller than touching
distance and not to coincide with a node of the radial wave
function. The Ni dxy 0MTO, for instance, is now defined by
the hard-sphere boundary condition that all its p projections on
all O spheres and all its d projections on all Ni spheres, except
dxy on its own Ni sphere, vanish; And equivalently for the other
members of the 0MTO basis set. This hard-sphere boundary
condition is what localizes the 0MTOs, unless there are wave
functions at the chosen energy with main characters different
from those of the 0MTOs in the basis. The condition that each
0MTO solves Schrödinger’s equation, except for kinks in the
Ni d and O p channels, means that each 0MTO is smooth in
all other channels. This is accomplished by constructing that
set of wave-equation solutions in the hard-sphere interstitial,
the so-called screened spherical waves, whose phase shifts are
the hard-sphere ones for all Ni d and O p channels, except the
eigenchannel, and have the proper phase shifts for all other
channels (such as Ni s and Sr d). The screened spherical
waves then get augmented inside the overlapping MT spheres
to become the 0MTOs. Finally, the N + 1 different 0MTO

basis sets are contracted into one, the NMTO set, which spans
the solutions of Schrödinger’s equation at all N + 1 energies.
The NMTOs have discontinuities in merely the (2N + 1)th
derivatives at the hard spheres and are therefore smooth if
N > 0. The contraction (N -ization) delocalizes the NMTO
to a degree which depends on how much the neighboring
0MTOs vary over the N + 1 energies. This is so because, for
an energy-independent set of orbitals, the energy dependence
of a radial Schrödinger-equation solution must be provided
by the tails of the neighboring orbitals.42 The delocalization
is further enhanced by symmetrical orthonormalization of the
NMTOs into Wannier orbitals, and this depends on the overlap
between neighboring NMTOs. Nevertheless, as seen in Fig. 2,
our Ni d plus O p Wannier orbitals are as localized as can
be expected, and—in fact—much better than Wannier orbitals
derived from a large set of energy-independent orbitals.118

APPENDIX C: DOUBLE-COUNTING CORRECTION

DFT in the LDA already contains a large part of the local
Coulomb interactions. These interactions are included once
more in the MLFT calculations. For MLFT based on the LDA
potential and Wannier orbitals one should therefore take care
not to double-count such interactions. We differentiate rigidly
between the monopole and the multipole parts of all Coulomb
interactions. This idea is based on the experimental observation
that the monopole part of the Coulomb interaction (U ) is
largely screened, from ∼25 to ∼7.3 eV in NiO for example.
The multiplet splitting, determined by the multipole part of
the Coulomb interaction is, however, only slightly reduced
from the splitting one expects based on atomic values. This
has for example been observed in Auger spectroscopy for the
elemental 3d metals.80

The monopole part of the Coulomb interaction (U ) as
well as the spherical part of the on-site energy (�) we
fit to the experiment and double counting for the spherical
part is therefore not an issue. In order to prevent double
counting of the multipole part of the Coulomb repulsion, the
LDA calculations are done with a warped LDA potential;
i.e., within the MT sphere only the spherical part of the
potential is included. In order to check how this influences
the LDA band structure we compare in Fig. 12 the band
structures of NiO (top) and SrTiO3 (bottom) calculated with
the full LDA potential (thick) and warped MT potential
(thin). Concentrating first on the NiO bands, we see that
both calculations agree within basically the linewidth for all
bands and k vectors, except for the t2g bands. Those bands
are shifted downward in the warped-MT calculations by a
momentum-independent value of about 220 meV. This effect
nicely illustrates the problem of double counting. The orbital
occupation of the Ni 3d orbitals within the LDA is such that
the t2g orbitals are fully occupied and the eg orbitals are half
filled. The local charge density is thus cubic. The Coulomb
repulsion between two t2g orbitals is on average larger than
between a t2g and an eg orbital. This effect is well included in
the LDA functional and related to the fact that the overlap of,
for example, the density of the dxy and dxz orbitals is larger
than the overlap of the density of the dxy and d3z2−1 orbitals.
In MLFT calculations, such interactions are included in the
Slater integrals. A MLFT calculation based on the full LDA
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FIG. 12. (Color online) Comparison of the
LAPW band structures and densities of states
for the full LDA potential (thin lines) and the
warped MT potential (thick lines). When only a
single line can be seen, the two band structures
overlap within the linewidth of the plot. The
colors indicate the partial-wave characters inside
the MT spheres.

potential would thus double-count the multipolar interaction
between the fully occupied t2g and the half-filled eg shell.

One option would be to include the full potential within
the LDA calculations and then subtract the nonspherical
part of the Coulomb repulsion, as included in the LDA
functional, between the Wannier functions for which a full
multiplet interaction is included in the MLFT calculations.
In that case one should carefully analyze the occupation of
each Wannier function in order to determine the potential
that has to be subtracted. We opted to not include the
nonspherical interactions in the first place. This does mean
that one also neglects the nonspherical part of the nonlocal

Madelung potential in the self-consistent LDA calculations.
In order to correct for this, we calculated this potential
from the self-consistent LDA charge density and added it
afterward. We found that the Coulomb potential which is
double counted generally exceeds the nonspherical nonlocal
potential by an order of magnitude. Our choice of not including
the nonspherical interactions in the first place and treating
the nonlocal nonspherical interactions as a correction after
self-consistency has been reached thus provides an accurate
self-consistent solution to the potential needed in MLFT.
Nevertheless, we expect that doing a full-potential calculation
and subsequently subtracting the nonspherical part of the local
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Coulomb interaction according to the LDA functional will give
very similar results.

In the bottom panel of Fig. 12 we compare the band
structures of SrTiO3 calculated for the warped and full
potentials. First of all, there is no clear shift of the t2g bands
with respect to the eg bands, presumably because Ti atom has
a d0 configuration. But there are changes in the O p-derived
bands. In NiO both the Ni and the O atoms have cubic point
symmetry, but in SrTiO3 the O environment is tetragonal as was
mentioned above. For SrTiO3 one can see a larger difference
between the full- and warped-potential calculations than for
NiO. The interpretation for SrTiO3 is less straightforward
because several effects come together. Due to Ti-O covalency
there is some nonspherical, predominantly eg-derived charge
on the Ti atom from the O 2p band. The local nonspherical
potential due to this charge should not be included when
doing MLFT calculations. There is, however, also a noncubic
potential at the O site that shifts the O bands. This potential
should be included when doing the MLFT calculations. Note
that the latter potential is not included in the self-consistent
warped-potential calculations, but we add it later, before doing
the MLFT calculations.

APPENDIX D: BASIS-SIZE REDUCTION AND THE
CREATION OF LIGAND ORBITALS BY BLOCK

TRIDIAGONALIZATION

Embedded-cluster calculations, like those in MLFT or
DMFT, contain a few correlated orbitals coupled to a large
set of uncorrelated orbitals. Within such calculations the size
of the Hilbert space can be reduced enormously by creating
appropriate linear combinations of the uncorrelated orbitals.
Within our examples these are the O p orbitals, which are
combined with ligand orbitals. Without introducing ligand
orbitals for an MO6 cluster, there would be (18 + 5) × 2 = 46
spin orbitals in the one-electron basis. With a filling of
8 + 6 × 6 = 44 electrons for the NiO6 d8 cluster, this results in
46!/(44! × 2!) ∼ 103 states in the many-electron basis. For the
TiO6 d0 cluster representing SrTiO3, the filling would be 6 ×
6 = 36 and thus result in 46!/(36! × 10!) ∼ 4 × 109 states
in the many-electron basis. The introduction of L orbitals,
however, reduces the number of one-electron basis functions
to 20, whereby the many-electron Hilbert space is reduced to
20!/(18! × 2!) = 190 for a d8 and to 20!/(10! × 10!) ∼ 2 ×
105 states for a d0 configuration. This reduction in the number
of many-electron basis functions by factors of respectively
46!
20!

(20−2)!
(46−2)! ∼ 5 and 46!

20!
(20−10)!
(46−10)! ∼ 22 000 leads to a crucial gain

of computational convenience. Either basis set can be used
to calculate ground-state properties and spectral functions
because the matrices are sparse. But diagonalization of a
matrix with dimension 4 × 109 requires large computational
resources whereas diagonalization and evaluation of spectral
functions of a sparse matrix with dimension 2 × 105 can be
done using standard libraries on modern desktop computers.
One may obtain a further reduction in the number of stored
basis states by including only those which are important for
representing the actual wave function (see Appendix E for
details).

Ligand orbitals are normally obtained by symmetry
considerations.25 The rotation properties of the TM d orbitals

should be the same as the linear combination of the O
p orbitals with which this orbital makes a covalent bond.
These symmetry considerations can be extended to a simple
mathematical procedure, valid in all point-group symmetries.
From DFT the one-particle Hamiltonian for an extended
cluster is known on a basis of the central TM d orbitals and
the neighbor O p orbitals. Using a block Lanczos routine one
can create a unitary transformation of the p orbitals such that
the one-particle Hamiltonian has a block tridiagonal form.
The basis of the central TM d orbitals is not changed. In
cubic symmetry the tridiagonalization results in a transformed
Hamiltonian whereby each TM d orbital couples to one
ligand orbital. For lower symmetries each d orbital couples to
maximally five ligand orbitals. The ligand orbitals can couple
to another set of ligand orbitals, ad infinitum. Covalence in a
tridiagonal representation tends to converge fast, justifying the
inclusion of only a single ligand shell in MLFT.

The introduction of ligand orbitals is not restricted to fully
occupied shells, like the O p shell. For example, for SrTiO3

one could include besides the O p ligand orbitals also the Sr
d ligand orbitals. Care has to be taken in such a system as to
the definition of the ligand orbitals. If one were to create a
single ligand shell for both the O p and Sr d orbitals by block
tridiagonalization as described in the previous paragraph, one
would obtain ligand orbitals that are always partially occupied.
This results in a very large many-particle basis set and is
unpractical. In such a case it is better to first diagonalize
the noninteracting Hamiltonian describing the interactions
between the ligand orbitals. Based on the on-site energies one
then creates two different ligand shells, one for the occupied
or valence orbitals and one for the unoccupied or conduction
orbitals.119

Note that a similar procedure can be used for DMFT
calculations using a Lanczos impurity solver. Doing so
enhances the calculation speed and allows one to increase the
number of bath sites (the number of discretization sites used
to represent the Anderson impurity model used in DMFT)
leading to much more continuous spectral functions.

APPENDIX E: EXACT DIAGONALIZATION AND
LANCZOS ALGORITHM

The MLFT ground-state and spectral calculations are done
using a Lanczos algorithm.22,23 The calculations start with
a random vector (ψ0) in the basis of the dn and dn+1L

configurations, where n is the number of d electrons (zero
for Ti, five for Mn, and eight for Ni) and L represents a single
hole in the ligand shell. Although this starting point is slightly
worse than the DFT single-Slater-determinant ground state,
which prescribes a specific mixture of d and L states, it does
contain the correct symmetry states. Thereby convergence is so
fast that the starting point really does not matter much. Given
a negative definite Hamiltonian, the wave function ψ1 = Hψ0

has a larger overlap with the ground-state wave function than
does the wave function ψ0. By repeatedly acting with the
Hamiltonian on the random starting function and normalizing
the wave function in between (ψn+1 = Hψn/|Hψn|), one
converges to the ground state. This procedure can be sped
up considerably by creating a tridiagonal matrix of the
Hamiltonian in the basis of ψn, with the additional constraint
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that ψn+1 is orthogonal to ψn. The tridiagonal matrix in the
so-called Krylov basis can be diagonalized with the use of
dense matrix methods. Having found the ground state within
the basis of the dn plus dn+1L configurations, we remove the
basis functions not needed to represent the ground-state wave
function from the basis and extend the basis set by acting with
the Hamiltonian on the wave function. This creates basis states
belonging to the dn+2L2 configuration. Within this new basis
set the ground state is found and the procedure of truncating
and extending the basis set is repeated. The whole process

is repeated until convergence is reached. Excited states are
calculated by repeatedly orthogonalizing the wave function to
the eigenstates already found. The algorithm as described here
allows one to always keep relatively small basis sets.

Spectral functions are calculated by acting with the transi-
tion operator on the ground-state wave function. The resulting
function is then used as a starting vector for the creation of a
tridiagonal matrix in a Krylov basis. The spectral function of
a tridiagonal matrix can be expressed in terms of a continued
fraction.
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